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Abstract. We find the radius of Ma-Minda starlikeness of normalised analytic functions of the form
1(z) = z( f ′(z))α, α > 0 where f is in the classCV[A,B] of Janowski convex functions and 1(z) = z(z f ′(z)/ f (z))α,
α > 0 where f is in the class CV′ defined. As particular cases, we obtain criteria for these functions to
belong to certain Ma-Minda classes.

1. Introduction and preliminaries

Let A be the class of analytic functions defined on the unit disc D := {z ∈ C : |z| < 1}, normalised by
the conditions f (0) = 0 and f ′(0) = 1. Let S be the subclass of A consisting of functions univalent in D.
A function f ∈ A is starlike if f maps D onto a domain which is starlike with respect to the origin or
equivalently if Re(z f ′(z)/ f (z)) > 0 for all z ∈ D. Similarly, a function f ∈ A is convex if f (D) is convex or
equivalently if Re(1 + z f ′′(z)/ f ′(z)) > 0 for all z ∈ D. The class of all starlike functions f ∈ A is denoted by
ST and that of all convex functions f ∈ A is denoted by CV. There are several subclasses of starlike and
convex functions and they can be unified by using the concept of subordination. For two analytic functions
f and 1, we say that the function f is subordinate to the function 1, written f ≺ 1 or f (z) ≺ 1(z) (z ∈ D), if
there exists a function w ∈ B such that f = 1 ◦ w, where B is the class of all analytic functions w : D → D
with w(0) = 0. If the function 1 is univalent, then f ≺ 1 if and only if f (0) = 1(0) and f (D) ⊂ 1(D). Ma and
Minda [14] used subordination to define the classes ST (φ) and CV(φ) as

ST (φ) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ φ(z)

}
(1.1)

and

CV(φ) :=
{

f ∈ A : 1 +
z f ′′(z)
f ′(z)

≺ φ(z)
}

(1.2)
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respectively, where φ : D → C is an analytic function with positive real part, φ(D) is starlike with respect
to φ(0) = 1 and is symmetric about the real axis and φ′(0) > 0. For different choices of the function φ in
(1.1) and (1.2), different subclasses of the class of starlike and convex functions respectively are obtained.
For example, when φ(z) = (1 + Az)/(1 + Bz), where −1 ⩽ B < A ⩽ 1, the classes ST (φ) and CV(φ) are
respectively denoted as ST [A,B] and CV[A,B]. The class ST [A,B] is called the class of Janowski starlike
functions [7] and CV[A,B], the class of Janowski convex functions. For A = 1−2α (0 ⩽ α < 1) and B = −1,
the classes ST [A,B] and CV[A,B] respectively reduces to ST (α), the class of starlike functions of order α
and CV(α), the class of convex functions of order α.

In this paper, we are interested in the classes Cα1 [A,B] and Cα2 respectively defined by

C
α
1 [A,B] :=

{
1 ∈ A : 1(z) = z( f ′(z))α, f ∈ CV[A,B], α > 0

}
and

C
α
2 :=

{
1 ∈ A : 1(z) = z

(
z f ′(z)

f (z)

)α
, f ∈ CV′, α > 0

}
,

where the class CV′ is defined as

CV
′ :=

{
f ∈ A :

(
1 +

z f ′′(z)
f ′(z)

−
z f ′(z)

f (z)

)
≺

z
1 − z

}
.

For small values of α, the functions behave like the identity function and so will belong to the classes of
our interest. However, for B = −1, the range of z1′(z)/1(z) is unbounded and hence these classes are not be
contained in various subclasses that are obtained for special choices of the function φ. We are particularly
interested in the classes ST e := ST (ez), ST C := ST (1 + (4/3)z + (2/3)z2), STNe := ST (1 + z − (z3/3)),
ST R := ST (1 + (z2 + kz)/(k2

− kz)), k = 1 +
√

2, ST SG := ST (2/(1 + e−z)), ST sin := ST (1 + sin z), ST$ :=
ST (z +

√

1 + z2), ST ℘ := ST (1 + zez) and ST h := ST (1 + sinh−1(z)).
When the inclusion does not hold, we shall be interested in the corresponding radius problem. Recall

that for two subclasses F and G of A, the largest number R ∈ (0, 1] such that for 0 < r < R, f (rz)/r ∈ F
for every f ∈ G is called the F -radius of the class G and is denoted by RF (G). Radius problems have been
explored and studied extensively recently in [1, 8, 12, 13, 15, 19]. In this paper, we find the radii constants
for functions in the classes Cα1 [A,B] and Cα2 to belong to various classes like the class of Janowski starlike
functions, ST e, ST C, STNe and so on, by finding the largest positive number R less than 1 such that the
image of the discDR := {z ∈ C : |z| < R} under the mapping z1′(z)/1(z) for 1 in the classes defined, lie inside
the image of the corresponding superordinate functions. The radii obtained are sharp. By the Alexander’s
Theorem [3, Thm 2.12], the class Cα3 [A,B] defined by

C
α
3 [A,B] :=

{
1 ∈ A : 1(z) = z

(
f (z)
z

)α
, f ∈ ST [A,B], α > 0

}
satisfies Cα1 [A,B] = Cα3 [A,B] and, therefore, the radius results obtained in this paper for the class Cα1 [A,B]
gives the corresponding results for the class Cα3 [A,B].

2. Radius of starlikeness associated with the Janowski starlike functions

In this section, we discuss condition for the classes Cα1 [A,B] and Cα2 to be contained in the class ST [C,D]
of Janowski starlike functions and find the radius of Janowski starlikeness when the condition fails. We
shall make use of the following theorem.

Theorem 2.1. For |B| ⩽ 1, A , B and |D| ⩽ 1, C , D, the class ST [C,D] is contained in the class ST [A,B] if and
only if |AD − BC| ⩽ |A − B| − |C −D|.
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Proof. With the restriction that −1 ⩽ B < A ⩽ 1 and −1 ⩽ D < C ⩽ 1, this was proved by Silverman and Silvia
[21]. The general case follows easily from the proof of Theorem 2.3 of [5].

We first give a condition for the inclusion Cα1 [A,B] ⊂ ST [C,D] to hold.

Theorem 2.2. For −1 ⩽ D < C ⩽ 1, the class Cα1 [A,B] is contained in the class ST [C,D], if and only if

|BC −D(B + α(A − B))| ⩽ C −D − α(A − B).

Proof. Let the function 1 ∈ Cα1 [A,B]. Then a calculation readily shows that

z1′(z)
1(z)

= 1 − α + α
(
1 +

z f ′′(z)
f ′(z)

)
.

Since f ∈ CV[A,B], we get

z1′(z)
1(z)

≺
1 + (B + α(A − B))z

1 + Bz

or equivalently 1 ∈ ST [B + α(A − B),B]. Therefore, by Theorem 2.1, the class

ST [B + α(A − B),B] ⊂ ST [C,D]

if and only if the inequality

|BC −D(B + α(A − B))| ⩽ C −D − α(A − B)

holds.

If the condition in Theorem 2.2 does not hold, then the following theorem gives the radius of Janowski
starlikeness for the class Cα1 [A,B].

Theorem 2.3. Let α > 0, −1 ⩽ B < A ⩽ 1 and −1 ⩽ D < C ⩽ 1. If the condition in Theorem 2.2 does not hold, then
the radius of starlikeness associated with the class ST [C,D] for the class Cα1 [A,B] is given by

RST [C,D](Cα1 [A,B]) =
C −D

α(A − B) + |BC −D(B + α(A − B))|
.

Proof. The function 1 ∈ Cα1 [A,B] implies that 1 ∈ ST [B+α(A−B),B]. Define the functions P(z) := (1+Cz)/(1+Dz)
and Q(z) := (1+ (B+α(A−B))z)/(1+Bz). We have to determine ρ such that 0 < ρ ⩽ 1 and Q(ρz) ≺ P(z) for z ∈ D.
Define the function H := P−1

◦Q. Then we can see that

H(z) =
α(A − B)z

(C −D) + (BC −D(B + α(A − B)))z
.

For |z| = r, we get

|H(z)| =
α(A − B)|z|

|(C −D) + (BC −D(B + α(A − B)))z|

⩽
α(A − B)r

(C −D) − |BC −D(B + α(A − B))| r

and hence |H(z)| ⩽ 1 for

r ⩽
C −D

α(A − B) + |BC −D(B + α(A − B))|
=: ρ.
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Therefore, the radius of starlikeness associated with the class ST [C,D] for the class Cα1 [A,B] is at least ρ. To prove
the sharpness, consider the function f̃ from the class CV[A,B] given by

f̃ (z) =



1
A

(
(1 + Bz)(

A
B ) − 1

)
if A , 0,B , 0

1
A

(
eAz
− 1

)
if A , 0,B = 0

log(1 + Bz)
B

if A = 0,B , 0.

(2.1)

For the above function f̃ , the corresponding function 1̃ ∈ Cα1 [A,B] given by 1̃(z) = z( f̃ ′(z))α satisfies

z1̃′(z)
1̃(z)

= 1 +
α(A − B)z

1 + Bz
. (2.2)

Case(i): BC −D(B + α(A − B)) ⩾ 0. In this case, we have

ρ =
C −D

α(A − B) + BC −D(B + α(A − B))

and for z = −ρ, (2.2) gives

z1̃′(z)
1̃(z)

=
(−ρ)1̃′(−ρ)
1̃(−ρ)

=
1 − C
1 −D

,

thus proving the sharpness for ρ.
Case(ii): BC −D(B + α(A − B)) ⩽ 0. In this case, we have

ρ =
C −D

α(A − B) − BC +D(B + α(A − B))

and for z = ρ, (2.2) gives

z1̃′(z)
1̃(z)

=
(ρ)1̃′(ρ)
1̃(ρ)

=
1 + C
1 +D

,

which proves the sharpness for ρ.

For C = 1 and D = −1 in Theorem 2.3, we get the following corollary.

Corollary 2.4. The radius of starlikeness for the class Cα1 [A,B] is

RST (Cα1 [A,B]) =
2

α(A − B) + |2B + α(A − B)|
.

The following theorem gives the inclusion result for the class Cα2 .

Theorem 2.5. For −1 ⩽ D < C ⩽ 1, the class Cα2 is contained in the class ST [C,D], if

|C +D(α − 1)| ⩽ C −D − α.

Proof. Let the function 1 ∈ Cα2 . Then we get

z1′(z)
1(z)

= 1 + α
(
1 +

z f ′′(z)
f ′(z)

−
z f ′(z)

f (z)

)
.

Since f ∈ CV′, we get

z1′(z)
1(z)

≺
1 + (α − 1)z

1 − z

or equivalently 1 ∈ ST [α − 1,−1]. Therefore, by Theorem 2.1, the class ST [α − 1,−1] is contained in the class
ST [C,D] if and only if the condition |C +D(α − 1)| ⩽ C −D − α holds.
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It should be noted that the condition |C +D(α − 1)| ⩽ C − D − α holds only for D = −1 and C ⩾ α − 1.
The radius of starlikeness associated with the Janowski starlike functions for the class Cα2 is given in the
following theorem.

Theorem 2.6. Let α > 0 and −1 ⩽ D < C ⩽ 1. If the condition in Theorem 2.5 does not hold, then the radius of
starlikeness associated with the class ST [C,D] for the class Cα2 is given by

RST [C,D](Cα2 ) =
C −D

α + |C +D(α − 1)|
.

Proof. The function 1 ∈ Cα2 implies that 1 ∈ ST [α − 1,−1]. Define P(z) := (1 + Cz)/(1 + Dz) and Q(z) :=
(1 + (α − 1)z)/(1 − z). We have to determine ρ such that 0 < ρ ⩽ 1 and Q(ρz) ≺ P(z) for z ∈ D. Define the function
H := P−1

◦Q. Then it can be seen that

H(z) =
αz

(C −D) − (C +D(α − 1))z
.

Observe that, for |z| = r,

|H(z)| =
α|z|

|(C −D) − (C +D(α − 1))z|

⩽
αr

(C −D) − |C +D(α − 1)| r
.

Therefore, it follows that |H(z)| ⩽ 1 for

r ⩽ (C −D)/(α + |C +D(α − 1)|) =: ρ.

Thus, the radius of starlikeness associated with the classST [C,D] for the classCα2 is at least ρ. To prove the sharpness,
consider the function f̃ from the class CV′ given by f̃ (z) = z/(1 − z). Then for the corresponding function 1̃ ∈ Cα2 ,

z1̃′(z)
1̃(z)

= 1 +
αz

1 − z
. (2.3)

Case(i): C +D(α − 1) ⩾ 0. In this case, ρ = (C −D)/(α + C +D(α − 1)) and for z = ρ, (2.3) gives

z1̃′(z)
1̃(z)

=
(ρ)1̃′(ρ)
1̃(ρ)

=
1 + C
1 +D

,

thus proving the sharpness for ρ.
Case(ii): C +D(α − 1) ⩽ 0. Here ρ = (C −D)/(α − C −D(α − 1)) and for z = −ρ, (2.3) gives

z1̃′(z)
1̃(z)

=
(−ρ)1̃′(−ρ)
1̃(−ρ)

=
1 − C
1 −D

,

which proves the sharpness for ρ.

For C = 1 and D = −1 in Theorem 2.6, we get the following corollary.

Corollary 2.7. The radius of starlikeness for the class Cα2 is 2/(α + |2 − α|).

3. Radius of starlikeness associated with the exponential function

The class ST e = ST (ez), which was introduced by Mendiratta et al. [16], consists of all functions f ∈ A
such that z f ′(z)/ f (z) ≺ ez or equivalently

∣∣∣log(z f ′(z)/ f (z))
∣∣∣ < 1. The following lemmas are used to find the

radius of starlikeness associated with the exponential function for the classes Cα1 [A,B] and Cα2 .
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Lemma 3.1. [16] For 1/e < a < e, let ra be given by

ra =


a −

1
e

if
1
e
< a ⩽

e + e−1

2

e − a if
e + e−1

2
⩽ a < e.

Then {w : |w− a| < ra} ⊂ Ωe := {w : | log w| < 1}, whereΩe is the image of the unit discD under the exponential
function.

For −1 ⩽ B < A ⩽ 1 and p(z) = 1 + c1z + c2z2 + ..., we say that p ∈ P[A,B] if

p(z) ≺
1 + Az
1 + Bz

(z ∈ D).

Note that f ∈ ST [A,B] if and only if z f ′(z)/ f (z) ∈ P[A,B].

Lemma 3.2. [18] If p ∈ P[A,B], then∣∣∣∣∣∣p(z) −
1 − ABr2

1 − B2r2

∣∣∣∣∣∣ ⩽ (A − B)r
1 − B2r2 (|z| ⩽ r < 1).

The above lemmas are used to prove the following inclusion result.

Theorem 3.3. The inclusion Cα1 [A,B] ⊂ ST e holds if either

1. (−αB(A − B))/(1 − B2) ⩽ (e + e−1
− 2)/2 and (α(A − B))/(1 − B) ⩽ (e − 1)/e

or
2. (−αB(A − B))/(1 − B2) ⩾ (e + e−1

− 2)/2 and (α(A − B))/(1 + B) ⩽ e − 1.

Proof. We have already seen that the function 1 ∈ Cα1 [A,B] implies that 1 ∈ ST [B+α(A−B),B]. Therefore by using
Lemma 3.2 we get,∣∣∣∣∣∣z1′(z)

1(z)
−

1 − (B2 + αB(A − B))r2

1 − B2r2

∣∣∣∣∣∣ ⩽ α(A − B)r
1 − B2r2 (|z| ⩽ r < 1). (3.1)

The centre and radius of the disc given in (3.1) are

c1(α,A,B)(r) :=
1 − (B2 + αB(A − B))r2

1 − B2r2

and

a1(α,A,B)(r) :=
α(A − B)r
1 − B2r2

respectively. Note that

c1(α,A,B)′(r) =
−2αB(A − B)r

(1 − B2r2)2 ,

which shows that c1(α,A,B)(r) is an increasing function of r if B < 0 and is a decreasing function of r if B > 0. Also
it can be seen that c1(α,A,B)(r) ⩾ 1 if B ⩽ 0 and c1(α,A,B)(r) ⩽ 1 if B ⩾ 0.

Now, assume that (1) holds. The inequality (−αB(A−B))/(1−B2) ⩽ (e+e−1
−2)/2 is equivalent to c1(α,A,B)(1) ⩽

(e+ e−1)/2. The result follows from Lemma 3.1, since the inequality a1(α,A,B)(1) ⩽ c1(α,A,B)(1)− 1/e follows from
(α(A − B))/(1 − B) ⩽ (e − 1)/(e).

Assume that (−αB(A−B))/(1−B2) ⩾ (e+ e−1
− 2)/2 and (α(A−B))/(1+B) ⩽ e− 1. The first inequality reduces

to c1(α,A,B)(1) ⩾ (e + e−1)/2. The result will follow from Lemma 3.1 if a1(α,A,B)(1) ⩽ e − c1(α,A,B)(1) which
directly follows from the inequality (α(A − B))/(1 + B) ⩽ e − 1.
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When the conditions in Theorem 3.3 fail to hold, then we discuss about the radius of starlikeness
associated with the exponential function for the class Cα1 [A,B] which is stated in the following theorems.

Theorem 3.4. Let α > 0, −1 ⩽ B ⩽ 0 and B < A ⩽ 1. If neither condition (1) nor condition (2) of Theorem 3.3
holds, then the radius of starlikeness associated with the exponential function for the class Cα1 [A,B] is given by

RST e (C
α
1 [A,B]) =


e − 1

eα(A − B) + (e − 1)B
if α(A − B) ⩾ 2|B|

e − 1
α(A − B) − (e − 1)B

if α(A − B) ⩽ 2|B|.

Proof. We prove the theorem by showing that the disc D(c1(α,A,B)(r); a1(α,A,B)(r)) given in (3.1) is contained in
Ωe for all 0 < r ⩽ RST e (C

α
1 [A,B]). Let

ρ2 :=
e − 1

eα(A − B) + (e − 1)B

and

ρ3 :=
e − 1

α(A − B) − (e − 1)B
.

Since B ⩽ 0, the centre c1(α,A,B)(r) ⩾ 1. We can see that ρ2 is the root of the polynomial

ξ(r) := ((eα − e + 1)B2
− eαAB)r2

− (eα(A − B))r + (e − 1),

where ξ(r) = 0 is equivalent to the equation a1(α,A,B)(r) = c1(α,A,B)(r) − (1/e). Note that ξ(0) = e − 1 > 0 and
ξ(1) = (eα − e + 1)B2

− eαAB − eα(A − B) + e − 1 < 0, since the condition (1) in Theorem 3.3 does not hold. Hence
ρ2 ∈ (0, 1). Similarly, ρ3 is the positive root of the polynomial

ψ(r) := ((α + e − 1)B2
− αAB)r2 + (α(A − B))r + (1 − e),

where ψ(r) = 0 is equivalent to the equation a1(α,A,B)(r) = e− c1(α,A,B)(r). Clearly ψ(0) = 1− e < 0 and since the
condition (2) in Theorem 3.3 does not hold, ψ(1) = (α + e − 1)B2

− αAB + α(A − B) + 1 − e > 0 and thus ρ3 ∈ (0, 1).
The number

ρ1 :=

√
e + e−1 − 2

2α|B|(A − B) + (e + e−1 − 2)B2

is the positive root of the polynomial

τ(r) := ((e + e−1
− 2)B2 + 2α|B|(A − B))r2 + 2 − (e + e−1).

Observe that τ(r) = 0 is equivalent to the equation c1(α,A,B)(r) = (e+ e−1)/2. Comparing ρ2 and ρ1, we get ρ2 ⩽ ρ1
if and only if α(A − B) ⩾ 2|B|.

Case(i): α(A − B) ⩾ 2|B|. When α(A − B) ⩾ 2|B|, ρ2 ⩽ ρ1 and since c1(α,A,B)(r) is an increasing function of r,
this implies that c1(α,A,B)(ρ2) ⩽ c1(α,A,B)(ρ1) = (e + e−1)/2. Therefore by Lemma 3.1, the radius of starlikeness
associated with the exponential function for the class Cα1 [A,B] is at least ρ2. To prove the sharpness, consider
the function f̃ from the class CV[A,B] given by (2.1). For the above function f̃ and the corresponding function
1̃ ∈ Cα1 [A,B], we get the expression for z1̃′(z)/1̃(z) as in (2.2). Then for z = −ρ2,∣∣∣∣∣∣log

(
z1̃′(z)
1̃(z)

)∣∣∣∣∣∣ =
∣∣∣∣∣∣log

(
(−ρ2)1̃′(−ρ2)
1̃(−ρ2)

)∣∣∣∣∣∣ =
∣∣∣∣∣log

(1
e

)∣∣∣∣∣ = 1,

thus proving the sharpness for ρ2.
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Case(ii): α(A−B) ⩽ 2|B|. Whenα(A−B) ⩽ 2|B|, ρ1 ⩽ ρ2 and hence (e+e−1)/2 = c1(α,A,B)(ρ1) ⩽ c1(α,A,B)(ρ2).
Hence by Lemma 3.1, the radius of starlikeness associated with the exponential function for the class Cα1 [A,B] is at
least ρ3. To prove the sharpness, consider the function f̃ from the class CV[A,B] given by (2.1). It can be seen that
for z = ρ3,∣∣∣∣∣∣log

(
z1̃′(z)
1̃(z)

)∣∣∣∣∣∣ =
∣∣∣∣∣∣log

(
(ρ3)1̃′(ρ3)
1̃(ρ3)

)∣∣∣∣∣∣ = ∣∣∣log e
∣∣∣ = 1,

thus proving the sharpness for ρ3.

The result in the case when 0 < B < 1 is similar, which we state in the following theorem without proof.

Theorem 3.5. Let α > 0, 0 < B < 1 and B < A ⩽ 1. If neither condition (1) nor condition (2) of Theorem 3.3 holds,
then the radius of starlikeness associated with the exponential function for the class Cα1 [A,B] is given by

RST e (C
α
1 [A,B]) =

e − 1
eα(A − B) + (e − 1)B

.

We now turn our attention to finding the radius of starlikeness associated with the exponential function
for the class Cα2 , which is stated in the following theorem.

Theorem 3.6. Let α > 0. Then the radius of starlikeness associated with the exponential function for the class Cα2 is
given by

RST e (C
α
2 ) =


e − 1

e(α − 1) + 1
if α ⩾ 2

e − 1
α + e − 1

if α ⩽ 2.

Proof. It is already seen that the function 1 ∈ Cα2 implies that 1 ∈ ST [α − 1,−1]. Therefore by using Lemma 3.2 we
get, ∣∣∣∣∣∣z1′(z)

1(z)
−

1 + (α − 1)r2

1 − r2

∣∣∣∣∣∣ ⩽ αr
1 − r2 (|z| ⩽ r < 1). (3.2)

The centre and radius of the disc given in (3.2) are

c2(α)(r) :=
1 + (α − 1)r2

1 − r2 ,

and

a2(α)(r) :=
αr

1 − r2

respectively. Note that

c2(α)′(r) =
2αr

(1 − r2)2 ,

which shows that c2(α)(r) is an increasing function of r. Also it can be seen that c2(α)(r) > 1.
Our aim is to show that the discD(c2(α)(r); a2(α)(r)) given in (3.2) is contained in Ωe for all 0 < r ⩽ RST e (C

α
2 ).

Let

ρ2 :=
e − 1

e(α − 1) + 1
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and

ρ3 :=
e − 1

α + e − 1
.

Here c2(α)(r) > 1. For α ⩾ 2, it can be seen that ρ2 is the positive root of the polynomial

ξ(r) := (e(α − 1) + 1)r2
− (eα)r + (e − 1)

that is less than 1 and ξ(r) = 0 is equivalent to the equation a2(α)(r) = c2(α)(r) − (1/e). Similarly, ρ3 is the positive
root of the polynomial

ψ(r) := (α + e − 1)r2 + αr + (1 − e)

and is less than 1 since α > 0. Also the equation ψ(r) = 0 is equivalent to the equation a2(α)(r) = e − c2(α)(r). The
number

ρ1 :=

√
e + e−1 − 2

2α + e + e−1 − 2

is the positive root of the polynomial

τ(r) := (2α + e + e−1
− 2)r2 + 2 − (e + e−1)

where τ(r) = 0 is equivalent to the equation c2(α)(r) = (e + e−1)/2. Note that ρ2 ⩽ ρ1 if and only if α ⩾ 2.
Case(i): α ⩾ 2. When α ⩾ 2, ρ2 ⩽ ρ1 and since c2(α)(r) is an increasing function of r, c2(α)(ρ2) ⩽ c2(α)(ρ1) =

(e + e−1)/2. Therefore by Lemma 3.1, the radius of starlikeness associated with the exponential function for the class
C
α
2 is at least ρ2. To prove the sharpness, consider the function f̃ from the class CV′ given by f̃ (z) = z/(1 − z). Then

for the corresponding function 1̃ ∈ Cα2 and for z = −ρ2, (2.3) gives∣∣∣∣∣∣log
(

z1̃′(z)
1̃(z)

)∣∣∣∣∣∣ =
∣∣∣∣∣∣log

(
(−ρ2)1̃′(−ρ2)
1̃(−ρ2)

)∣∣∣∣∣∣ =
∣∣∣∣∣log

(1
e

)∣∣∣∣∣ = 1,

thus proving the sharpness for ρ2.
Case(ii): α ⩽ 2. In this case, ρ1 ⩽ ρ2 and since c2(α)(r) is an increasing function of r, (e + e−1)/2 = c2(α)(ρ1) ⩽

c2(α)(ρ2). Therefore by Lemma 3.1, the radius of starlikeness associated with the exponential function for the class Cα2
is at least ρ3. To prove the sharpness, consider the function f̃ (z) = z/(1 − z) from the class CV′. It can be seen that
for z = ρ3,∣∣∣∣∣∣log

(
z1̃′(z)
1̃(z)

)∣∣∣∣∣∣ =
∣∣∣∣∣∣log

(
(ρ3)1̃′(ρ3)
1̃(ρ3)

)∣∣∣∣∣∣ = ∣∣∣log e
∣∣∣ = 1.

4. Radius of starlikeness associated with the class ST C

The class ST C = ST (φC), where φC(z) = 1 + (4/3)z + (2/3)z2, was studied by Sharma et al. [20]. The
boundary of φC(D) is a cardiod.

Lemma 4.1. [20] For 1/3 < a < 3, let ra be given by

ra =


a −

1
3

if
1
3
< a ⩽

5
3

3 − a if
5
3
⩽ a < 3.

Then {w : |w − a| < ra} ⊂ φC(D) = ΩC, where ΩC is the region bounded by the cardiod {x + iy : (9x2 + 9y2
−

18x + 5)2
− 16(9x2 + 9y2

− 6x + 1) = 0}.
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Theorem 4.2. The inclusion Cα1 [A,B] ⊂ ST C holds if either

1. (−αB(A − B))/(1 − B2) ⩽ 2/3 and (α(A − B))/(1 − B) ⩽ 2/3
or

2. (−αB(A − B))/(1 − B2) ⩾ 2/3 and (α(A − B))/(1 + B) ⩽ 2.

Proof. Assume that (1) holds. The inequality (−αB(A − B))/(1 − B2) ⩽ 2/3 is equivalent to c1(α,A,B)(1) ⩽ 5/3.
Since the inequality a1(α,A,B)(1) ⩽ c1(α,A,B)(1) − 1/3 follows from (α(A − B))/(1 − B) ⩽ 2/3, the result follows
from Lemma 4.1.

Assume that (−αB(A − B))/(1 − B2) ⩾ 2/3 and (α(A − B))/(1 + B) ⩽ 2. The first inequality reduces to
c1(α,A,B)(1) ⩾ 5/3. The result will follow from Lemma 4.1 if a1(α,A,B)(1) ⩽ 3 − c1(α,A,B)(1) which directly
follows from the inequality (α(A − B))/(1 + B) ⩽ 2.

When the conditions in Theorem 4.2 do not hold, then the results which are stated in the following
theorems have a scope of discussion.

Theorem 4.3. Let α > 0, −1 ⩽ B ⩽ 0 and B < A ⩽ 1. If neither condition (1) nor condition (2) of Theorem 4.2
holds, then the radius of starlikeness associated with the cardiod φC for the class Cα1 [A,B] is given by

RST C (Cα1 [A,B]) =


2

3α(A − B) + 2B
if α(A − B) ⩾ 2|B|

2
α(A − B) − 2B

if α(A − B) ⩽ 2|B|.

Proof. The theorem is proved by showing that the disc D(c1(α,A,B)(r); a1(α,A,B)(r)) given in (3.1) is contained in
ΩC for all 0 < r ⩽ RST C (Cα1 [A,B]). Let

ρ2 :=
2

3α(A − B) + 2B

and

ρ3 :=
2

α(A − B) − 2B
.

Here the centre c1(α,A,B)(r) ⩾ 1 since B ⩽ 0. It can be seen that ρ2 is the root of the polynomial

ξ(r) := (2B2 + 3αB(A − B))r2 + 3α(A − B)r − 2

and a simple calculation shows that ξ(r) = 0 is equivalent to the equation a1(α,A,B)(r) = c1(α,A,B)(r) − (1/3). It
can be easily shown that ρ2 lies between 0 and 1 as ξ(0) = −2 < 0 and ξ(1) = 2B2 + 3αB(A−B)+ 3α(A−B)− 2 > 0,
since the condition (1) in Theorem 4.2 does not hold. Similarly, ρ3 is the positive root of the polynomial

ψ(r) := (2B2
− αB(A − B))r2 + α(A − B)r − 2.

Observe that ψ(r) = 0 is equivalent to the equation a1(α,A,B)(r) = 3 − c1(α,A,B)(r). Clearly ψ(0) = −2 < 0 and
since the condition (2) in Theorem 4.2 does not hold, ψ(1) = 2B2

− αB(A − B) + α(A − B) − 2 > 0 which shows that
ρ3 ∈ (0, 1). The number

ρ1 :=

√
2

3α|B|(A − B) + 2B2

is the positive root of the polynomial

τ(r) := (2B2 + 3α|B|(A − B))r2
− 2,
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where τ(r) = 0 is equivalent to the equation c1(α,A,B)(r) = 5/3. It can be seen that ρ2 ⩽ ρ1 if and only if
α(A − B) ⩾ 2|B|. Therefore we consider the following cases separately.

Case(i): α(A−B) ⩾ 2|B|. When α(A−B) ⩾ 2|B|, ρ2 ⩽ ρ1 and thus c1(α,A,B)(ρ2) ⩽ c1(α,A,B)(ρ1) = 5/3, due to
the increasing nature of c1(α,A,B)(r). Therefore the radius of starlikeness associated with the cardiod φC for the class
C
α
1 [A,B] is at least ρ2, by using Lemma 4.1. To prove the sharpness, consider the function f̃ from the class CV[A,B]

given by (2.1). For the above function f̃ and the corresponding function 1̃ ∈ Cα1 [A,B], we get the expression for
z1̃′(z)/1̃(z) as in (2.2). Thus for z = −ρ2,

z1̃′(z)
1̃(z)

=
(−ρ2)1̃′(−ρ2)
1̃(−ρ2)

=
1
3
= φC(−1),

which proves the sharpness for ρ2.
Case(ii): α(A − B) ⩽ 2|B|. When α(A − B) ⩽ 2|B|, ρ1 ⩽ ρ2, which gives 5/3 = c1(α,A,B)(ρ1) ⩽ c1(α,A,B)(ρ2).

Therefore by Lemma 4.1, the radius of starlikeness associated with the cardiod φC for the class Cα1 [A,B] is at least ρ3.
To prove the sharpness, consider the function f̃ from the class CV[A,B] given by (2.1). It can be seen from (2.2) that
for z = ρ3,

z1̃′(z)
1̃(z)

=
(ρ3)1̃′(ρ3)
1̃(ρ3)

= 3 = φC(1),

thus proving the sharpness for ρ3.

The following theorem is for the case when 0 < B < 1, which we state without proof.

Theorem 4.4. Let α > 0, 0 < B < 1 and B < A ⩽ 1. If neither condition (1) nor condition (2) of Theorem 4.2 holds,
then the radius of starlikeness associated with the cardiod φC for the class Cα1 [A,B] is given by

RST C (Cα1 [A,B]) =
2

2B + 3α(A − B)
.

The following theorem gives the radius of starlikeness associated with the function φC for the class Cα2 .

Theorem 4.5. Let α > 0. Then the radius of starlikeness associated with the cardiod φC for the class Cα2 is given by

RST C (Cα2 ) =


2

3α − 2
if α ⩾ 2

2
α + 2

if α ⩽ 2.

Proof. We will show that the disc D(c2(α)(r); a2(α)(r)) given in (3.2) is contained in ΩC for all 0 < r ⩽ RST C (Cα2 ).
Here c2(α)(r) > 1. Let

ρ2 :=
2

3α − 2

and

ρ3 :=
2

α + 2
.

It can be seen that ρ2 is the root of the polynomial

ξ(r) := (3α − 2)r2
− (3α)r + 2

which lies in the interval (0, 1) if α ⩾ 2 and ξ(r) = 0 is equivalent to the equation a2(α)(r) = c2(α)(r) − (1/3). Also,
ρ3 is the positive root of the polynomial

ψ(r) := (α + 2)r2 + αr − 2
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and is less than 1 since α > 0. Note that the equation ψ(r) = 0 is equivalent to the equation a2(α)(r) = 3 − c2(α)(r).
The number

ρ1 :=

√
2

3α + 2

is the positive root of the polynomial

τ(r) := (3α + 2)r2
− 2

where τ(r) = 0 is equivalent to the equation c2(α)(r) = 5/3. A calculation shows that ρ2 ⩽ ρ1 if and only if α ⩾ 2,
which leads us to consider the following cases.

Case(i): α ⩾ 2. When α ⩾ 2, ρ2 ⩽ ρ1 and since c2(α)(r) is increasing in nature, c2(α)(ρ2) ⩽ c2(α)(ρ1) = 5/3.
Therefore by Lemma 4.1, the radius of starlikeness associated with the cardiod φC for the class Cα2 is at least ρ2. To
prove the sharpness, consider the function f̃ from the class CV′ given by f̃ (z) = z/(1− z). Then for the corresponding
function 1̃ ∈ Cα2 , z1̃′(z)/1̃(z) is given by (2.3). Hence for z = −ρ2,

z1̃′(z)
1̃(z)

=
(−ρ2)1̃′(−ρ2)
1̃(−ρ2)

=
1
3
= φC(−1),

thus proving the sharpness for ρ2.
Case(ii): α ⩽ 2. Here ρ1 ⩽ ρ2 and thus 5/3 = c2(α)(ρ1) ⩽ c2(α)(ρ2). Therefore by Lemma 4.1, the radius of

starlikeness associated with the cardiod φC for the class Cα2 is at least ρ3. To prove the sharpness, consider the function
f̃ (z) = z/(1 − z) from the class CV′. It can be seen from (2.3) that for z = ρ3,

z1̃′(z)
1̃(z)

=
(ρ3)1̃′(ρ3)
1̃(ρ3)

= 3 = φC(1).

5. Radius of starlikeness associated with the class ST R

The class ST R = ST (φR) of starlike functions associated with the rational function φR(z) = 1 + ((z2 +

kz)/k2
− kz) for k =

√
2 + 1, was introduced by Kumar and Ravichandran [11].

Lemma 5.1. [11] For 2(
√

2 − 1) < a < 2, let ra be given by

ra =

a − 2(
√

2 − 1) if 2(
√

2 − 1) < a ⩽
√

2

2 − a if
√

2 ⩽ a < 2.

Then {w : |w − a| < ra} ⊂ φR(D).

Theorem 5.2. The inclusion Cα1 [A,B] ⊂ ST R holds if either

1. (−αB(A − B))/(1 − B2) ⩽
√

2 − 1 and (α(A − B))/(1 − B) ⩽ 3 − 2
√

2
or

2. (−αB(A − B))/(1 − B2) ⩾
√

2 − 1 and (α(A − B))/(1 + B) ⩽ 1.

Proof. Assume that (−αB(A − B))/(1 − B2) ⩽
√

2 − 1 and (α(A − B))/(1 − B) ⩽ 3 − 2
√

2. The inequality
(−αB(A − B))/(1 − B2) ⩽

√
2 − 1 is equivalent to c1(α,A,B)(1) ⩽

√
2. The result follows from Lemma 5.1 since the

inequality a1(α,A,B)(1) ⩽ c1(α,A,B)(1) − 2(
√

2 − 1) follows from (α(A − B))/(1 − B) ⩽ 3 − 2
√

2.
Now assume that (2) holds. The first inequality of (2) reduces to c1(α,A,B)(1) ⩾

√
2. The result will follow from

Lemma 5.1 as the condition a1(α,A,B)(1) ⩽ 2−c1(α,A,B)(1) directly follows from the inequality (α(A−B))/(1+B) ⩽ 1.



P. G. Krishnan et al. / Filomat 37:13 (2023), 4125–4153 4137

When the conditions in Theorem 5.2 do not hold, then we discuss about the radius problem which is
stated in the following theorems.

Theorem 5.3. Let α > 0, −1 ⩽ B ⩽ 0 and B < A ⩽ 1. If neither condition (1) nor condition (2) of Theorem 5.2
holds, then the radius of starlikeness associated with the rational function φR for the class Cα1 [A,B] is given by

RST R (Cα1 [A,B]) =


3 − 2

√
2

α(A − B) + (3 − 2
√

2)B
if α(A − B) ⩾ (

√

2 − 1)|B|

1
α(A − B) − B

if α(A − B) ⩽ (
√

2 − 1)|B|.

Proof. We aim to show that the disc D(c1(α,A,B)(r); a1(α,A,B)(r)) given in (3.1) is contained in φR(D) for all
0 < r ⩽ RST R (Cα1 [A,B]). Let

ρ2 :=
3 − 2

√
2

α(A − B) + (3 − 2
√

2)B

and

ρ3 :=
1

α(A − B) − B
.

As we have seen before, the centre c1(α,A,B)(r) ⩾ 1 since B ⩽ 0. The polynomial

ξ(r) := ((α + 2
√

2 − 3)B2
− αAB)r2

− α(A − B)r + 3 − 2
√

2,

satisfies the condition that ξ(r) = 0 is equivalent to the equation a1(α,A,B)(r) = c1(α,A,B)(r) − 2(
√

2 − 1). Note
that ξ(0) = 3 − 2

√
2 > 0 and ξ(1) = (α + 2

√
2 − 3)B2

− αAB − α(A − B) + 3 − 2
√

2 < 0, since the condition (1) in
Theorem 5.2 does not hold. Hence there exists a root of the polynomial ξ(r) in the interval (0, 1) which is precisely ρ2.
Now consider the polynomial

ψ(r) := ((α + 1)B2
− αAB)r2 + (α(A − B))r − 1,

which has ρ3 as its positive root. Observe thatψ(r) = 0 is equivalent to the equation a1(α,A,B)(r) = 2−c1(α,A,B)(r).
Clearlyψ(0) = −1 < 0 and since the condition (2) in Theorem 5.2 does not hold,ψ(1) = (α+1)B2

−αAB+α(A−B)−1 >
0 and thus ρ3 ∈ (0, 1). Let

ρ1 :=

√ √
2 − 1

α|B|(A − B) + (
√

2 − 1)B2
.

Then it can be seen that ρ1 is the positive root of the polynomial

τ(r) := (α|B|(A − B) + (
√

2 − 1)B2)r2 + 1 −
√

2

and τ(r) = 0 is equivalent to the equation c1(α,A,B)(r) =
√

2. A comparison on ρ2 and ρ1 shows that ρ2 ⩽ ρ1 if and
only if α(A − B) ⩾ (

√
2 − 1)|B|.

Case(i): α(A − B) ⩾ (
√

2 − 1)|B|. In this case, since ρ2 ⩽ ρ1 and since c1(α,A,B)(r) is an increasing function of
r, we get c1(α,A,B)(ρ2) ⩽ c1(α,A,B)(ρ1) =

√
2. Therefore by Lemma 5.1, the radius of starlikeness associated with

the rational function φR for the class Cα1 [A,B] is at least ρ2. To prove the sharpness, consider the function f̃ from the
class CV[A,B] given by (2.1). For the above function f̃ , the corresponding function 1̃ ∈ Cα1 [A,B] and for z = −ρ2,
(2.2) gives

z1̃′(z)
1̃(z)

=
(−ρ2)1̃′(−ρ2)
1̃(−ρ2)

= 2(
√

2 − 1) = φR(−1),
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thus proving the sharpness for ρ2.
Case(ii): α(A − B) ⩽ (

√
2 − 1)|B|. When α(A − B) ⩽ (

√
2 − 1)|B|, ρ1 ⩽ ρ2 and hence

√
2 = c1(α,A,B)(ρ1) ⩽

c1(α,A,B)(ρ2). Therefore Lemma 5.1 shows that the radius of starlikeness associated with the rational function φR
for the class Cα1 [A,B] is at least ρ3. To prove the sharpness, the function f̃ from the class CV[A,B] given by (2.1) is
considered. From (2.2) it follows that for z = ρ3,

z1̃′(z)
1̃(z)

=
(ρ3)1̃′(ρ3)
1̃(ρ3)

= 2 = φR(1),

which proves the sharpness for ρ3.

The case when 0 < B < 1 has a similar proof, hence we state the result in the following theorem without
proof.

Theorem 5.4. Let α > 0, 0 < B < 1 and B < A ⩽ 1. If neither condition (1) nor condition (2) of Theorem 5.2 holds,
then the radius of starlikeness associated with the rational function φR for the class Cα1 [A,B] is given by

RST R (Cα1 [A,B]) =
3 − 2

√
2

α(A − B) + (3 − 2
√

2)B
.

Our next theorem gives the radius of starlikeness associated with the function φR for the class Cα2 .

Theorem 5.5. Let α > 0. Then the radius of starlikeness associated with the rational function φR for the class Cα2 is
given by

RST R (Cα2 ) =


3 − 2

√
2

α − (3 − 2
√

2)
if α ⩾

√

2 − 1

1
α + 1

if α ⩽
√

2 − 1.

Proof. The theorem is proved by showing that the discD(c2(α)(r); a2(α)(r)) given in (3.2) is contained in φR(D) for
all 0 < r ⩽ RST R (Cα2 ). Here c2(α)(r) > 1. Consider the polynomial

ξ(r) := (α + 2
√

2 − 3)r2
− αr + 3 − 2

√

2.

Then, for α ⩾
√

2 − 1, ρ2 is the positive root of ξ(r) that is less than 1, where

ρ2 :=
3 − 2

√
2

α − (3 − 2
√

2)
.

Note that ξ(r) = 0 is equivalent to the equation a2(α)(r) = c2(α)(r) − (2(
√

2 − 1)). Let

ρ3 :=
1

α + 1
.

Then, ρ3 is the positive root of the polynomial

ψ(r) := (α + 1)r2 + αr − 1

and is less than 1 since α > 0. Also the equation ψ(r) = 0 is equivalent to the equation a2(α)(r) = 2 − c2(α)(r). The
number

ρ1 :=

√
√

2 − 1

α +
√

2 − 1
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is the positive root of the polynomial

τ(r) := (α +
√

2 − 1)r2 + 1 −
√

2

where τ(r) = 0 is equivalent to the equation c2(α)(r) =
√

2. Note that ρ2 ⩽ ρ1 if and only if α ⩾
√

2 − 1.
Case(i): α ⩾

√
2 − 1. In this case, ρ2 ⩽ ρ1 and thus c2(α)(ρ2) ⩽ c2(α)(ρ1) =

√
2, since c2(α)(r) is an increasing

function of r. Therefore by Lemma 5.1, the radius of starlikeness associated with the rational function φR for the class
C
α
2 is at least ρ2. To prove the sharpness, consider the function f̃ from the class CV′ given by f̃ (z) = z/(1 − z). Then

for the corresponding function 1̃ ∈ Cα2 and for z = −ρ2, (2.3) shows that

z1̃′(z)
1̃(z)

=
(−ρ2)1̃′(−ρ2)
1̃(−ρ2)

= 2(
√

2 − 1) = φR(−1),

thus proving the sharpness for ρ2.
Case(ii): α ⩽

√
2 − 1. In this case,

√
2 = c2(α)(ρ1) ⩽ c2(α)(ρ2) since ρ1 ⩽ ρ2 and c2(α)(r) is an increasing

function of r. Therefore by Lemma 5.1, the radius of starlikeness associated with the rational function φR for the class
C
α
2 is at least ρ3. To prove the sharpness, consider the function f̃ (z) = z/(1− z) from the class CV′. Then, (2.3) shows

that for z = ρ3,

z1̃′(z)
1̃(z)

=
(ρ3)1̃′(ρ3)
1̃(ρ3)

= 2 = φR(1).

6. Radius of starlikeness associated with the class ST Ne

The class of starlike functions associated with a nephroid domain, given by STNe = ST (φNe) where
φNe(z) = 1 + z − (z3/3) was studied by Wani and Swaminathan [23]. The function φNe maps the unit circle
onto a 2-cusped curve,(

(u − 1)2 + v2
−

4
9

)3

−
4v2

3
= 0.

The radius problems for the functions associated with the nephroid domain was discussed by Wani and
Swaminathan [22] and proved the following lemma.

Lemma 6.1. [22] For 1/3 < a < 5/3, let ra be given by

ra =


a −

1
3

if
1
3
< a ⩽ 1

5
3
− a if 1 ⩽ a <

5
3
.

Then {w : |w − a| < ra} ⊂ φNe(D) = ΩNe, where ΩNe is the region bounded by the nephroid φNe, that is

ΩNe :=
{(

(u − 1)2 + v2
−

4
9

)3

−
4v2

3
< 0

}
.

Theorem 6.2. The inclusion Cα1 [A,B] ⊂ STNe holds if either

1. B ⩾ 0 and (α(A − B))/(1 − B) ⩽ 2/3
or

2. B ⩽ 0 and (α(A − B))/(1 + B) ⩽ 2/3.
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Proof. Assume that (1) holds. The inequality B ⩾ 0 is equivalent to c1(α,A,B)(1) ⩽ 1. The result follows from
Lemma 6.1, since the inequality a1(α,A,B)(1) ⩽ c1(α,A,B)(1) − (1/3) follows from (α(A − B))/(1 − B) ⩽ 2/3.

Now assume that B ⩽ 0 and (α(A − B))/(1 + B) ⩽ 2/3. The first inequality reduces to c1(α,A,B)(1) ⩾ 1. As the
condition a1(α,A,B)(1) ⩽ (5/3) − c1(α,A,B)(1) directly follows from the inequality (α(A − B))/(1 + B) ⩽ 2/3, the
result follows from Lemma 6.1.

Our next theorem gives the radius of starlikeness associated with the function φNe for the class Cα1 [A,B],
when the conditions in Theorem 6.2 do not hold.

Theorem 6.3. Let α > 0 and −1 ⩽ B < A ⩽ 1. If neither condition (1) nor condition (2) of Theorem 6.2 holds, then
the radius of starlikeness associated with the nephroid φNe for the class Cα1 [A,B] is given by

RSTNe (C
α
1 [A,B]) =

2
3α(A − B) + 2|B|

.

Proof. Proving the containment of the disc D(c1(α,A,B)(r); a1(α,A,B)(r)) given in (3.1) in φNe(D) for all 0 < r ⩽
RSTNe (C

α
1 [A,B]) gives the required result. We prove the theorem by considering the cases B ⩾ 0 and B ⩽ 0 separately.

Let

ρ2 :=
2

3α(A − B) + 2B

and

ρ3 :=
2

3α(A − B) − 2B
.

Consider the case when B ⩾ 0. Then the centre c1(α,A,B)(r) ⩽ 1 and ρ2 = 2/(3α(A − B) + 2|B|). We can see that ρ2
is the root of the polynomial

ξ(r) := (2B2 + 3Bα(A − B))r2 + 3α(A − B)r − 2,

where ξ(r) = 0 is equivalent to the equation a1(α,A,B)(r) = c1(α,A,B)(r) − (1/3). Here ξ(0) = −2 < 0 and
ξ(1) = 2B2 + 3Bα(A − B) + 3α(A − B) − 2 > 0, since the condition (1) in Theorem 6.2 does not hold, which shows
that ρ2 ∈ (0, 1). Therefore by Lemma 6.1, the radius of starlikeness associated with the nephroid φNe is at least ρ2. To
prove the sharpness, consider the function f̃ from the class CV[A,B] given by (2.1) and the corresponding function
1̃ ∈ Cα1 [A,B]. Then for z = −ρ2, (2.2) shows that

z1̃′(z)
1̃(z)

=
(−ρ2)1̃′(−ρ2)
1̃(−ρ2)

=
1
3
= φNe(−1),

thus proving the sharpness for ρ2.
Similarly, consider the case when B ⩽ 0. This implies that the centre c1(α,A,B)(r) ⩾ 1 and we can see that

ρ3 = 2/(3α(A − B) + 2|B|). Note that ρ3 is the positive root of the polynomial

ψ(r) := (2B2
− 3Bα(A − B))r2 + 3α(A − B)r − 2,

whereψ(r) = 0 is equivalent to the equation a1(α,A,B)(r) = (5/3)−c1(α,A,B)(r). Clearlyρ3 ∈ (0, 1) asψ(0) = −2 < 0
and ψ(1) = 2B2

− 3Bα(A − B) + 3α(A − B) − 2 > 0, since the condition (2) in Theorem 6.2 does not hold. Hence by
Lemma 6.1, the radius of starlikeness associated with the nephroid φNe for the class Cα1 [A,B] is at least ρ3. To prove
the sharpness, consider the function f̃ from the class CV[A,B] given by (2.1). By using (2.2) it can be seen that for
z = ρ3,

z1̃′(z)
1̃(z)

=
(ρ3)1̃′(ρ3)
1̃(ρ3)

=
5
3
= φNe(1),

which proves the sharpness for ρ3.
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The radius of starlikeness associated with the function φNe for the class Cα2 is stated in the following
theorem.

Theorem 6.4. Let α > 0. Then the radius of starlikeness associated with the nephroid φNe for the class Cα2 is given by

RSTNe (C
α
2 ) =

2
3α + 2

.

Proof. Our aim is to show that the disc D(c2(α)(r); a2(α)(r)) given in (3.2) is contained in φNe(D) for all 0 < r ⩽
RSTNe (C

α
2 ). Here c2(α)(r) > 1. Let

ρ3 :=
2

3α + 2
.

Consider the polynomial

ψ(r) := (3α + 2)r2 + 3αr − 2.

Then ρ3 is the positive root of the polynomial ψ(r) and is less than 1 since α > 0 and ψ(r) = 0 is equivalent to the
equation a2(α)(r) = (5/3) − c2(α)(r). Therefore by Lemma 6.1, the radius of starlikeness associated with the nephroid
φNe for the class Cα2 is at least ρ3. To prove the sharpness, consider the function f̃ from the class CV′ given by
f̃ (z) = z/(1 − z) and the corresponding function 1̃ ∈ Cα2 . Then for z = ρ3, by (2.3),

z1̃′(z)
1̃(z)

=
(ρ3)1̃′(ρ3)
1̃(ρ3)

=
5
3
= φNe(1),

thus proving the sharpness for ρ3.

7. Radius of starlikeness associated with the class ST$

Raina and Sokól [17] considered the class ST$ = ST (φ$), where φ$(z) = z+
√

1 + z2 and proved that
f ∈ ST$ if and only if z f ′(z)/ f (z) ∈ Ω$ := {w ∈ C : |w2

− 1| < 2|w|} which is the interior of a lune. The
following lemma due to Gandhi and Ravichandran [4] is used to find the radius of starlikeness associated
with the function φ$ for the classes Cα1 [A,B] and Cα2 .

Lemma 7.1. [4] For
√

2 − 1 < a ⩽
√

2 + 1, let ra be given by

ra = 1 − |
√

2 − a|.

Then {w : |w − a| < ra} ⊂ Ω$ := {w :
∣∣∣w2
− 1

∣∣∣ < 2|w|}.

Theorem 7.2. The inclusion Cα1 [A,B] ⊂ ST$ holds if either

1. (−αB(A − B))/(1 − B2) ⩽
√

2 − 1 and (α(A − B))/(1 − B) ⩽ 2 −
√

2
or

2. (−αB(A − B))/(1 − B2) ⩾
√

2 − 1 and (α(A − B))/(1 + B) ⩽
√

2.

Proof. Assume that (1) holds. The inequality (−αB(A − B))/(1 − B2) ⩽
√

2 − 1 is equivalent to c1(α,A,B)(1) ⩽
√

2.
The result follows from Lemma 7.1, since the inequality a1(α,A,B)(1) ⩽ c1(α,A,B)(1) − (

√
2 − 1) follows from

(α(A − B))/(1 − B) ⩽ 2 −
√

2.
Now assume that (−αB(A−B))/(1− B2) ⩾

√
2− 1 and (α(A−B))/(1+B) ⩽

√
2. The first inequality reduces to

c1(α,A,B)(1) ⩾
√

2. The result will follow from Lemma 7.1 as the condition a1(α,A,B)(1) ⩽
√

2+ 1− c1(α,A,B)(1)
directly follows from the inequality (α(A − B))/(1 + B) ⩽

√
2.
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The results stated in the next two theorems are discussed when the conditions in Theorem 7.2 do not
hold.

Theorem 7.3. Let α > 0, −1 ⩽ B ⩽ 0 and B < A ⩽ 1. If neither condition (1) nor condition (2) of Theorem 7.2
holds, then the radius of starlikeness associated with the lune φ$ for the class Cα1 [A,B] is given by

RST
$

(Cα1 [A,B]) =


2 −
√

2

α(A − B) + (2 −
√

2)B
if α(A − B) ⩾ 2|B|

√
2

α(A − B) −
√

2B
if α(A − B) ⩽ 2|B|.

Proof. We aim to show that the disc D(c1(α,A,B)(r); a1(α,A,B)(r)) given in (3.1) is contained in Ω$ for all
0 < r ⩽ RST

$
(Cα1 [A,B]). Let

ρ2 :=
2 −
√

2

α(A − B) + (2 −
√

2)B

and

ρ3 :=

√
2

α(A − B) −
√

2B
.

The centre c1(α,A,B)(r) ⩾ 1 since B ⩽ 0. We can see that ρ2 is the root of the polynomial

ξ(r) := ((2 −
√

2)B2 + αB(A − B))r2 + α(A − B)r − 2 +
√

2,

where ξ(r) = 0 is equivalent to the equation a1(α,A,B)(r) = c1(α,A,B)(r) − (
√

2 − 1). Note that ρ2 ∈ (0, 1) as
ξ(0) = −2 +

√
2 < 0 and ξ(1) = (2 −

√
2)B2 + αB(A − B) + α(A − B) − 2 +

√
2 > 0, since the condition (1) in

Theorem 7.2 does not hold. Similarly, ρ3 is the positive root of the polynomial

ψ(r) := ((
√

2)B2
− αB(A − B))r2 + (α(A − B))r −

√

2,

where ψ(r) = 0 is equivalent to the equation a1(α,A,B)(r) =
√

2 + 1 − c1(α,A,B)(r). Clearly ψ(0) = −
√

2 < 0 and
the condition (2) in Theorem 7.2 does not hold implies that ψ(1) = (

√
2)B2

−αB(A−B)+α(A−B)−
√

2 > 0. Hence
ρ3 ∈ (0, 1). Let

ρ1 :=

√ √
2 − 1

α|B|(A − B) + (
√

2 − 1)B2
.

Then ρ1 is the positive root of the polynomial

τ(r) := (α|B|(A − B) + (
√

2 − 1)B2)r2 + 1 −
√

2.

Observe that τ(r) = 0 is equivalent to the equation c1(α,A,B)(r) =
√

2. A readily calculation shows that ρ2 ⩽ ρ1 if
and only if α(A − B) ⩾ 2|B|.

Case(i): α(A − B) ⩾ 2|B|. In this case, ρ2 ⩽ ρ1 and since c1(α,A,B)(r) is an increasing function of r, we get
c1(α,A,B)(ρ2) ⩽ c1(α,A,B)(ρ1) =

√
2. Therefore by Lemma 7.1, the radius of starlikeness associated with the lune

φ$ for the class Cα1 [A,B] is at least ρ2. To prove the sharpness, consider the function f̃ from the class CV[A,B] given
by (2.1) and the corresponding function 1̃ ∈ Cα1 [A,B]. Then for z = −ρ2, by (2.2) we get

z1̃′(z)
1̃(z)

=
(−ρ2)1̃′(−ρ2)
1̃(−ρ2)

=
√

2 − 1 = φ$(−1),
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thus proving the sharpness for ρ2.
Case(ii): α(A − B) ⩽ 2|B|. When α(A − B) ⩽ 2|B|, ρ1 ⩽ ρ2 and hence

√
2 = c1(α,A,B)(ρ1) ⩽ c1(α,A,B)(ρ2).

Therefore by Lemma 7.1, the radius of starlikeness associated with the lune φ$ for the class Cα1 [A,B] is at least ρ3. To
prove the sharpness, we consider the function f̃ from the class CV[A,B] given by (2.1). It can be seen that for z = ρ3,
by using (2.2) we get

z1̃′(z)
1̃(z)

=
(ρ3)1̃′(ρ3)
1̃(ρ3)

= 1 +
√

2 = φ$(1),

thus proving the sharpness for ρ3.

The following theorem gives the radius result when 0 < B < 1, which we state without proof.

Theorem 7.4. Let α > 0, 0 < B < 1 and B < A ⩽ 1. If neither condition (1) nor condition (2) of Theorem 7.2 holds,
then the radius of starlikeness associated with the lune φ$ for the class Cα1 [A,B] is given by

RST
$

(Cα1 [A,B]) =
2 −
√

2

α(A − B) + (2 −
√

2)B
.

Our next theorem gives the radius of starlikeness associated with the function φ$ for the class Cα2 .

Theorem 7.5. Let α > 0. Then the radius of starlikeness associated with the lune φ$ for the class Cα2 is given by

RST
$

(Cα2 ) =


2 −
√

2

α − (2 −
√

2)
if α ⩾ 2

√
2

α +
√

2
if α ⩽ 2.

Proof. Our aim is to show that the disc D(c2(α)(r); a2(α)(r)) given in (3.2) is contained in Ω$ for all 0 < r ⩽
RST

$
(Cα2 ). We have c2(α)(r) > 1. Let

ρ2 :=
2 −
√

2

α − (2 −
√

2)
and ρ3 :=

√
2

α +
√

2
.

For α ⩾ 2, it can be seen that ρ2 is the positive root of the polynomial

ξ(r) := (α +
√

2 − 2)r2
− αr + 2 −

√

2

that is less than 1 and ξ(r) = 0 is equivalent to the equation a2(α)(r) = c2(α)(r) − (
√

2 − 1). In a similar manner, we
can see that ρ3 is the positive root of the polynomial

ψ(r) := (α +
√

2)r2 + αr −
√

2

and is less than 1 since α > 0. Also the equation ψ(r) = 0 is equivalent to the equation a2(α)(r) =
√

2 + 1 − c2(α)(r).
The number

ρ1 :=

√
√

2 − 1

α +
√

2 − 1

is the positive root of the polynomial

τ(r) := (α +
√

2 − 1)r2 + 1 −
√

2
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where τ(r) = 0 is equivalent to the equation c2(α)(r) =
√

2. Note that ρ2 ⩽ ρ1 if and only if α ⩾ 2.
Case(i): α ⩾ 2. Whenα ⩾ 2, ρ2 ⩽ ρ1 and since c2(α)(r) is an increasing function of r, c2(α)(ρ2) ⩽ c2(α)(ρ1) =

√
2.

Therefore by Lemma 7.1, the radius of starlikeness associated with the lune φ$ for the class Cα2 is at least ρ2. To prove
the sharpness, consider the function f̃ from the class CV′ given by f̃ (z) = z/(1 − z). Then for the corresponding
function 1̃ ∈ Cα2 , for z = −ρ2, (2.3) shows that

z1̃′(z)
1̃(z)

=
(−ρ2)1̃′(−ρ2)
1̃(−ρ2)

=
√

2 − 1 = φ$(−1),

thus proving the sharpness for ρ2.
Case(ii): α ⩽ 2. In this case, ρ1 ⩽ ρ2 and since c2(α)(r) is an increasing function of r,

√
2 = c2(α)(ρ1) ⩽ c2(α)(ρ2).

Therefore by Lemma 7.1, the radius of starlikeness associated with the lune φ$ for the class Cα2 is at least ρ3. To prove
the sharpness, consider the function f̃ (z) = z/(1 − z) from the class CV′. From (2.3) it can be seen that, for z = ρ3,

z1̃′(z)
1̃(z)

=
(ρ3)1̃′(ρ3)
1̃(ρ3)

= 1 +
√

2 = φ$(1).

8. Radius of starlikeness associated with the class ST ℘

Kumar and Kamaljeet [10] defined the class ST ℘ = ST (φ℘), where φ℘(z) = 1 + zez. The boundary of
φ℘(D) is a cardiod. The following lemma is due to them.

Lemma 8.1. [10] For 1 − (1/e) < a < 1 + e, let ra be given by

ra =


(a − 1) +

1
e

if 1 −
1
e
< a ⩽ 1 +

e − e−1

2

e − (a − 1) if 1 +
e − e−1

2
⩽ a < 1 + e.

Then {w : |w − a| < ra} ⊂ φ℘(D).

Theorem 8.2. The inclusion Cα1 [A,B] ⊂ ST ℘ holds if either

1. (−αB(A − B))/(1 − B2) ⩽ (e − e−1)/2 and (α(A − B))/(1 − B) ⩽ 1/e
or

2. (−αB(A − B))/(1 − B2) ⩾ (e − e−1)/2 and (α(A − B))/(1 + B) ⩽ e.

Proof. Assume that (−αB(A − B))/(1 − B2) ⩽ (e − e−1)/2 and (α(A − B))/(1 − B) ⩽ 1/e. The first inequality
is equivalent to c1(α,A,B)(1) ⩽ 1 + (e − e−1)/2. The required result follows from Lemma 8.1 as the inequality
a1(α,A,B)(1) ⩽ c1(α,A,B)(1) − 1 + 1/e is obtained directly from (α(A − B))/(1 − B) ⩽ 1/e.

Assume that (−αB(A − B))/(1 − B2) ⩾ (e − e−1)/2 and (α(A − B))/(1 + B) ⩽ e. The first inequality reduces
to c1(α,A,B)(1) ⩾ 1 + (e − e−1)/2. As the condition a1(α,A,B)(1) ⩽ e − (c1(α,A,B)(1) − 1) is obtained from the
inequality (α(A − B))/(1 + B) ⩽ e, the result follows from Lemma 8.1.

When the conditions in Theorem 8.2 do not hold, then we discuss about the radius problem which is
stated in the next two theorems.

Theorem 8.3. Let α > 0, −1 ⩽ B ⩽ 0 and B < A ⩽ 1. If neither condition (1) nor condition (2) of Theorem 8.2
holds, then the radius of starlikeness associated with the cardiod φ℘ for the class Cα1 [A,B] is given by

RST ℘ (Cα1 [A,B]) =


1

eα(A − B) + B
if α(A − B)(e − e−1) ⩾ 2|B|

e
α(A − B) − eB

if α(A − B)(e − e−1) ⩽ 2|B|.
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Proof. We prove the theorem by showing that the disc D(c1(α,A,B)(r); a1(α,A,B)(r)) given in (3.1) is contained in
φ℘(D) for all 0 < r ⩽ RST ℘ (Cα1 [A,B]). Since B ⩽ 0, the centre c1(α,A,B)(r) ⩾ 1. Consider the polynomial

ξ(r) := (B2 + eαB(A − B))r2 + eα(A − B)r − 1.

Then we can see that ρ2 is the root of the polynomial ξ(r), where

ρ2 :=
1

eα(A − B) + B

and note that ξ(r) = 0 is equivalent to the equation a1(α,A,B)(r) = c1(α,A,B)(r) − 1 + (1/e). As ξ(0) = −1 < 0 and
ξ(1) = B2 + eαB(A− B)+ eα(A− B)− 1 > 0, since the condition (1) in Theorem 8.2 does not hold, we get ρ2 ∈ (0, 1).
Similarly, let

ρ3 :=
e

α(A − B) − eB
.

Then ρ3 is the positive root of the polynomial

ψ(r) := (eB2
− αB(A − B))r2 + α(A − B)r − e,

where ψ(r) = 0 is equivalent to the equation a1(α,A,B)(r) = e− (c1(α,A,B)(r)− 1). Clearly ψ(0) = −e < 0 and since
the condition (2) in Theorem 8.2 does not hold, ψ(1) = eB2

− αB(A− B)+ α(A− B)− e > 0 and thus ρ3 ∈ (0, 1). The
number

ρ1 :=

√
e − e−1

2α|B|(A − B) + (e − e−1)B2

is the positive root of the polynomial

τ(r) := ((e − e−1)B2 + 2α|B|(A − B))r2
− e + e−1.

Observe that τ(r) = 0 is equivalent to the equation c1(α,A,B)(r) = 1 + (e − e−1)/2. Comparing ρ2 and ρ1, we get the
relation that ρ2 ⩽ ρ1 if and only if α(A − B)(e − e−1) ⩾ 2|B|.

Case(i): α(A − B)(e − e−1) ⩾ 2|B|. Here c1(α,A,B)(ρ2) ⩽ c1(α,A,B)(ρ1) = 1 + (e − e−1)/2 as ρ2 ⩽ ρ1. Therefore
by Lemma 8.1, the radius of starlikeness associated with the cardiod φ℘ for the class Cα1 [A,B] is at least ρ2. To
prove the sharpness, consider the function f̃ from the class CV[A,B] given by (2.1) and the corresponding function
1̃ ∈ Cα1 [A,B]. Then for z = −ρ2, by using (2.2), we get

z1̃′(z)
1̃(z)

=
(−ρ2)1̃′(−ρ2)
1̃(−ρ2)

= 1 − e−1 = φ℘(−1),

thus proving the sharpness for ρ2.
Case(ii): α(A−B)(e−e−1) ⩽ 2|B|. In this case, ρ1 ⩽ ρ2 and hence 1+(e−e−1)/2 = c1(α,A,B)(ρ1) ⩽ c1(α,A,B)(ρ2).

Therfore, Lemma 8.1 guarantees that the radius of starlikeness associated with the cardiod φ℘ for the class Cα1 [A,B]
is at least ρ3. The function f̃ from the class CV[A,B] given by (2.1) is considered to prove the sharpness. It can be
seen from (2.2) that for z = ρ3,

z1̃′(z)
1̃(z)

=
(ρ3)1̃′(ρ3)
1̃(ρ3)

= 1 + e = φ℘(1),

thus proving the sharpness for ρ3.

The result in the case when 0 < B < 1 is similar, which we state in the following theorem without proof.
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Theorem 8.4. Let α > 0, 0 < B < 1 and B < A ⩽ 1. If neither condition (1) nor condition (2) of Theorem 8.2 holds,
then the radius of starlikeness associated with the cardiod φ℘ for the class Cα1 [A,B] is given by

RST ℘ (Cα1 [A,B]) =
1

eα(A − B) + B
.

The following theorem gives the radius of starlikeness associated with function φ℘ for the class Cα2 .

Theorem 8.5. Let α > 0. Then the radius of starlikeness associated with the cardiod φ℘ for the class Cα2 is given by

RST ℘ (Cα2 ) =


1

eα − 1
if α ⩾

2
e − e−1

e
α + e

if α ⩽
2

e − e−1 .

Proof. Our aim is to show that the disc D(c2(α)(r); a2(α)(r)) given in (3.2) is contained in φ℘(D) for all 0 < r ⩽
RST ℘ (Cα2 ). Let

ρ2 :=
1

eα − 1

and

ρ3 :=
e

α + e
.

Here c2(α)(r) > 1. It can be seen that for α ⩾ 2/(e − e−1), ρ2 is the positive root of the polynomial

ξ(r) := (eα − 1)r2
− eαr + 1

that is less than 1 and ξ(r) = 0 is equivalent to the equation a2(α)(r) = c2(α)(r) − 1 + (1/e). Similarly, ρ3 is the
positive root of the polynomial

ψ(r) := (α + e)r2 + αr − e

and is less than 1 since α > 0. Also the equation ψ(r) = 0 is equivalent to the equation a2(α)(r) = e − (c2(α)(r) − 1).
The number

ρ1 :=

√
e − e−1

2α + e − e−1

is the positive root of the polynomial

τ(r) := (2α + e − e−1)r2
− e + e−1

where τ(r) = 0 is equivalent to the equation c2(α)(r) = 1 + (e − e−1)/2. Comparing ρ1 and ρ2, we get that ρ2 ⩽ ρ1 if
and only if α ⩾ 2/(e − e−1). Therefore we consider the following cases.

Case(i): α ⩾ 2/(e − e−1). When α ⩾ 2/(e − e−1), ρ2 ⩽ ρ1 and since c2(α)(r) is an increasing function of r,
c2(α)(ρ2) ⩽ c2(α)(ρ1) = 1 + (e − e−1)/2. Therefore by Lemma 8.1, the radius of starlikeness associated with the
cardiod φ℘ for the class Cα2 is at least ρ2. To prove the sharpness, consider the function f̃ from the class CV′ given by
f̃ (z) = z/(1 − z) and the corresponding function 1̃ ∈ Cα2 . Then by (2.3) we can see that, for z = −ρ2,

z1̃′(z)
1̃(z)

=
(−ρ2)1̃′(−ρ2)
1̃(−ρ2)

= 1 − e−1 = φ℘(−1),

thus proving the sharpness for ρ2.
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Case(ii): α ⩽ 2/(e − e−1). When α ⩽ 2/(e − e−1), ρ1 ⩽ ρ2 and since c2(α)(r) is an increasing function of r,
1 + (e − e−1)/2 = c2(α)(ρ1) ⩽ c2(α)(ρ2). Therefore by Lemma 8.1, the radius of starlikeness associated with the
cardioid φ℘ for the class Cα2 is at least ρ3. To prove the sharpness, consider the function f̃ (z) = z/(1− z) from the class
CV

′. Then for z = ρ3, (2.3) shows that

z1̃′(z)
1̃(z)

=
(ρ3)1̃′(ρ3)
1̃(ρ3)

= 1 + e = φ℘(1).

9. Radius of starlikeness associated with the class ST SG

The class ST SG = ST (φSG) where φSG(z) = 2/(1 + e−z) was introduced by Goel and Kumar [6]. The
boundary of φSG(D) is a modified sigmoid. They proved the following lemma.

Lemma 9.1. [6] For 2/(1 + e) < a < 2e/(1 + e), let ra be given by

ra =
e − 1
e + 1

− |a − 1|.

Then {w : |w − a| < ra} ⊂ φSG(D) = ∆SG := {w : | log w/(2 − w)| < 1}.

Theorem 9.2. The inclusion Cα1 [A,B] ⊂ ST SG holds if either

1. B ⩾ 0 and (α(A − B))/(1 − B) ⩽ (e − 1)/(e + 1)
or

2. B ⩽ 0 and (α(A − B))/(1 + B) ⩽ (e − 1)/(e + 1).

Proof. Assume that B ⩾ 0 and (α(A−B))/(1−B) ⩽ (e−1)/(e+1). The inequality B ⩾ 0 is equivalent to c1(α,A,B)(1) ⩽
1. Since the inequality a1(α,A,B)(1) ⩽ c1(α,A,B)(1)+(e−1)/(e+1)−1 follows from (α(A−B))/(1−B) ⩽ (e−1)/(e+1),
the result follows from Lemma 9.1.

Now assume that B ⩽ 0 and (α(A−B))/(1+B) ⩽ (e−1)/(e+1). The first inequality reduces to c1(α,A,B)(1) ⩾ 1.
The result will follow from Lemma 9.1 if a1(α,A,B)(1) ⩽ (e − 1)/(e + 1) + 1 − c1(α,A,B)(1) which directly follows
from the inequality (α(A − B))/(1 + B) ⩽ (e − 1)/(e + 1).

When the conditions in Theorem 9.2 do not hold, then we have the result giving the radius of starlikeness
associated with the function φSG for the class Cα1 [A,B], which is stated in the following theorem.

Theorem 9.3. Let α > 0 and −1 ⩽ B < A ⩽ 1. If neither condition (1) nor condition (2) of Theorem 9.2 holds, then
the radius of starlikeness associated with the modified sigmoid function φSG for the class Cα1 [A,B] is given by

RST SG (Cα1 [A,B]) =
e − 1

(e + 1)α(A − B) + (e − 1)|B|
.

Proof. Consider the disc D(c1(α,A,B)(r); a1(α,A,B)(r)) given in (3.1). We prove the theorem by proving the con-
tainment of this disc in ∆SG for all 0 < r ⩽ RST SG (Cα1 [A,B]). Consider the case when B ⩾ 0. Then the centre
c1(α,A,B)(r) ⩽ 1. Let

ρ2 :=
e − 1

(e + 1)α(A − B) + (e − 1)B
.

Note that ρ2 = (e − 1)/((e + 1)α(A − B) + (e − 1)|B|) and ρ2 is the root of the polynomial

ξ(r) := ((e − 1)B2 + (e + 1)Bα(A − B))r2 + (e + 1)α(A − B)r + 1 − e,
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where ξ(r) = 0 is equivalent to the equation a1(α,A,B)(r) = c1(α,A,B)(r) + (e − 1)/(e + 1) − 1. As ξ(0) = 1 − e < 0
and ξ(1) = (e− 1)B2 + (e+ 1)Bα(A−B)+ (e+ 1)α(A−B)+ 1− e > 0, since the condition (1) in Theorem 9.2 does not
hold, the belongingness of ρ2 in the interval (0, 1) is guaranteed. Therefore by Lemma 9.1, the radius of starlikeness
associated with the modified sigmoid function φSG is at least ρ2. To prove the sharpness, consider the function f̃ from
the class CV[A,B] given by (2.1). For the above function f̃ and the corresponding function 1̃ ∈ Cα1 [A,B], by using
(2.2), for z = −ρ2, we get

z1̃′(z)
1̃(z)

=
(−ρ2)1̃′(−ρ2)
1̃(−ρ2)

=
2

1 + e
= φSG(−1),

thus proving the sharpness for ρ2.
Similarly, when B ⩽ 0, the centre c1(α,A,B)(r) ⩾ 1. Note that ρ3 is the positive root of the polynomial

ψ(r) := ((e − 1)B2
− (e + 1)Bα(A − B))r2 + (e + 1)α(A − B)r + 1 − e,

where

ρ3 :=
e − 1

(e + 1)α(A − B) − (e − 1)B
.

Observe that ρ3 = (e − 1)/((e + 1)α(A − B) + (e − 1)|B|) and ψ(r) = 0 is equivalent to the equation a1(α,A,B)(r) =
(e − 1)/(e + 1) + 1 − c1(α,A,B)(r). Clearly ψ(0) = 1 − e < 0 and since the condition (2) in Theorem 9.2 does not
hold, ψ(1) = (e − 1)B2

− (e + 1)Bα(A − B) + (e + 1)α(A − B) + 1 − e > 0 and thus ρ3 ∈ (0, 1). Hence by Lemma 9.1,
the radius of starlikeness associated with the modified sigmoid function φSG for the class Cα1 [A,B] is at least ρ3. To
prove the sharpness, consider the function f̃ from the class CV[A,B] given by (2.1). It can be seen from (2.2) that for
z = ρ3,

z1̃′(z)
1̃(z)

=
(ρ3)1̃′(ρ3)
1̃(ρ3)

=
2e

e + 1
= φSG(1),

thus proving the sharpness for ρ3.

The following theorem gives the radius result associated with the function φSG corresponding to the
class Cα2 .

Theorem 9.4. Let α > 0. Then the radius of starlikeness associated with the modified sigmoid function φSG for the
class Cα2 is given by

RST SG (Cα2 ) =
e − 1

(e + 1)α + (e − 1)
.

Proof. Our aim is to show that the disc D(c2(α)(r); a2(α)(r)) given in (3.2) is contained in ∆SG for all 0 < r ⩽
RST SG (Cα2 ). Let

ρ3 :=
e − 1

(e + 1)α + (e − 1)
.

Here c2(α)(r) > 1. It can be seen that ρ3 is the positive root of the polynomial

ψ(r) := ((e + 1)α + e − 1)r2 + (e + 1)αr + 1 − e

and is less than 1 since α > 0 and ψ(r) = 0 is equivalent to the equation a2(α)(r) = (e − 1)/(e + 1) + 1 − c2(α)(r).
Therefore by Lemma 9.1, the radius of starlikeness associated with the modified sigmoid function φSG for the class Cα2
is at least ρ3. To prove the sharpness, consider the function f̃ from the class CV′ given by f̃ (z) = z/(1 − z). Then for
the corresponding function 1̃ ∈ Cα2 , for z = ρ3, (2.3) shows that

z1̃′(z)
1̃(z)

=
(ρ3)1̃′(ρ3)
1̃(ρ3)

=
2e

e + 1
= φSG(1),

thus proving the sharpness for ρ3.
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10. Radius of starlikeness associated with the class ST sin

Cho et al. [2] introduced the class ST sin = ST (φsin), where φsin(z) = 1 + sin z and proved the following
lemma.

Lemma 10.1. [2] For 1 − sin 1 < a < 1 + sin 1, let ra be given by

ra = sin 1 − |a − 1|.

Then {w : |w − a| < ra} ⊂ φsin(D).

Theorem 10.2. The inclusion Cα1 [A,B] ⊂ ST sin holds if either

1. B ⩾ 0 and (α(A − B))/(1 − B) ⩽ sin 1
or

2. B ⩽ 0 and (α(A − B))/(1 + B) ⩽ sin 1.

Proof. Assume that (1) holds. The inequality B ⩾ 0 is equivalent to c1(α,A,B)(1) ⩽ 1. The condition a1(α,A,B)(1) ⩽
c1(α,A,B)(1) + (sin 1) − 1 follows from (α(A − B))/(1 − B) ⩽ sin 1 and hence by Lemma 10.1, the result follows.

Similarly, if B ⩽ 0 and (α(A − B))/(1 + B) ⩽ sin 1, then the first inequality reduces to c1(α,A,B)(1) ⩾ 1 and the
condition a1(α,A,B)(1) ⩽ (sin 1)+ 1− c1(α,A,B)(1) directly follows from the inequality (α(A− B))/(1+ B) ⩽ sin 1.
Therefore, the result follows from Lemma 10.1.

Our next theorem gives the radius of starlikeness associated with the function φsin for the class Cα1 [A,B],
when the conditions in Theorem 10.2 do not hold.

Theorem 10.3. Let α > 0 and −1 ⩽ B < A ⩽ 1. If neither condition (1) nor condition (2) of Theorem 10.2 holds,
then the radius of starlikeness associated with the function φsin for the class Cα1 [A,B] is given by

RST sin (Cα1 [A,B]) =
sin 1

α(A − B) + (sin 1)|B|
.

Proof. By proving that the discD(c1(α,A,B)(r); a1(α,A,B)(r)) given in (3.1) is contained in φsin(D) for all 0 < r ⩽
RST sin (Cα1 [A,B]), the required result will follow. Let

ρ2 :=
sin 1

α(A − B) + (sin 1)B

and

ρ3 :=
sin 1

α(A − B) − (sin 1)B
.

If B ⩾ 0, the centre c1(α,A,B)(r) ⩽ 1 and ρ2 = (sin 1)/(α(A − B) + (sin 1)|B|). We can see that ρ2 is the root of the
polynomial

ξ(r) := ((sin 1)B2 + αB(A − B))r2 + α(A − B)r − sin 1,

where ξ(r) = 0 is equivalent to the equation a1(α,A,B)(r) = c1(α,A,B)(r)+ (sin 1)− 1. Note that ξ(0) = − sin 1 < 0
and ξ(1) = (sin 1)B2 + αB(A − B) + α(A − B) − sin 1 > 0, since the condition (1) in Theorem 10.2 does not hold.
Hence ρ2 ∈ (0, 1). Therefore by Lemma 10.1, the radius of starlikeness associated with the function φsin is at least ρ2.
Now consider the function f̃ from the class CV[A,B] given by (2.1) and the corresponding function 1̃ ∈ Cα1 [A,B].
Then, for z = −ρ2, by using (2.2), we get

z1̃′(z)
1̃(z)

=
(−ρ2)1̃′(−ρ2)
1̃(−ρ2)

= 1 − sin 1 = φsin(−1),
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which proves the sharpness for ρ2.
Similarly, if B ⩽ 0, the centre c1(α,A,B)(r) ⩾ 1 and ρ3 = (sin 1)/(α(A − B) + (sin 1)|B|). Note that ρ3 is the

positive root of the polynomial

ψ(r) := ((sin 1)B2
− αB(A − B))r2 + α(A − B)r − sin 1,

where ψ(r) = 0 is equivalent to the equation a1(α,A,B)(r) = (sin 1) + 1 − c1(α,A,B)(r). Clearly ψ(0) = − sin 1 < 0
and since the condition (2) in Theorem 10.2 does not hold, ψ(1) = (sin 1)B2

− αB(A − B) + α(A − B) − sin 1 > 0
and thus ρ3 ∈ (0, 1). Hence by Lemma 10.1, the radius of starlikeness associated with the function φsin for the class
C
α
1 [A,B] is at least ρ3. The sharpness can be proved by considering the function f̃ from the class CV[A,B] given by

(2.1). Then if 1̃ is the corresponding function in Cα1 [A,B], by using (2.2), for z = ρ3, we get

z1̃′(z)
1̃(z)

=
(ρ3)1̃′(ρ3)
1̃(ρ3)

= 1 + sin 1 = φsin(1),

thus proving the sharpness for ρ3.

We now turn our attention to finding the radius of starlikeness associated with the function φsin for the
class Cα2 which is stated in the following theorem.

Theorem 10.4. Let α > 0. Then the radius of starlikeness associated with the function φsin for the class Cα2 is given
by

RST sin (Cα2 ) =
sin 1

α + sin 1
.

Proof. Our aim is to show that the disc D(c2(α)(r); a2(α)(r)) given in (3.2) is contained in φsin(D) for all 0 < r ⩽
RST sin (Cα2 ). Here c2(α)(r) > 1. Consider the polynomial

ψ(r) := (α + sin 1)r2 + αr − sin 1

and let

ρ3 :=
sin 1

α + sin 1
.

It can be seen that ρ3 is the positive root of the polynomial ψ(r) and is less than 1 since α > 0 and ψ(r) = 0 is
equivalent to the equation a2(α)(r) = (sin 1) + 1 − c2(α)(r). Therefore by Lemma 10.1, the radius of starlikeness
associated with the function φsin for the class Cα2 is at least ρ3. Considering the function f̃ from the class CV′ given
by f̃ (z) = z/(1 − z) and the corresponding function 1̃ ∈ Cα2 , by using (2.3), for z = ρ3, we get

z1̃′(z)
1̃(z)

=
(ρ3)1̃′(ρ3)
1̃(ρ3)

= 1 + sin 1 = φsin(1),

which proves the sharpness for ρ3.

11. Radius of starlikeness associated with the class ST h

Kumar and Arora [9] defined the class ST h = ST (φh) where φh(z) = 1 + sinh−1(z). The boundary of
φh(D) is petal shaped. The following lemma is due to them.

Lemma 11.1. [9] For 1 − sinh−1(1) < a < 1 + sinh−1(1), let ra be given by

ra =

a − (1 − sinh−1(1)) if 1 − sinh−1(1) < a ⩽ 1

1 + sinh−1(1) − a if 1 ⩽ a < 1 + sinh−1(1).

Then {w : |w − a| < ra} ⊂ φh(D) = Ωh := {w ∈ C : | sinh(w − 1)| < 1}.
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Theorem 11.2. The inclusion Cα1 [A,B] ⊂ ST h holds if either

1. B ⩾ 0 and (α(A − B))/(1 − B) ⩽ sinh−1(1)
or

2. B ⩽ 0 and (α(A − B))/(1 + B) ⩽ sinh−1(1).

Proof. Assume that B ⩾ 0 and (α(A−B))/(1−B) ⩽ sinh−1(1). The inequality B ⩾ 0 is equivalent to c1(α,A,B)(1) ⩽ 1.
The result follows from Lemma 11.1, since the inequality a1(α,A,B)(1) ⩽ c1(α,A,B)(1)+ (sinh−1(1))−1 follows from
(α(A − B))/(1 − B) ⩽ sinh−1(1).

If B ⩽ 0 and (α(A−B))/(1+B) ⩽ sinh−1(1), then it can be seen that the first inequality reduces to c1(α,A,B)(1) ⩾ 1.
The result will follow from Lemma 11.1 if a1(α,A,B)(1) ⩽ 1+ (sinh−1(1))− c1(α,A,B)(1) which directly follows from
the inequality (α(A − B))/(1 + B) ⩽ sinh−1(1).

The result stated in the following theorem can be discussed if the conditions in Theorem 11.2 do not
hold.

Theorem 11.3. Let α > 0 and −1 ⩽ B < A ⩽ 1. If neither condition (1) nor condition (2) of Theorem 11.2 holds,
then the radius of starlikeness associated with the function φh for the class Cα1 [A,B] is given by

RST h (Cα1 [A,B]) =
sinh−1(1)

α(A − B) + (sinh−1(1))|B|
.

Proof. We aim to show that the discD(c1(α,A,B)(r); a1(α,A,B)(r)) given in (3.1) is contained in Ωh for all 0 < r ⩽
RST h (Cα1 [A,B]). Let

ρ2 :=
sinh−1(1)

α(A − B) + (sinh−1(1))B

and

ρ3 :=
sinh−1(1)

α(A − B) − (sinh−1(1))B
.

Consider the case when B ⩾ 0. In this case, the centre c1(α,A,B)(r) ⩽ 1 and note that ρ2 = (sinh−1(1))/(α(A − B) +
(sinh−1(1))|B|). We can see that ρ2 is the root of the polynomial

ξ(r) := ((sinh−1(1))B2 + αB(A − B))r2 + α(A − B)r − sinh−1(1),

where ξ(r) = 0 is equivalent to the equation a1(α,A,B)(r) = c1(α,A,B)(r) + (sinh−1(1)) − 1. Observe that ξ(0) =
− sinh−1(1) < 0 and ξ(1) = (sinh−1(1))B2 + αB(A − B) + α(A − B) − sinh−1(1) > 0, since the condition (1) in
Theorem 11.2 does not hold. Hence ρ2 ∈ (0, 1). Therefore by Lemma 11.1, the radius of starlikeness associated with
the function φh is at least ρ2. To prove the sharpness, consider the function f̃ from the class CV[A,B] given by (2.1)
and the corresponding function 1̃ ∈ Cα1 [A,B]. Then for z = −ρ2, by using (2.2) we get

z1̃′(z)
1̃(z)

=
(−ρ2)1̃′(−ρ2)
1̃(−ρ2)

= 1 − sinh−1(1) = φh(−1),

thus proving the sharpness for ρ2.
Similarly, considering the case when B ⩽ 0, we get that the centre c1(α,A,B)(r) ⩾ 1 and ρ3 = (sinh−1(1))/(α(A−

B) + (sinh−1(1))|B|). Consider the polynomial

ψ(r) := ((sinh−1(1))B2
− αB(A − B))r2 + α(A − B)r − sinh−1(1)
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and note that ρ3 is the positive root of the polynomial ψ(r). A calculation readily shows that ψ(r) = 0 is equivalent to
the equation a1(α,A,B)(r) = 1+ (sinh−1(1))− c1(α,A,B)(r). Clearly ψ(0) = − sinh−1(1) < 0 and since the condition
(2) in Theorem 11.2 does not hold, ψ(1) = (sinh−1(1))B2

−αB(A−B)+α(A−B)− sinh−1(1) > 0 and thus ρ3 ∈ (0, 1).
Hence by Lemma 11.1, the radius of starlikeness associated with the function φh for the class Cα1 [A,B] is at least ρ3.
Now consider the function f̃ from the class CV[A,B] given by (2.1). It can be seen from (2.2) that for z = ρ3,

z1̃′(z)
1̃(z)

=
(ρ3)1̃′(ρ3)
1̃(ρ3)

= 1 + sinh−1(1) = φh(1),

which proves the sharpness for ρ3.

The radius of starlikeness associated with the function φh for the class Cα2 is discussed in the following
theorem.

Theorem 11.4. Let α > 0. Then the radius of starlikeness associated with the function φh for the class Cα2 is given by

RST h (Cα2 ) =
sinh−1(1)

α + sinh−1(1)
.

Proof. We prove the theorem by showing that the disc D(c2(α)(r); a2(α)(r)) given in (3.2) is contained in Ωh for all
0 < r ⩽ RST h (Cα2 ). Here the centre of the disc c2(α)(r) > 1. Let

ρ3 :=
sinh−1(1)

α + sinh−1(1)
.

Then ρ3 is the positive root of the polynomial

ψ(r) := (α + sinh−1(1))r2 + αr − sinh−1(1)

and since α > 0, ρ3 is less than 1. Also ψ(r) = 0 is equivalent to the equation a2(α)(r) = 1 + (sinh−1(1)) − c2(α)(r).
Therefore by Lemma 11.1, the radius of starlikeness associated with the function φh for the class Cα2 is at least ρ3.
Considering the function f̃ from the class CV′ given by f̃ (z) = z/(1 − z) and the corresponding function 1̃ ∈ Cα2 ,
(2.3) shows that for z = ρ3,

z1̃′(z)
1̃(z)

=
(ρ3)1̃′(ρ3)
1̃(ρ3)

= 1 + sinh−1(1) = φh(1),

thus proving the sharpness for ρ3.

References

[1] R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane,
Appl. Math. Comput. 218 (2012), no. 11, 6557–6565.

[2] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function,
Bull. Iranian Math. Soc. 45 (2019), no. 1, 213–232.

[3] P. L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.
[4] S. Gandhi and V. Ravichandran, Starlike functions associated with a lune, Asian-Eur. J. Math. 10 (2017), no. 4, 1750064, 12 pp.
[5] A. Gangadharan, V. Ravichandran and T. N. Shanmugam, Radii of convexity and strong starlikeness for some classes of analytic

functions, J. Math. Anal. Appl. 211 (1997), no. 1, 301–313.
[6] P. Goel and S. Sivaprasad Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malays.

Math. Sci. Soc. 43 (2020), no. 1, 957–991.
[7] W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. 28 (1973), 297–326.
[8] R. Kanaga and V. Ravichandran, Starlikeness for certain close-to-star functions, Hacet. J. Math. Stat. 50 (2021), no. 2, 414–432.
[9] S. S. Kumar and K. Arora, Starlike Functions associated with a Petal Shaped Domain, arXiv: 2011.10072 (2020), 15 pages.

[10] S. S. Kumar and G. Kamaljeet, A cardioid domain and starlike functions, Anal. Math. Phys. 11 (2021), no. 2, Paper No. 54, 34 pp.



P. G. Krishnan et al. / Filomat 37:13 (2023), 4125–4153 4153

[11] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math.
40 (2016), no. 2, 199–212.

[12] A. Lecko, V. Ravichandran and A. Sebastian, Starlikeness of certain non-univalent functions, Anal. Math. Phys. 11 (2021), no. 4,
Paper No. 163, 23 pp.

[13] S. K. Lee, K. Khatter and V. Ravichandran, Radius of starlikeness for classes of analytic functions, Bull. Malays. Math. Sci. Soc. 43
(2020), no. 6, 4469–4493.

[14] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on
Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA.

[15] S. Madhumitha and V. Ravichandran, Radius of starlikeness of certain analytic functions, Rev. R. Acad. Cienc. Exactas Fı́s. Nat.
Ser. A Mat. RACSAM 115 (2021), no. 4, Paper No. 184, 18 pp.

[16] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function,
Bull. Malays. Math. Sci. Soc. 38 (2015), no. 1, 365–386.
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