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An n-dimensional pseudo-differential operator involving linear
canonical transform and some applications in quantum mechanics

Tusharakanta Pradhan?®, Manish Kumar®*
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Abstract. In this work, an n-dimensional pseudo-differential operator involving the n-dimensional linear
canonical transform associated with the symbol o(x;,...,x:; V1, ..., ¥s) € C?(R" X R") is defined. We have
introduced various properties of the n-dimensional pseudo-differential operator on the Schwartz space
using linear canonical transform. It has been shown that the product of two n-dimensional pseudo-
differential operators is an n-dimensional pseudo-differential operator. Further, we have investigated
formal adjoint operators with a symbol 0 € 8™ using the n-dimensional linear canonical transform, and the
LP(IR") boundedness property of the n-dimensional pseudo-differential operator is provided. Furthermore,
some applications of the n-dimensional linear canonical transform are given to solve generalized partial
differential equations and their particular cases that reduce to well-known n-dimensional time-dependent

Schrodinger-type-1/Schrédinger-type-II/Schrodinger equations in quantum mechanics for one particle with
a constant potential.

1. Introduction, definitions, and preliminaries

The one-dimensional linear canonical transform (LCT) was introduced in 1970 as an integral transform.
The linear canonical transform (LCT) [2—4, 6] plays a vital role in many fields of quantum mechanics, optics,
signal processing, image processing, and engineering sciences, which is a generalization of many integral
transform, including the Fourier transform (FT) [7, 9, 10], the fractional Fourier transform (FRFT) [1, 2, 8], the
Fresnel transform. Most recent developments in such integral transforms include (for example) the short-
time special affine Fourier transform, the discrete quadratic-phase Fourier transform, the Mehler-Foke type
index transform, the non-separable linear canonical wavelet transform, the ridgelet and linear canonical
transform, the quantum representation of the linear canonical wavelet transform, wavelet multipliers
involving the Watson transform, the quadratic-phase wave-packet transform, continuous fractional Bessel
wavelet transform, the solution of a non-linear Hunter-Saxton equation using Fibonacci wavelet method, the
Kontorovich-Lebedev transform, general families of integral transformations and so on can be found in [11-
23]. It has found many applications, such as optics systems, filter design, signal synthesis, time-frequency
analysis, phase retrieval, pattern recognition, and many other areas. The classical multi-dimensional
separable LCT is reported in [24]. Let us begin by recalling [24, Definition 2.1, p.4] and a matrix M =
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-1
Z Z = _dc _ab € SL(2,FF) (a special linear group of order 2), where F is a field with ad — bc = 1
defined in [29]. Now we define an n-dimensional linear canonical transform for a function (x4, ...,x,) €
L'(R") associated with a matrix M is given by

f {HKM(xk/yk)}(P(xl,u.,xn)dx1...dx,,,(l.l)
© k=1

where i = V=1 and the kernel Kum(xx, yi) foreach k =1, ..., n, is defined by

La(oCer, -, )W, - Yn) = oY, -, Yn) = f

—00

2b b 2b

Km(xk, vx) = Cm el( , (b#0).

2 2
T _ %Yk dﬁ)

In the case when b = 0, then the LCT of a function @ (1, . .., yx) is given by

oMWy, -, Yn) = Vd e% Lia Vf(p(dyl, o, dyn),
and Cy = m The corresponding inverse of Eq. (1.1) is defined by

k=1

‘LM’1 ((PM(ylz ey yl’l))(xlr v rxn) = (P(xlz LR Ile) = f: e j: {H I<1\A’1 (yk/ xk)} (PM(ylf ey yﬂ)dyl B dy‘ﬂ/(lz)

where the kernel Ky(xy, yx) for each k = 1,...,n, that is, Ky (yx, Xx), is given by

i e,
N2~

Kpi1 (i, 1) = Cur e , (b#0),

when b = 0, then the n-dimensional inverse LCT of a function ¢(x1, ..., x,) is defined by

(P(xll .. /xn) = \/E e% Lt X%(P(a'xll .. /axn)/

with Cy = ﬁ, and the overbar denotes the complex conjugate. Throughout this paper, we shall assume
—ZTlL
b+0.

Definition 1.1. Schwartz space S(R"): The Schwartz space consists of all C*-functions ¢ on R" such that

n ” a }gk
ka &—Xk o(x1,...,Xn)

k=1

Vap(@) = sup < 0o, (1.3)

(1,02 ) ERM

where the letters a and B are denoted by non-negative integers in IN, that is ay and py (k = 1, ..., n) are non-negative
integers such that |a| = oy + -+ ay and Bl = 1 + -+ + Bu.

Definition 1.2. Schwartz-type space SM(R"): The space SM(IR") is defined as follows; ¢ is member of SY(R") iff
it is a complex valued C*-function on R", which satisfy the following condition:

n

H {xZ“ (AXk,ll,b)ﬁk} Px1, ..., x0)| < 0o, (14)

SY(p)= sup

(x1,...,Xn)ER"

for every choice of non-negative integers o and  in IN!, where Ay, 4 is defined by:

Jd .a
Axk,a,b = (a_xk - lgxk)r (15)

if we put a = 0 in (1.4), then it reduces to Definition 1.1.
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Definition 1.3. Let m € R. Then we define 8™ to be the set of all functions o(x1,...,Xu; Y1, - ., Yn) in C°(R"* x R")
such that for any two multi-indices « and B, there is a positive constant C, g, depending on o and B only, for which

9N 9\ n "
g(a—xk) (8_yk) a(xl,...,x,,;yl,...,yn)SCM;(1+H|yk|] . (1.6)

Definition 1.4. Let o(x1,..., X Y1,- .., Yn) € S™. Then the n-dimensional pseudo-differential operator Ty associ-
ated with symbol 6(x1, ..., %Xu; Y1, - ., Yn), is defined by

1% XYk dy%
ﬁ b +E) .
(Tom®) (X1, ..., Xn f f { o(X1, - X Y1, Yn)
® k=1

X oM, .., yu)dyr ... dy,, Ve e S(R), (1.7)

where pp(y1, - - ., Yn) is the n-dimensional linear canonical transform of a function @. Let 6(x1,..., X Y1,...,Yn) €
S" forr=0,1,2,..., which is given by:

Or(xl/‘--/xn;yll*"lyn) = G(xlr"‘rxn;ylr”-/yn)(Pr(yll‘-'/yﬂ)l v(xll-”rxl’l)r(yll-"ryn) ERH/ (18)
then we define

2 2
z dy
ke _ 2k y Vi

KT,M(xll“'lxn;zll"’/zﬂ)zqf f {e_l(Zb_ ! Zb)}Gr(XL-..,xn}ylw-'/yn)dyl--~dyn/ (19)

where @, is the partition of the unity constructed in the book of Wong [28, p. 40].
Theorem 1.5 (Taylor’s Formula [28]). Suppose f € C®(IR") and for all positive integer |, we have

. 17“” (@ * AY(yy, ..., Yn)
f(yl + T]l/ .y yn + T]n) - E E 8ya1f yglya” y + Rl(yll ceey ynr nlr ey nn)/ (110)
'R n

a1=

0 OO qn I 1 3V1+ +W’f)(y1 yn)
lZVl ) j(;

Vu =l V1' ! y‘l 2y

where Ri(Ya, -, Y M, -+, 1) = (1 +6m,...,yn +61,)d6,

forall (y1,...,Yn), (M,--., M) € R

Cordero and Grochenig [26], Du and Wong [27] found the product formula for localization operators
(sub-class of pseudo-differential operators) on modulation space and Gelfand-Shilov spaces. Motivated
by the work of Du and Wong [27, 28], our main goal in this paper is to find the characterization of n-
dimensional pseudo-differential operator associated with the symbol o(x1, ..., xu; y1,...,¥s) € C*(R" X R")
involving n-dimensional linear canonical transform. Further, we have derived some new results of the
n-dimensional linear canonical transform in a distributional sense. These new findings have become an
elegant tool for solving generalized partial differential equations. Furthermore, we have investigated
some applications of the n-dimensional linear canonical transform to solve generalized partial differential
equations and their particular cases that reduce to well-known n-dimensional time-dependent Schrodinger-
type-1/Schrodinger-type-1I/Schrodinger equations in quantum mechanics for one particle with a constant
potential.

2. Properties of the n-dimensional pseudo-differential operator

This section proves that the n-dimensional pseudo-differential operator is a continuous linear map from
Schwartz space into itself. Then we have shown that the product of two n-dimensional pseudo-differential
operators is again an n-dimensional pseudo-differential operator. We have defined the formal adjoint of
an n-dimensional pseudo-differential operator. Using this fact, we have derived an asymptotic expansion
for the symbol of the formal adjoint. The boundedness on L(IR") has been investigated by using the
n-dimensional linear canonical transform technique.
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Proposition 2.1. Let o(x1,..., X5 Y1,...,Ys) € S™, m € R. Then the n-dimensional pseudo-differential operators
Tom : SR") — S(IR") is a continuous linear map.

Proof. Let ¢ € S(R"). Then for any two multi-indices & and 8, we have to show that

n a ,Bk
(E X, (5_Xk) TO,M(p] (x1, -, xn)

Multiplying both sides of Eq. (1.7) by [T}_; x; (a%k)ﬁk and using the Leibniz rule followed by integration by

parts with the setting ay + . = 0, (k=1,...,n), we have

e 1S5 O S BT (4

k= ﬁO 50 k=1 n=0 kl,]—o
ax:

TE o)) 1 (6 5 \F P
f f‘”{k 1 )} i) Z( k)((ayk) (0—)_Xk) 0](x1/-‘-,xn;y1,...,yn)

6,=0

sup < 00,

(120 Xn)€ER?

-1

S IEANNE
xH(a—yk) (yk 7(pM(yl,...,yn))dyl...dyn.

with the help of Definition 1.3, we can find a positive constant depending on the two multi-indices 6 — &’
and B — B such that

n R a ﬁk
sup H xkk (a_xk) (Tom@)(x1, -, Xn)

(1 eee ) ER™ [
o Br ﬁ;,( n ﬁk 5k n ﬁk ﬁk - n
SEEZ N T @IS ) 1]
k=1 52;0 k k=1 mn=0 k=1 U =0 k=1

o - n m={o+10'] |
X Cﬁ*ﬁ',éfé' f . f [1 + H |]/k|] H (Bik) (yﬁ (PM(yll s yn))
- o k=1

Since ¢ € S(R"), it follows from Eq. (2.1), and there exist is a positive constant Cy;43_y 5_y depending on

Cs_p 5o and Cy1, we have
n Bi o - . m=161+15' |
1099 a T < C 1 + d d
| | Xk axk ( U,M(f))(xlz - ,xn) = CMmp-p6-0 cee | | |}/k| y1...dy,.
- o -0 k=1

Since the integrals on the right-hand side are convergent for sufficiently large multi-index 6, we obtained
the desired result. O

r
0k

)

5,=0

dy; ...dy,. (2.1)

sup
(x1,--.,%7)ER"

Theorem 2.2. Let 0 € 8™ and © € 8™, (my,my € R). Then the product of two n-dimensional pseudo-differential
operators T pTrm is again an n-dimensional pseudo-differential operator T m, where A is a symbol in S™*™ and
has the following asymptotic expansion

e (9o \M (ot \*
A1, X Y1, ,yn)vaZ(‘uk) (a_;k) (a—;k) (1, X3 Y1, Yn), (2.2)

klka
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here, Eq. (2.2) means that

n I1-1 Lk

(—i)”k(BG )”k(&c )*
A, o, X Y1, -, Yn) — — — X1, ooy X Y1, e v e Yn),
(x1 Vi Yn) EPZ_B o \ay) ) ViseeerYn)

is a symbol in S™*™27! for every positive integer I.

Proof. Let ¢ € S(R"). From Eq. (1.7), we have

TG,M(P(xlr o rxn) = Z (TG,,MQD) (xll . lel)

r=0

r=0
:@fm...fm {ﬁ e_i(¥+%_wz’yk)} [i ar(xl,...,xn;yl,...,yn)](pM(yl,..
—oo —oo | k=1

S Yn)dyr .. dyy

R e
ZCMf f He o(X1, o, X Y1, Y) MY, - - Yu)dya - Ay
e e k=1

For T € 8™, we obtain

(TUV,MTT,M(P)(xlr ey xn)

X or(x1, e X Y Yn) La(Tem@) (Y, - Yn)dya - Ay

Using Eq. (1.1), (1.9) and Fubini’s theorem on the right-hand side of the above expression, we get

2 a2 (—t)2  dy? -
e oo [ 1 —i(%+%‘)+ix":" i~ oo (1 i("(“"ﬂ:") +%)_iw
Cu | - e Cu | - e

k=1

X
a2 dy? pen
il e PCTE RERTR VAW SR ¥ SRR )
o % k=1
where
00 00 n _u(xk—lk)z d,‘/% )
) _ 1= *t=2 |77
Ar(xlr”-/xn/yl/”-/yn)_CM €
% % k=1

X KT,M(xll e /xn; xl - tl/ e /xn - tn)T(]/lz cecy ynr tl/ ..
Therefore, Eq. (2.4) becomes
(To, MTem@)(x1, ..., Xn) = (Tam@)(x1, ., Xn),
where
AL - X YY) = Y A X Y1, Y.
r=0

Now, Eq. (2.5) can be re-written as

KV,M(xlr' s Xpy X1 — tl/ ceesXn — tn)T(yl/' < Yns tl/* . 'lti’l)dtl s dtn) (PM(yl/ .. ‘ryn)dyl .- dyn

L ta)dt ... dty.

00 00 n .“Z;% dyf - YkZk
N+t |77
At oo X Y1, .o, yn) = Cu He Kem(x1, .o Xn521, -+, 20)

X (X1 =21, X0 = Zw Y1, - - -, Yu)dz1 ... dz,.

4159

2.3)

2.4)

(2.5)

(2.6)

2.7)

2.8)
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Using Taylor’s formula provided in Theorem 1.5, we can write the right-hand side of the above expression

as
n 11—1
(—Zk)#k( 2 )“k
T(X1 —Z1, - ) X = Zs Y1y e  Yn) = =— | X1, X Y1, Yn)
Yy LLFO R Yy
+ Rll (xll e Xny yl/ LR yn}Zh oo /Zn)' (29)
Using Eq. (2.8) and Eq. (2.9), we have
Ar(X1, oo X Y, - ,yn)—HZ (3xk) T(xl,.-.,xn;yl,...,yn)CMf f {He( ) N }
e Yn), (2.10)

k=1 U= 0
(—z)*]dzy ...dz, + lel,M(xl' e X Y1,

X Kemi(x1, ..o X521, zo)[(=2z2) ..

where

2 42
J /s i %%k
% T2 b

(xll" s Xns Y1, -0 ryn) = CMf f { e }KV,M(xlf---/xn;zlr”-/zn)
k=1
2.11)

XRy (X1, X Y1, -, Yns 21, - - -, Zn)dzy ... dzy.

Using Definition 1.1 and Eq. (2.10), we get

n —z Lk L
/\r(xll--wxn}]/l/---/]/n HZ k') (&x ) Ur(xlz---/xn;]/lz--wyn)
k=1 pg=0 k
(2.12)

n (9 Hk .
X H(a_xk) T(xlr'-'/xn;ylr--'/yn)+T11,M(x1/-'-/xn;y1/' /yl’l)

For any integer /; > /, the function A given by Eq. (2.7) satisfies
yk Hk ot Hi
ayk 9. (xllu-/xn?]/l/'--/]/n)

Alxq, .. s Xns Yi,- - ,yn)—ﬂ% .Uk o
= AX1,- X Y1, Yn) — H};) :;)!Hk (g—;:)“k(j—;{) k(xl,...,xn;yl,...,yn)
; Zi 1;;)!“k (3;}:)Hk(§;€)ﬂk (X1, X Y1, Yn)- (2.13)
From Wong [28, p. 57], we have
ﬁ v (_:;)!Hk (%)“k (%)Hk (X1, X Y1, ..., Yn) € ST I (2.14)

k=1 ‘uk=l
From Wong [28, p. 58-59] and for all multi-indices a and f there exist a positive constant C, 3 > 0, such that

n my+my—1—|p|
< Cup [1 ] kal] .(2.15)
k=1

O

ot |
T) ](xll"'/xn;ylr"'/yn)

n )t K
a;:a‘;[ HZ ! (ayk) (9_xk

k=1 Hk= =0
From Eq. (2.13), Eq. (2.14) and Eq. (2.15), we conclude that A € S™*"™
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Definition 2.3. Let 0 be a symbol in 8™ and T, is the n-dimensional pseudo-differential operator. Suppose there
exist a linear operator T, : S(R") — S(IR"), such that

(Towp.v) = (0. T2u), ¥ o e SR, (2.16)
then, T}, is said to be formal adjoint of the operator To .
Theorem 2.4. Let 0 € 8™. Then the formal adjoint of the n-dimensional pseudo-differential operator T, is again

an n-dimensional pseudo-differential operator T and has the following asymptotic expansion

n

s <—ik>#k( 5 )*( 5 )“k_
e X Y1, e, Yp) ~ — — e X Y1, Un), 2.17
T, e o) X5 Y1) Yn) QWO o \am) gy Tl (2.17)

here, Eq. (2.17) means that
L i Pk Hi 0 fuk_ _
T(X1, -y X Y1y Yn) — HZ( k' (axk) (3_%) o(X1, ., Xns Y1, -, Yn) €S™ L (2.18)
k=1 M= =0
where T € 8™, and for all positive integer .

Proof. For ¢, € S(R"), then we have

(o) = [T [C[@ [ [ {15

X (X1, X Y1, Yn)PMW, - Yn)) Ay - dy(, ., X )dXg L di.
Using Eq. (1.9), Eq. (2.16), and Fubini’s theorem on the right-hand side of the above expression, we have

[ Lo o[£

X Kom(X1, .o, X X1 — 21, -, X — Z0) (X1, ..., Xp)dX7 .. dxn) Q(z1,...,20)dz; ... dz,
_ f f Ozt 2T ) 2y - Ay, 219)
where
(T;”Ml’b)(xl,,,.,xn):CMf f {He( Zb ( 20 +2b)}
- % k=1

XKem(z1, ..o znyz1 = X1, 20 = Xn)P(21, . . ., 20)dz1 ... dzy. (2.20)

Using the n-dimensional inverse LCT on the right-hand side of the above expression and applying change
of variables (let us take zx — x = (, fork =1,...,n), we get

HXZ
- 4 2b+ 2; i rk/k}{ f f { + yb)+ Ckb‘/k}
= CM
] w{“ Al

X Kom(er +Ciyeee X+ G oy Cn)dC1...an)be(w,.-.,yn)dyl-.. Yn

— "+ A)+i%
= f f (X1, X Y1 Y)YMY - Yn)dyn - dYs
® k=1

= (Tom) (x1,.-., Xn), (2.21)
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where
- 0 00 n —i ﬁ i /303
T?’(xll"°/xn;y1/"'/yn) = CMf f { e (2h+2b)+ b }
- k=1
Cy)dCy ... dCy. (2.22)

KV,M(xl + Cl/- . -/xn + Cﬂ; Cl/' cy

is again an n-dimensional pseudo-differential operator. Since

X

Therefore, from Eq. (2.21), T;y M

(Ton@, ) = Y (T, ).
r=0

Therefore,
TX1, ey X Y1, Yn) = Z Tr(X1, o Xy Y1se s Yn)s (2.23)
r=0
and
<T6,M(P/ ¢> = <<P, TT,M¢>- (2.24)
Then by Taylor’s formula with the integral remainder given by Eq. (1.10), we get
n CPk Uk
Kim(x1 +Cyevy Xy + G5 Gty .., Gy) = HZ ( ) Kov(xt, ..., x0;Cipenn, G)
k= 1[1k 0
+ Rll(xll"'Ix}’l;C1I"'ICVl)/ (225)
Therefore, from Eq. (2.22), we have
i Hi pa] Hk .
Tr(X1, oo X Y1, oo oy Yn) H Z (i) (8x ) ((9_) (X1, oo X Y1, e Yn)
k= 1[.lk l1 k yk
+ Tll(x1/° . '/x)’l; ]/1/- '-/]/n)/ (226)
where
n i W) i
Tlr](xll"'/xn;ylr'--/yn = CMf f { e " b)+ b }
k=1
X Rj (X1, 20 Chpenn, Go)d Gy . dG (2.27)
For any positive integer 1 > [, the function 7 is given by Eq. (2.23) satisfies
n l)lllk Hk a }lk _
TX1, - X Y1, e Yn) — ( ) (—) (X1, ., X Y1, Yn)

H };) 8xk 8yk

—i)H d \"_

= T(X1/ s Xns Y1, /yn HZ ) (ax ) (a ) a(xl,...,xn;}/l,...,yn)
k=1 =0 k Yk
(2.28)

L-1 Y a 143 a
& e

* HZ [Jk! 8xk s

0
k=1 =l Yk
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Hence,

n 11*1 Y Hi Hk
(=) (i) (i) E(xl,...,xn;yl,...,yn)GS’”_Z. (2.29)

P [Jk! &xk 8yk

From Wong [28, p. 58-59] and for all multi-indices & and f, there exists a constant C, 3 > 0, such that

m—I—|B|
0 n ( 1)““ 0 P»k_ n
(8_xk) (&_l/k) [T_HZ ! (3xk) (ﬁyk) 0]](x1,...,xn;y1,...,yn) < Cap [1+H|yk|) .

k=1 115=0 k=1
(2.30)

Therefore, from Eq. (2.30), we get the desired result as follows

L —1)Hx d ”k_ e
T, e X3 Y1y Y) = HZ( ) (8xk) (9yk) G(X1, - Xu; Y1, -+, Yn) € S

k=1 w=0

0
Theorem 2.5. Let 0 € 8°, then Ty : LF(R") — LF(R") is a bounded linear operator for 1 < p < oo.

Proof. From Eq. (1.7), we have

(Tom®) (xX1,...,xn) = Z(TU,M(p) (x1,..., %)

JER
f f { ) } (xlz---1xn}y11-"ryn)QDM(ylw--/]/n)dyl -~-d]/n/ (231)
® k=1

applying n-dimensional LCT then after n-dimensional inverse LCT on the symbol o(x1,...,Xu; Y1, ..., Yu),
and using Fubini’s theorem, we have

) 00 n faaZ2 a2\
—_— —i| E+5E |HiEE
(Topa@) (X1, .., %) = ch f {He (Zh ”) I}(TA,M(p)(xl,...,xn)d/\l...d/\n. (2.32)
—00 —00 k:1

Since 0 € 8° and from Upadhyay and Dubey [25] for 1 < p < oo, we have

n Il
1+]] |/\k|] lell, - (2.33)

k=1

ITosspl, = Cos

Using Minkowski’s inequality in Eq. (2.32), we obtain
Tameell, < Cor [+ [ [ Tamel|, dAs .. dAs. (2.34)
From Eq. (2.33) and Eq. (2.34), we get

Bl
”TUM(P” <CMCM5U f [1+H|Ak|] da; . .d)\n]

since the last integrals are bounded, therefore we have

, forall1 <p < co.

[Tl < g
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3. Important results of an n-dimensional linear canonical transform

This section has derived some new results of an n-dimensional linear canonical transform in a distribu-
tional sense. In the next section, these new findings become elegant tools for solving generalized partial
differential equations and particular cases in quantum mechanics.

Proposition 3.1. Suppose ¢, € SM(R") and j € Ny, then following results can be obtained

(l) ﬁo:o o LO; ({HZ:l AXk,a,b} (P(xll .- x?’l)) l/)(X1, . xn)dxl o dxn
= [ Lo ) (T AL, 9, x)) du . dx,

(i) T} (Auyn) Kt 1) = (T 22 (Kt 1)

(iii) Lat {(szl ALY e, ,xn)} = (T 22) Luplr, o )W ),

where A* = (% + i%xk) is the adjoint operator of Ay, ap = (aixk - igxk),

xeab
Proof. One can derive this proposition easily by extending (one dimension to n-dimension) results provided
in[4,5]. O

Proposition 3.2. For any function f(Ax, ap,---, Dy, ap) € S(R™), then we have the following result

f(Axl,a,b/ M Axy,,a,b) {H KM(xk/ ]/k)} = f (_%/ . ly” ) {H KM(xk/ ]/k)}
k=1

Proof. As f(Ax ap, .., Dy ap) € S(RY), then f(Ay ap, ..., Ay, qp) can be written in the form of n-dimensional
Taylor’s series expansion about the origin by

71

AL e AL, o
Fopapre s D) = Z Z b s O S0 (3.1)

1 'n 7
e S ox] ...8xn

using Proposition 3.1 (ii) part, we can write

|n| Zoo = A K (x1, yl) AT KM(xn/ yn) a'r‘f(O ...,0)
2 j x1,a,b Xp,a,b ’ 7
J s Axna,b){ e yk)} ) =0 -0 ... ox}'...ox;
lyl iyn
) ) (= &M 0 ., 0 n . ’
- Z Z h ) f( rn) Kyvi(x, yk)} = f(_lzl” - ){l I K (xx, yk)}
r1=0 =0 N =1

O

Lemma 3.3. Forall f(Ay, ap,---, Dy, ap) € S(R), we have

f . f f(Axl,a,b/ ceey Ax,,,ﬂ,b) {H KM(Xk, yk)} (p(xl, . ,xn)dxl v dx,,
f f {H Ku(x, yk)} e A @, X)L di, (3.2)
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Proof. To prove Lemma 3.3, we first start with the left-hand side of Eq. (3.2) as below

[ f(Axl,a,b,...,Ax,,,a,w{HKM@k,yk)}(p(xl,...,xn>dx1...dxn,
—0  Joe k=1

using Eq. (3.1) and Proposition 3.1 (iii) part, we have

o e[ =& (Ar) A;u) MF(,...,0)
ZIM--‘IM{EKM(Xk/]/k)}[Z Z b 7! b axgln_&xzn

r1=0 r,=0

@(x1, ..., xp)dxq ... dxy,.

So, we got the desired result. [

4. Applications

This section uses the n-dimensional linear canonical transform and significant results obtained in the pre-
vious section to solve the initial value problem of n-dimensional Generalized Partial Differential Equations
(n-GPDE) and their particular cases.

4.1. An n-dimensional generalized partial differential equations

The n-dimensional Generalized Partial Differential Equations (n-GPDE) are as follows:

n-GPDE: Al = glf(Ax L AF Yo, D)+ Co, .., 2, t), an

IC: Initial @(x1,...,x,,0) = g(x1,...,%x,), YV (x1,...,x,) €R", t 20,

where A # 0,8 and C are governing parameters of the n-GPDE. Also, Af pand f ( AL b) are
defined in Proposition 3.1, and Eq. (3.1) (where A, 4 is replaced by AY fork=1,2,. , 1), respectively.
Taking n-dimensional LCT on n-GPDE of Eq. (4.1) and using Proposition 3.2, Lemma 3.3, we have

oMY, -+ Yn,t) B iy iy} €
at = ﬁf _T/" 7 b +_ (PM(yll"'/ynlt)'
Therefore,
(PM(ylr-”ryn/ t) = gM(yl/”-/yn) e(%f(ilyTl ///// 7%)+%)t’ (42)

Taking n-dimensional inverse LCT of both sides of Eq. (4.2), we have

ﬂ Zb (Zk 1 k) iy i
e e § i _in
Qx1,..., X, 1) = (an)” f f i} (Ti 1xkyk) ZA-4,.. )) dyi ...dy,

Xf f eiﬁ(zzzlykzk)eiﬁ(zzzlzf)g(zl,...,z,,)dzl...dz,,.

4.2. An n-dimensional generalized time-dependent Schrodinger-type-1 equations in quantum mechanics and their
particular cases

In this section, we have established the n-dimensional generalized time-dependent Schrodinger-type-I
equations in quantum mechanics for one particle with a constant potential and its particular cases while
choosing suitable governing parameters and differential operators.
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If we take the governing parameters as A = ifi, B = —% (where fi = £ is the reduced Planck’s constant
and m is the mass of the particle), and C = V(xy,...,x,) = p # 0 is the constant potential energy influencing

2 2
the particle along with the Laplacian-type-I operator f (AX PEVERRYAN ﬂb) (A; ﬂb) + - (A; ab) in
the n-GPDE as defined in Eq. (4.1), then it reduces to the n-dimensional generalized tlme—dependent

Schrodinger-type-I equations in quantum mechanics for one particle with non-zero constant potential as
follows

L e 00y, ) B2 2
neGPDE ;i) - 2 {(ar ook (a7, bt
+Bp(x1, ..., xu,t), Y (x1,...,x,) €R", >0, (4.3)
IC: Initial p(x1,...,%,,0) = g(x1, ..., %),
where A* = (ai + i%xk) is defined in Proposition 3.1, and taking n-dimensional LCT on n-GPDE of Eq.
kA Xk

(4.3) and using Proposition 3.1, we have

opmY, - s Yur ) in [ ip
ot " 22 Zyi T oMW1, -, Yn, t).
k=1

Therefore,

PV, YD) = gty ., ) el CED)- RN, (4.4)
Taking n-dimensional inverse LCT of both sides of Eq. (4.4), we have

2 (Z 2) 0 iy i no2)_i
(P(xll e, Xn, t) % f e f eIF(Zkzl xkyk)e{_ﬁ(zkzl yk)_#}tdyl . dyn

00 00
X f e f et T na) o5 (Zie %) g(zy, .., 2,)dz, . .. dz,.
-0 —00

Let us assume that Ap(z1,...,2z,) = ei# (Tia ) 9(z1,...,z4), and the setting % = v, then the above expression
becomes

—1 l’ Zh (Zk 1A k) h
Q1. X ) = o Y f f I(Zuw)f(e amf)(vl, o O F (Am(@) (@1, ..., vp)dor . ... doy,
1 7T

where F(f) denotes the Fourier transform of a function f. We have

Qx1,..., %, t)

me —ig te 2b (Z’;: 1 k) 1 0 0 ~(Zn ) 1hx
= I\ Lk=1 XkVk Bmt A e, nd dn
ifi(mt)2 (2n)2 f:oo Iw € F {(e ) ( M(x))} (01 v, )doy v

B s a n 2
—igt —17(2 X 00 00
me ite ™ 2w \Lk=1 % (v o
= — f oy f e '8t (Z":l(xk ) )AM(wl, cee ,wn)dwl ...dw,.
—0

if(mt)2
Hence,
—ift (i 2?)
Qx1, ..., X, t) = e 1;’71(712: u f f _l&‘m (T (ver) )e % (T k)g( ., wp)dwy ... dw,.
If we take the governing parameters as A = ifi, B = —% (where /i = 4- is the reduced Planck’s constant and

m is the mass of the particle), and C = V(xy,...,x,) = = 0 is the constant potential energy influencing the
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2
particle along with the Laplacian-type-I operator f (A: oy B b) (A; . b) +- -+(A: . b) in then-GPDE
as defined in Eq. (4.1), then it reduces to the n-dimensional generahzed time-dependent Schrodinger-type-I
equations in quantum mechanics for one particle with zero potential as follows:

2
n-GPDE : i 200nl) _ _ 12 {(A;M) c+(Ar ) }<p(x1,-..,xn, ),
Y (x1,...,x,) €R", t >0, (4.5)
IC: Initial @(x1,...,%,,0) = g(x1,...,Xp),
where AY = - (aixk + i%xk) is defined in Proposition 3.1. Then the required solutions for Eq. (4.5) are as
follows

D=1 )
P, X ) = me;;(b(tk k)f f et (M)l 5 D gy, .. wy)dwr .. dw,
1 T(

4.3. An n-dimensional generalized time-dependent Schrodinger-type-1I equations in quantum mechanics and their
particular cases

In this section, we have established the n-dimensional generalized time-dependent Schrodinger-type-I1

equations in quantum mechanics for one particle with a constant potential and its particular cases while

choosing suitable governing parameters and differential operators. If we take the governing parameters

as A=ih, B = _M (where 7i = 4= is the reduced Planck’s constant and m is the mass of the particle), and

C=V(xy,...,x;,) = B # 0 is the constant potential energy 1nﬂuenc1ng the particle along with the Laplacian-

type-Il operator f ( cos0,sin 07 7 DY, cos 0,sin 9) = (A; cosOsin s) +- +(Ax” cos O,sin 9) in the n-GPDE as defined
in Eq. (4.1), then it reduces to the n-dimensional generalized time-dependent Schrédinger-type-II equations
in quantum mechanics for one particle with non-zero potential as follows:

L2000, xn ) 2 2 2
n-GPDE : i et = _ 12 {(A;,cose,sme) c+ (A% osme) }(P(xll-..,Xn, )
+Bp(x1, ..., X0, t), Y (x1,...,%,) €ER", £ >0, (4.6)
IC: Initial @(x1,...,%,,0) = g(x1,...,Xp),
where AY o no = ( oy, T ixg cot 9) is defined in Proposition 3.1, and the Laplacian-type-II operator is

cosf sinf

) and 0 # nm, n € Z. Then the
—sinf® cosfO

obtained by considering the entries of the matrix as M = [

required solutions for Eq. (4.6) are as follows

ﬁ cote(z
me it %) o
1, ..., X, t) = 1ﬁ(nt)z f f —igh (T () ol 3% (i 1wf)g(w1,...,wn)dZU1 ...dw,.

If we take the governing parameters as A = ifi, B = —ﬁ (where #i = L& ~ is the reduced Planck’s constant

and m is the mass of the particle), and C = V(x,...,x,) = f = 0 is the constant potential energy influencing

2

the particle along with the Laplacian-type-II operator f ( t cos0,5in0” *+ D% cossin 9) = (A;:1 cos 0.sin 9) +ot
2

(A; 05 O.5in 9) in the n-GPDE as defined in Eq. (4.1), then it reduces to the n-dimensional generalized

time-dependent Schrodinger-type-II equations in quantum mechanics for one particle with zero potential
as follows:

2 2
n-GPDE : ihM:—j—z{(A* L (- )}qo(xl,...,xn,t)

m x1,c08 0,sin 6 Xy,€08 0,sin O

Y (x1,...,x,) €R", £ 20, (4.7)

IC: Initial (x1,...,%,,0) = g(x1,..., %),
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where A* = ( 9y, T ixg cot 9) is defined in Proposition 3.1, and the Laplacian-type-II operator is

Xk,co0s 0,sin 0
cosB® sinf

obtained by considering the entries of the matrix as M = .
—sinf cos0

] and 0 # nm, n € Z. Then the

required solutions for Eq. (4.7) are as follows

cotO(Z ) -
(P(xl/ e Xy t) — k f f o (Zk_l(Xk Wk)z)e Q(Z‘k ! ")!7( .y Wn)dw1 . dZUn.
1h(nt) 2

4.4. An n-dimensional time-dependent Schrodinger equations in quantum mechanics and their particular cases

In this section, we have established the n-dimensional generalized time-dependent Schrédinger equa-
tions in quantum mechanics for one particle with a constant potential and its particular cases while choos-
ing suitable governing parameters and differential operators. If we take the governing parameters as
A=1ihB = —% (where #i = % is the reduced Planck’s constant and m is the mass of the particle), and
C = V(x1,...,x,) = B # 01is the constant potential energy influencing the particle along with the Laplacian

2
operator f ( o1 AF 01) (A; 01) -~-+(A: 01) in the n-GPDE as defined in Eq. (4.1), then it reduces
to the n—dlmensmnal generalized time-dependent Schrodinger equations in quantum mechanics for one
particle with non-zero potential as follows:

n-GPDE :  if2etnl) — _ 2m{(A* )t (A;Ol)}<p(x1,...,xn,t)

X1, 0 1
+Bp(x1, ..., X0, t), YV (x1,...,%,) €ER", £ >0, (4.8)
IC: Initial @(x1,...,%,,0) = g(x1,...,xp),
where AT | = - (%{) is defined in Proposition 3.1, and the Laplacian operator is obtained by considering

0 1

1 0 ] Then the required solutions for Eq. (4.8) are as follows

the entries of the matrix as M = [

(p(xl, e, Xy, t) lh nt) n f f —igh (Zk 1 (—wy) )g(wl wn)dwl

If we take the governing parameters as A = i/, B = —zﬁ—; (where /i = 1 is the reduced Planck’s constant

and m is the mass of the particle), and C = V(xy,...,x,) = f = 0 is the constant potential energy influencing
2

the particle along with the Laplacian operator f (A;‘l 01 A% 1) = (A;1 0 1) : (A; 0 1) in the n-GPDE

as defined in Eq. (4.1), then it reduces to the n-dimensional generalized t1me—dependent Schrodinger
equations in quantum mechanics for one particle with zero potential as follows:

2 0P(X1 s 2
n-GPDE : ifiZztl) - 12 {(A;/O,l) +(ax ) }(p(xl,...,xmt)
V(x1,...,x) €ERY, 20, 4.9)
IC: Initial p(x1,...,x,,0) = g(x1,..., %),
where A7 || = ( ai ) is defined in Proposition 3.1, and the Laplacian operator is obtained by considering

0 1

1 0 ] Then the required solutions for Eq. (4.9) are as follows

the entries of the matrix as M = [

Q1. .., Xn b) = ertmm (Tt gy, w,)daws .
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