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Donoho-Stark’s and Hardy’s uncertainty principles for the short-time
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Abstract. The quaternion offset linear canonical transform (QOLCT) which is time-shifted and frequency-
modulated version of the quaternion linear canonical transform (QLCT) provides a more general framework
of most existing signal processing tools. For the generalized QOLCT, the classical Heisenberg’s and Lieb’s
uncertainty principles have been studied recently. In this paper, we first define the short-time quaternion
offset linear canonical transform (ST-QOLCT) and derive its relationship with the quaternion Fourier trans-
form (QFT). The crux of the paper lies in the generalization of several well known uncertainty principles for
the ST-QOLCT, including Donoho-Stark’s uncertainty principle, Hardy’s uncertainty principle, Beurling’s
uncertainty principle, and Logarithmic uncertainty principle.

1. Introduction

The linear canonical transform (LCT) with four parameters (a, b, c, d) has been generalized to a six parameter
transform (a, b, c, d, p, q) known as offset linear canonical transform (OLCT). Due to the time shifting ‘p’ and
frequency modulation ‘q’ parameters, the OLCT has gained more flexibility over classical LCT. Hence has
found wide applications in image and signal processing. The quaternion offset linear canonical transform
(QOLCT) which is time-shifted and frequency-modulated version of the quaternion linear canonical trans-
form (QLCT) provides a more general framework of most existing signal processing tools. For more details
we refer to [1]-[7] and references therein.

Because of its wide applications in signal analysis, image processing and optics the quaternion offset
linear canonical transform (QOLCT) has attained much universality in recent years. However, the QOLCT
is inadequate for localizing the QOLCT-frequency of non-transient signals, as such, it is indispensable
to introduce an eccentric localized transform coined as the short-time quaternion offset linear canonical
transform (ST-QOLCT), which can effectively reveal the local QOLCT-frequency content of such signals.
The ST-QOLCT enjoys high resolution, provides local Information and eliminates cross terms. The chrip
signals can be better analysed through ST-QOLCT. We refer to [8–11] for more details.

Let us now move to the side of uncertainty inequality. Uncertainty principle was introduced by German
physicists Heisenberg [12] in 1927 which is known as the heart of any signal processing tool. With the
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passage of time researchers further extended the uncertainty principle to different types of new uncertainty
principles associated with the Fourier transform, for instance Heisenberg’s uncertainty principle, Logarith-
mic uncertainty principle, Hardy’s uncertainty principle and Beurling’s uncertainty principle. Later these
uncertainty principles were extended to Quaternion domain. In [13, 14] authors proposed uncertainty prin-
ciples associated with the OLCT and in [15–17] authors establish uncertainty principles for the windowed
linear canonical transform (WLCT) and windowed offset linear canonical transform (WOLCT). Recently,
the uncertainty principles associated with the QOLCT were proposed in [18, 19]. Also Gao and Li [20]
recently developed uncertainty principles for two sided windowed linear canonical transform. Later Bhat
and Dar [21] establish uncertainty principles for 2D Gabor quaternion offset linear canonical transform.
Where as Lieb’s uncertainty principle has been established in [19]. However, Donoho-Stark’s uncertainty
principle, Hardy’s uncertainty principle and Beurling’s uncertainty principle have not been established for
ST-QOLCT. Taking this opportunity, we shall study these uncertainty principles for the ST-QOLCT domain.

The rest of paper is organised as follows. In Section 2, we provide some preliminaries needed for
subsequent sections. In Section 3, we establish a relationship of ST-QOLCT with QOLCT and QFT. In
Section 4, we develop some novel uncertainty principles like Donoho-Stark’s, Hardy’s and Beurling’s.
Finally we establish Logarithmic uncertainty principle using Pitt’s Inequality.

2. Preliminaries

In this section, we collect some basic facts on the quaternion algebra and the QFT, which will be needed
throughout the paper.

2.1. Quaternion algebra
In 1834 W. R. Hamilton introduced quaternion algebra by extension of the complex number to an

associative non-commutative 4D algebra. Denoted by H in his honor where every element of H has a
Cartesian form given by

H =
{
q|q := [q]0 + i[q]1 + j[q]2 + k[q]3, [q]i ∈ R, i = 0, 1, 2, 3

}
(1)

where i, j, k are imaginary units obeying Hamilton’s multiplication rules:

i2 = j2 = k2 = −1, (2)

i j = − ji = k, jk = −kj = i, ki = −ik = j. (3)

Let [q]0 and vec(q) = i[q]1 + j[q]2 + k[q]3 denote the real scalar part and the vector part of quaternion number
q = [q]0 + i[q]1 + j[q]2 + k[q]3, respectively. Then, from [22], the real scalar part has a cyclic multiplication
symmetry

[pql]0 = [qlp]0 = [lpq]0, ∀q, p, l ∈H, (4)

the conjugate of a quaternion q is defined by q = [q]0 − i[q]1 − j[q]2 − k[q]3, and the norm of q ∈H defined as∣∣∣q∣∣∣ = √
qq̄ =

√
[q]2

0 + [q]2
1 + [q]2

2 + [q]2
3. (5)

It is easy to verify that

pq = qp, |qp| = |q||p|, ∀q, p ∈H. (6)

In this paper, we will study the quaternion-valued signal f : R2
→ H, f which can be expressed as

f = f0 + i f1 + j f2 + k f3, with fm : R2
→ R f or m = 0, 1, 2, 3. The quaternion inner product for quaternion

valued signals f , 1 : R2
→H, as follows:

⟨ f , 1⟩ =
∫
R2

f (x) 1 (x)dx (7)
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where x = (x1, x2), f (x) = f (x1, x2), x = dx1dx2, and so on.
Hence, the natural norm is given by

∣∣∣ f ∣∣∣
2
=

√
< f , f > = (

∫
R2

∣∣∣ f (x)
∣∣∣2dx)

1
2

, (8)

and the quaternion module L2(R2, H), is given by

L2(R2, H) = { f : R2
→H,

∣∣∣ f ∣∣∣
2
< ∞}. (9)

Lemma 2.1. If f , 1 ∈ L2(R2,H), then the Cauchy-Schwarz inequality holds[25]∣∣∣⟨ f , 1⟩L2(R2,H)

∣∣∣2 ≤ ∥ f ∥2L2(R2,H)∥1∥
2
L2(R2,H). (10)

If and only if f = i1 for some quaternionic parameter i ∈H, the equality holds.

2.2. The two-sided QFT

The QFT belongs to the family of Clifford Fourier transformations.
It is a generalization of the classical Fourier transform (CFT) [23].Some useful properties, and theorems

of this transform are generalizations of the corresponding properties and theorems of the classical Fourier
transform with some modifications. There are three different types of QFT, the left-sided QFT , the right-
sided QFT, and two-sided QFT [24]. In this paper our focus shall be on two-sided QFT. So from here on by
QFT we mean two-sided quaternion Fourier transform. Let us begin with definition of the two-sided QFT
and provide some properties used in the sequel.

Definition 2.2. (Two-sided QFT.)
For f ∈ L1

(
R2,H

)
the two-sided QFT with respect to unit quaternions i; j is given by

F
i, j[ f ](w) =

∫
R2

e−iw1x1 f (x) e− jw2x2 dt, where x,w ∈ R2. (11)

We define the modulus of F [ f ]i, j as follows :

∣∣∣F i, j[ f ]
∣∣∣ :=

√√
m=3∑
m=0

∣∣∣F i, j [ fm
]∣∣∣2. (12)

Furthermore, we define a new L2-norm of F [ f ] as follows :

∥∥∥F i, j[ f ]
∥∥∥

2
:=

√∫
R2

∣∣∣F i, j [ f
]

(y)
∣∣∣2dy. (13)

Lemma 2.3. (Dilation property)
Let k1, k2 be a positive scalar constants, we have

F
i, j [ f (x1, x2)

] (w1

k1
,

w2

k1

)
= k1k2F

i, j [ f (k1x1, k2x2)
]

(w1,w2) . (14)

we can also write it as

F
i, j [ f (x)

] (w
k

)
= kF i, j [ f (kx)

]
(w) . (15)
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Lemma 2.4. (QFT Plancherel)
Let f ∈ L2(R2,H), then∫

R2

∣∣∣F i, j [ f
]

(w)
∣∣∣2dw = 4π2

∫
R2

∣∣∣ f (x)
∣∣∣2dx. (16)

Lemma 2.5. (Inverse QFT)
If f ∈ L1

(
R2,H

)
, and F i, j[ f ] ∈ L1

(
R2,H

)
, then the two-sided QFT is an invertible transform and its inverse is

given by

f (x) =
1

(2π)2

∫
R2

eiw1x1F
i, j[ f (x)](w)e jw2x2 dw. (17)

2.3. Quaternion offset linear canonical transform (QOLCT)
The quaternion linear canonical transform(QLCT) is a generalization of the linear canonical trans-

form(LCT) firstly defined by Kou, et al. [1, 2] . Later in [3] Hitzer.E generalized the definitions of Kou, etl
to introduce two-sided QLCT. In this paper, we mainly focus on the two-sided QLCT.

Definition 2.6. (Quaternion Linear Canonical Transform.)

Let As =

[
as bs
cs ds

]
∈ R2×2 be a matrix parameter satisfying det(As) = 1, for s = 1, 2. The two-sided QLCT of signal

f ∈ L2
(
R2,H

)
is defined by

LA1,A2 [ f ](w) =
∫
R2

Ki
A1

(x1, ω1) f (x)K j
A2

(x2, ω2)dx, (18)

where w = (ω1, ω2) ∈ R2 is regarded as the QLCT domain, and the kernel signals Ki
A1

(x1, ω1), K j
A2

(x2, ω2) are
respectively given by

Ki
A1

(x1, ω1) :=

 1
√

2πib1
e

i
(

a1
2b1

x2
1−

x1ω1
b1
+

d1
2b1
ω2

1

)
, b1 , 0

√
d1ei c1d1

2 ω2
1δ(x1 − d1w1), b1 = 0

(19)

and

K j
A2

(x2, ω2) :=


1√

2π jb2
e

j
(

a2
2b2

x2
2−

x2ω2
b2
+

d2
2b2
ω2

2

)
, b2 , 0

√
d2e j c2d2

2 ω2
2δ(x2 − d2w2), b2 = 0

(20)

where δ(x) representing the Dirac function.

Here we note that for bs = 0, s = 1, 2 the QLCT of a signal boils down to chirp multiplication operations,
and it is of no particular interest for our objective in this work. So without loss of generality, we set bs , 0
in rest of paper.

Lemma 2.7. Suppose f ∈ L2
(
R2,H

)
, then the inversion of the QLCT of f is given by

f (x) = L−1
A1,A2

[LA1,A2 [ f ]](x)

=

∫
R2

K−i
A1

(x1, ω1)LA1,A2

{
f
}

(w)K− j
A2

(x2, ω2)dw.
(21)

We now generalize the definitions of [4, 5] as follows:
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Definition 2.8. (QOLCT.) Let As =

[
as bs | ps
cs ds | qs

]
, be a matrix parameter such that as, bs, cs, ds, ps, qs ∈

R, bs , 0 and asds − bscs = 1, for s = 1, 2. The two-sided quaternion offset linear canonical transform of any
quaternion valued function f ∈ L2(R2,H), is given by

O
i, j
A1,A2

[
f (x)

]
(w) =

∫
R2

Ki
A1

(x1,w1) f (x) K j
A2

(x2,w2)dx (22)

where x = (x1, x2), w = (w1,w2) and the kernel signals Ki
A1

(x1,w1) and K j
A2

(x2,w2) are respectively given by

Ki
A1

(x1,w1) =
1

√
2πb1i

e
i

2b1

[
a1x2

1−2x1(w1−p1)−2w1(d1p1−b1q1)+d1(w2
1+p2

1)
]
, b1 , 0 (23)

K j
A2

(x2,w2) =
1√

2πb2 j
e

j
2b2

[
a2x2

2−2x2(w2−p2)−2w2(d2p2−b2q2)+d2(w2
2+p2

2)
]
, b2 , 0 (24)

Note: The left-sided and right-sided QOLCT can be defined correspondingly by placing the two above
kernels both on the left or on the right, respectively.

Lemma 2.9. Suppose f ∈ L2(R2,H) then the inversion of two-sided QOLCT is given by

f (x) =
∫
R2

K−i
A1

(x1,w1)Oi, j
A1,A2

[
f
]
(w) K− j

A2
(x2,w2) dw.

Lemma 2.10. (Plancherel for QOLCT) Every two dimensional quaternion valued function f ∈ L2(R2,H) and its
two-sided QOLCT are related to the Plancherel identity in the following way:∥∥∥Oi, j

A1,A2

[
f
]∥∥∥

2
=

∥∥∥ f
∥∥∥

2
. (25)

3. Short-time Quaternion Offset Linear Canonical Transform(ST-QOLCT)

In this section, we shall formally introduce the notion of the two-sided Short-time quaternion offset linear
canonical transform (ST-QOLCT) then establish some properties of the proposed transform.

Definition 3.1. (ST-QOLCT.) Let As =

[
as bs | ps
cs ds | qs

]
, be a matrix parameter such that as, bs, cs, ds, ps,

qs ∈ R, bs , 0 and asds − bscs = 1, for s = 1, 2. The two-sided short-time quaternion offset linear canonical
transform of any quaternion valued function f ∈ L2(R2,H), with respect window function ϕ ∈ L2(R2,H) is given
by

S
H
ϕ,A1,A2

[
f
]
(w,u) =

∫
R2

Ki
A1

(x1,w1) f (x)ϕ(x − u) K j
A2

(x2,w2)dt (26)

where x = (x1, x2), w = (w1,w2), u = (u1,u2) and the quaternion kernels Ki
A1

(x1,w1) and K j
A2

(x2,w2) are given by
equation 2.23 and 2.24 respectively.

Note: It is worth to note that the quaternion ST-OLCT(3.1), boils down to various linear integral transforms
such as:
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• Short-time versions of quaternion linear canonical transform when matrices parameters

As =

[
as bs | 0
cs ds | 0

]
,

• Quaternion short-time fractional Fourier transform when As =

[
cosθ sinθ | 0
− sinθ cosθ | 0

]
,

• Quaternion short-time Fourier transform when As =

[
1 0 | 0
0 1 | 0

]
.

First of all we define the relation between ST-QOLCT and QOLCT, we begin as:
Since bs , 0, s = 1, 2, as in other cases proposed transform reduces to a chrip multiplications. Thus for fixed
u we have

S
H
ϕ,A1,A2

[
f
]
(w,u) = Oi, j

A1,A2

[
f (x)ϕ(x − u)

]
(w) (27)

=

∫
R2

Ki
A1

(x1,w1) f (x)ϕ(x − u) K j
A2

(x2,w2)dx (28)

Applying the inverse QOLCT to (27), we have

fΘu(x) = f (x)ϕ(x − u) = {Oi, j
A1,A2
}
−1

[
S
H
ϕ,A1,A2

[
f
]
(w,u)

]
(x) (29)

=

∫
R2

K−i
A1

(x1,w1)SHϕ,A1,A2

[
f
]
(w,u)K− j

A2
(x2,w2)dw (30)

where fΘu(x) is known as modified signal.

Next we give the relation between two-sided ST-QOLCT and two-sided QFT, for that we have following
lemma. It will be useful for our analysis of the ST-QOLCT.

Lemma 3.2. The two-sided ST-QOLCT(3.1) of a signal f ∈ L2(R2,H) can be reduced to the two-sided QFT(11) as

S
H
ϕ,A1,A2

[
f
]
(w,u) =

1
√

2πib1
ei[− 1

b1
w1(d1p1−b1s1)+

d1
2b1

(w2
1+p2

1)]
F

i, j(h)
(w

b
,u

)
×

1√
2π jb2

e j[− 1
b2

w2(d2p2−b2s2)+ d2
2b2

(w2
2+p2

2)]

where

h(x,u) = ei[ a1
2b1

x2
1+

1
b1

x1p1] fΘu(x)e j[ a2
2b2

x2
2+

1
b2

x2p2] (31)

and b = (b1, b2), F i, j(h) is the QFT of signal h given by (11).

Proof. From the definition of the ST-QOLCT, we have



A. H. Dar, M. Y. Bhat / Filomat 37:14 (2023), 4467–4480 4473

S
H
ϕ,A1,A2

[
f
]
(w,u)

=

∫
R2

Ki
A1

(x1,w1) f (x)ϕ(x − u) K j
A2

(x2,w2)dx

=

∫
R2

1
√

2πb1i
e

i
2b1

[
a1x2

1−2x1(w1−p1)−2w1(d1p1−b1q1)+d1(w2
1+p2

1)
]

f (x)ϕ(x − u)

×e
j

2b2

[
a2x2

2−2x2(w2−p2)−2w2(d2p2−b2q2)+d2(w2
2+p2

2)
]
dx

= 1
√

2πib1
ei[− 1

b1
w1(d1p1−b1s1)+

d1
2b1

(w2
1+p2

1)]
∫
R2

e−i 1
b1

x1w1

(
ei[ a1

2b1
x2

1+
1

b1
x1p1] f (x)ϕ(x − u)

× e j[ a2
2b2

x2
2+

1
b2

x2p2]
)

e− j 1
b2

x2w2 dx 1√
2π jb2

e j[− 1
b2

w2(d2p2−b2s2)+ d2
2b2

(w2
2+p2

2)]

on setting h(x,u) = ei[ a1
2b1

x2
1+

1
b1

x1p1] fΘu(x)e j[ a2
2b2

x2
2+

1
b2

x2p2] in the above equationwe get the desired result.

SHϕ,A1,A2

[
f
]
(w,u) =

1
√

2πib1
ei[− 1

b1
w1(d1p1−b1s1)+

d1
2b1

(w2
1+p2

1)]
F

i, j(h)
(w

b
,u

)
×

1√
2π jb2

e j[− 1
b2

w2(d2p2−b2s2)+ d2
2b2

(w2
2+p2

2)]

3.1. Some properties of ST-QOLCT
Theorem 3.3. Let f , ϕ ∈ L2(R2,H). Then its ST-QOLCT satisfies:
(i)The map f −→ SHϕ,A1,A2

[ f ] is real linear.
(ii)SHϕ,A1,A2

[ f ] is is uniformly continuous and bounded on the time–frequency plane R2
×R2 and satisfies :

|S
H
ϕ,A1,A2

[
f
]
(w,u)| ≤

1

2π
√
|b1b2|

∥ f ∥L2(R2,H)∥ϕ∥L2(R2,H) (32)

Proof. The proof of (i) follows by definition(3.1) and (ii) is proved in ([21], Thm 1).

Theorem 3.4. (Moyal’s formula). Let ϕ,ψ ∈ L2(R2,H) be a fixed non-zero window functions and f , 1 ∈
L2

(
R2,H

)
then〈

S
H
ϕ,A1,A2

[ f ](w,u),SHψ,A1,A2
[1](w,u)

〉
= [

〈
f , 1

〉 〈
ϕ,ψ

〉
] (33)

Proof. The proof is already present in [21].

Consequences of theorem 3.4.

(i) If ϕ = ψ, then

⟨S
H
ϕ,A1,A2

[ f ](w,u),SHϕ,A1,A2
[ f2](w,u)⟩ = ∥ϕ∥2L2(R2,H)⟨ f , 1⟩ (34)

(ii) If f = 1, then

⟨S
H
ϕ,A1,A2

[ f ](w,u),SHψ,A1,A2
[ f ](w,u)⟩ = ⟨ϕ,ψ⟩∥ f ∥2L2(R2,H) (35)
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(iii) If f = 1 and ϕ = ψ, then

⟨S
H
ϕ,A1,A2

[ f ](w,u),SHϕ,A1,A2
[ f ](w,u)⟩ =

∫
R2

∫
R2
|S
H
ϕ,A1,A2

[ f ](w,u)|2dudw = ∥ϕ∥2L2(R2,H)∥ f ∥2L2(R2,H) (36)

Note (36) is known as the energy preserving relation for the proposed ST-QOLCT.

Remark 3.5. (Isometry ). For ∥ϕ∥2L2(R2,H) = 1 (36) reduces to∫
R2

∫
R2
|S

A1,A2
ϕ [ f ](w,u)|2dudw = ∥ f ∥2L2(R2,H) (37)

i.e the proposed ST-QOLCT(3.1) becomes an isometry from L2(R2,H) into L2(R2,H).In other words, the total energy
of a quaternion-valued signal computed in the in the quaternion short-time offset linear canonical domain is equal to
the total energy computed in the spatial domain.

Theorem 3.6. (Reconstruction formula). Every 2D quaternion signal f ∈ L2(R2,H) can be fully reconstructed
by the formula

f (x) =
1
∥ϕ∥2

∫
R2

∫
R2

K−i
A1

(x1,w1)SHϕ,A1,A2
[ f ](w,u)K− j

A2
(x2,w2)ϕ(x − u)dwdu. (38)

Proof. Already proved in [21]

4. Uncertainty principles for the QWLCT

In this section we study several different kinds of uncertainty principles associated with ST-QOLCT.

4.1. Donoho-Stark’s uncertainty principle
In this subsection, according to the relationship between the ST-QOLCT and the QFT, we present a

exquisite uncertainty principle on R2 concerning to the Donoho-Stark’s uncertainty principle. First we
revisit the concept of ϵ− concentrate of a quaternion valued signal on a measurable set M ⊆ R2,. Let us begin
with the following definition.

Definition 4.1. For ϵ ≥ 0, a quaternion valued signal f ∈ L2(R2,H) is said to be ϵ − concentrated on a measurable
set M ⊆ R2, if(∫

R2\M
| f (x)|2dx

) 1
2

≤ ϵ∥ f ∥2 (39)

If 0 ≤ ϵ ≤ 1
2 , then the most of energy is concentrated on M, and M is indeed the essential support of f , if ϵ = 0, then

D is the exact support of f . Similarly, we say that its F i, j is ϵ − concentrated on a measurable set N ⊆ R2, if(∫
R2\N
|F

i, j[ f (x)](w)|2dw
) 1

2

≤ ϵ∥F i, j[ f ]∥2 (40)

Lemma 4.2. (Donoho-Stark’s uncertainty principle for QFT[25]) Let f ∈ L2(R2,H) with f , 0 is ϵM−concentrated
on M ⊆ R2, and F i, j( f ) is ϵN−concentrated on N ⊆ R2. Then

|M||N| ≥ 2π(1 − ϵM − ϵN)2. (41)

where |M| and |N| are the measures of the sets M and N.
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Definition 4.3. Let f , ϕ ∈ L2(R2,H) whereϕ is a non zero window function thenSHϕ,A1,A2
[ f ](w,u) is ϵN−concentrated

on N ⊆ R2, if

(∫
R2

∫
R2\N
|S
H
ϕ,A1,A2

[ f (x)](w,u)|2dwdu
) 1

2

≤ ϵN∥S
H
ϕ,A1,A2

[ f ]∥2 (42)

where ∥SHϕ,A1,A2
[ f ]∥2 =

(∫
R2

∫
R2 |S

H
ϕ,A1,A2

[ f (x)](w,u)|2dwdu
) 1

2

Theorem 4.4. (Donoho-Stark’s uncertainty principle for ST-QOLCT). Let ϕ be the nonzero quaternion win-
dow function and f , 0 be a quaternion signal function in L2(R2,H) is ϵM−concentrated on measurable set M ⊆ R2,
and SHϕ,A1,A2

[ f ](w,u) is ϵN−concentrated on N ⊆ R2. Then

|M||N| ≥ 2πb1b2(1 − ϵM − ϵN)2. (43)

Proof. We have from Lemma(3.2)

SHϕ,A1,A2

[
f
]
(w,u) =

1
√

2πib1
ei[− 1

b1
w1(d1p1−b1s1)+

d1
2b1

(w2
1+p2

1)]
F

i, j(h)
(w

b
,u

)
×

1√
2π jb2

e j[− 1
b2

w2(d2p2−b2s2)+ d2
2b2

(w2
2+p2

2)]

where

h(x,u) = ei[ a1
2b1

x2
1+

1
b1

x1p1] fΘu(x)e j[ a2
2b2

x2
2+

1
b2

x2p2] (44)

For u = x, we have |h(x)| = | f (x)|ϕ(0)| , with |ϕ(0)| > 0, since f is ϵM−concentrated on measurable set M ⊆ R2,
then by definition(4.1) (∫

R2\M
| f (x)|2dx

) 1
2

≤ ϵM∥ f ∥2 ⇒
(∫
R2\M

|h(x)|2dx
) 1

2

≤ ϵM∥ f ∥2

i.e. h(x) is ϵM−concentrated on measurable set M ⊆ R2.

Also it is given that SHϕ,A1,A2
[ f ](w,u) is ϵN−concentrated on N ⊆ R2 and we have |SHϕ,A1,A2

[
f
]
(w,u)| =

|
1

√
2πb1
F

i, j(h)
(

w
b ,u

)
1

√
2πb1
|, which impliesF i, j(h)

(
w
b ,u

)
is ϵN−concentrated on N ⊆ R2, that is to say, isF i, j(h) (w,u)

is ϵN−concentrated on N
b ⊆ R

2. Hence, applying Lemma (4.2) to the function h, we obtain

|M|
∣∣∣∣∣Nb

∣∣∣∣∣ ≥ 2π(1 − ϵM − ϵN)2. (45)

Which gives

|M||N| ≥ 2πb1b2(1 − ϵM − ϵN)2. (46)

which completes the proof.

Corollary 4.5. If fΘu(x) ∈ L2(R2,H), supp fΘu(x) ⊆M and suppSHϕ,A1,A2

[
f
]
(w,u) ⊆ N, then

|M||N| ≥ 2πb. (47)

Proof. It is clear from definition (4.1) that f (x) is 0−concentrated on M iff supp( f ) = M. Therefore if we take
ϵM = ϵN = 0 in theorem (4.4) we get desired result.
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4.2. Hardy’s uncertainty principle
G.H Hardy introduced Hardy’s uncertainty principle[26] in 1933 which is qualitative in nature, it states
that it is impossible for a non zero signal function and its Fourier transform to decrease very rapidly
simultaneously. We first present the Hardy’s UP for the Two-sided QFT[27].

Lemma 4.6. Let α and β are positive constants .Suppose f ∈ L2(R2,H) with

| f (x) | ≤ Ce−α|x|
2
, x ∈ R2. (48)

| F
i, j { f

}
(w) | ≤ C′e−β|w|

2

, w ∈ R2. (49)
for some positive constants C,C′.Then, three cases can occur :

• If αβ > 1
4 , then f = 0.

• If αβ = 1
4 , then f (t) = Ae−α|x|

2
, whit A is a quaternion constant.

• If αβ < 1
4 , then there are infinitely many such functions f .

By using Lemma3.2 and Lemma 4.6 , we derive Hardy’s uncertainty principle for the ST-QOLCT..

Theorem 4.7. Let ϕ ∈ L2(R2,H) be a non zero window function . Suppose f ∈ L2(R2,H) with∣∣∣ f (x)
∣∣∣ ≤ Ce−α|x|

2
, x ∈ R2. (50)∣∣∣∣SHϕ,A1,A2

f (bw + p,u)
∣∣∣∣ ≤ C′e−β|w|

2
, w ∈ R2. (51)

for some constants α, β > 0 and C,C′ are positive constants ,then:

• If αβ > 1
4 , then f = 0.

• If αβ = 1
4 , then f (x) = e−i a1

2b1
x2

1−i 1
b1

x1p1 A
ϕ(0)

e−α|x|
2
e− j a2

2b2
x2

2− j 1
b2

x2p2 , where A is a quaternion constant.

• If αβ < 1
4 , then there are infinitely many f .

Proof. On substituting u = x in (44),we have

h(x) = ei[ a1
2b1

x2
1+

1
b1

x1p1] f (x)ϕ(0)e j[ a2
2b2

x2
2+

1
b2

x2p2]

clearly RHS of above equation belongs to L2(R2,H) and |ϕ(0)| is a positve quantity and

|h(x)| = | f (x)||ϕ(0)| ≤ |ϕ(0)|Ce−α|x|
2
= C1e−α|x|

2
(4.3)

Now applying(3.2) and (51),we have

|F
i, j[h(x)](w)| =

√
b1b2

∣∣∣∣SHϕ,A1,A2
f (bw + p,u)

∣∣∣∣ ≤ √bC0e−β|w|
2

(52)

Therefore, it follows from Lemma4.6 that,
If αβ > 1

4 then h = 0, so f = 0.
If αβ = 1

4 then
f (x) = Ae−α|x|

2
, for some constant A.

Hence

f (t) = e−i a1
2b1

x2
1−i 1

b1
x1p1 A

ϕ(0)
e−α|x|

2
e− j a2

2b2
x2

2− j 1
b2

x2p2 .

If αβ < 1
4 , then there are infinitely many such functions f , that verify (50) and ( (51).

This completes the proof.

It follows from theorem 4.7 that it is impossible for a signal f and its two-sided ST-QOLCT to both decrease
very rapidly.
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4.3. Beurling’s uncertainty principle

Beurling’s uncertainty principle [29], [28] is a mutant of Hardy’s uncertainty principle. The following
Lemma is the Beurling’s uncertainty principle for the Two-sided QOLCT ([18] Cor. 4.7) .

Lemma 4.8. Let f ∈ L2
(
R2,H

)
and d ≥ 0 satisfy

∫
R2

∫
R2

∣∣∣ f (x)
∣∣∣ ∣∣∣∣Oi, j

A1,A2

[
f
]

(w)
∣∣∣∣

(1 + |x| + |w|)d
e|x||w| dxdw < ∞, (53)

Then
f (x) = P(x)e−a|x|2 , a.e.

Where a > 0 and P(x) is a quaternion polynomial of degree < d−2
2 .

In particular, f = 0 a.e. when d ≤ 2.

On the basis of lemma 4.8, we give the Beurlings’ uncertainty principle associated with ST-QOLCT domains.

Theorem 4.9. Let ϕ, f ∈ L2
(
R2,H

)
where ϕ be a non zero quaternion window function and d ≥ 0 satisfy

∫
R2

∫
R2

∣∣∣ f (x)
∣∣∣ |ϕ(x − u)|

∣∣∣∣SHϕ,A1,A2

[
f
]

(w,u)
∣∣∣∣

(1 + |x| + |w|)d
e|x||w| dxdw < ∞ (54)

Then
f (x) = P(x)

ϕ(x−u)
e−a|x|2 , a.e.

Where a > 0 and P is a quaternion polynomial of degree < d−2
2 .

In particular, f = 0 a.e. when d ≤ 2.

Proof. From (29) we have fΘu(x) = f (x)ϕ(x − u) ∈ L2
(
R2,H

)
, it follows that

∫
R2

∫
R2

∣∣∣ fΘu(x)
∣∣∣ ∣∣∣∣Oi, j

A1,A2

[
fΘu(x)

]
(w)

∣∣∣∣
(1 + |x| + |w|)d

e|x||w| dxdw

=

∫
R2

∫
R2

∣∣∣ f (x)
∣∣∣ |ϕ(x − u)|

∣∣∣∣Oi, j
A1,A2

[
fΘu(x)

]
(w)

∣∣∣∣
(1 + |x| + |w|)d

e|x||w| dxdw

=

∫
R2

∫
R2

∣∣∣ f (x)
∣∣∣ |ϕ(x − u)|

∣∣∣∣SHϕ,A1,A2

[
f
]

(w,u)
∣∣∣∣

(1 + |x| + |w|)d
e|x||w| dxw < ∞.

Therefore by Lemma 4.8, we have fΘu(x) = P(x)e−a|x|2 , a.e where a > 0 and P(x) is a quaternion polynomial
of degree < d−2

2 .
i.e. f (x) = P(x)

ϕ(x−u)
e−a|x|2

In particular, f = 0 a.e. when d ≤ 2 on account of fΘu(x) = 0

4.4. Logarithmic uncertainty principle

In this subsection we derive logarithmic uncertainty principle for ST-QOLCT by using Pitt’s inequality
for ST-QOLCT. Prior to that we derive Pitt’s inequality for ST-QOLCT by using the Lemma 3.2 and Pitt’s
inequality for the QFT.
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Lemma 4.10. (Pitt’s inequality for the two-sided QFT [30])
For f ∈ S(R2,H), and 0 ≤ α < 2,∫

R2
|w|−α

∥∥∥F i, j { f (x)
}

(w)
∥∥∥2

dw ≤ Cα

∫
R2
|x|α

∣∣∣ f (x)
∣∣∣2 dx. (55)

With Cα := 4π2

2α [Γ( 2−α
4 )/Γ( 2+α

4 )]2, and Γ (.) is the Gamma function and S(R2,H) denotes the Schwartz space.

Theorem 4.11. (Pitt’s inequality of the ST-QOLCT.)Under the assumptions of lemma 4.10, we have∫
R2

∫
R2
|w|−α|SHϕ,A1,A2

[ f ](w,u)|2dudw ≤
1

4π2|b1b2|
α

Cα∥ϕ∥
2
L2(R2,H)

∫
R2
|x|α|f(x)|2dx, (56)

Proof. By lemma (3.2), we have∫
R2

∫
R2
|w|−α|SHϕ,A1,A2

[ f ](w,u)|2dudw =
1

4π2|b1b1|

∫
R2

∫
R2
|w|−α|F i, j(h)

(w
b
,u

)
|
2dudw

=
1

4π2|b1b1|

∫
R2

∫
R2
|zb|−α|F i, j(h) (z,u) |2|b|dudz

(57)

where last equation is obtained by taking zb = w.

Since h(x,u) = ei[ a1
2b1

x2
1+

1
b1

x1p1] fΘu(x)e j[ a2
2b2

x2
2+

1
b2

x2p2] therefore by applying Lemma 4.10, we obtain from (57)∫
R2

∫
R2
|w|−α|SHϕ,A1,A2

[ f ](w,u)|2dudw ≤
1

4π2|b1b2|
α

Cα

∫
R2

∫
R2
|x|α|h(x)|2dudx

=
1

4π2|b1b2|
α

Cα

∫
R2

∫
R2
|x|α|fΘu(x)|2dudx

=
1

4π2|b1b2|
α

Cα

∫
R2

∫
R2
|x|α| f (x)ϕ((x − u))|2dudx

=
1

4π2|b1b2|
α

Cα

∫
R2
|x|α| f (x)|2

∫
R2
|ϕ((x − u))|2dudx

=
1

4π2|b1b2|
α

Cα∥ϕ∥2
∫
R2
|x|α| f (x)|2dx

Theorem 4.12. (Logarithmic UP for the ST-QOLCT)
Let f , ϕ ∈ S

(
R2,H

)
where ϕ is a non zero window function, then∫

R2

∫
R2

ln( |w|)
∣∣∣∣SHϕ,A1,A2

{
f
}

(w,u)
∣∣∣∣2dwdu +

∥ϕ∥2

4π2

∫
R2

ln (|x|)
∣∣∣ f (x)

∣∣∣2 dx (58)

≥
(A + ln |b1b2|)

4π2 ∥ϕ∥2
∫
R2

∣∣∣ f (x)
∣∣∣2 dx, (59)

with A = ln (2) + Γ′
(

1
2

)
/Γ( 1

2 ).

Proof. Based on Pitt’s inequality, Logarithmic uncertainty principle for the two sided ST-QOLCT can be proved by
taking a functionΨ as

Ψ(α) =
∫
R2

∫
R2
|w|−α|SHϕ,A1,A2

[ f ](w,u)|2dudw −
Dα

|b1b2|
α
∥ϕ∥2L2(R2,H)

∫
R2
|x|α|f(x)|2dx
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where Dα =
Cα
4π2

Implies

Ψ′(α) =
∫
R2

∫
R2
|w|−α ln |w||SHϕ,A1,A2

[ f ](w,u)∥2dudw −D′α∥ϕ∥
2
L2(R2,H)

∫
R2

∣∣∣∣ x
b

∣∣∣∣α |f(x)|2dx

−Dα∥ϕ∥
2
L2(R2,H)

∫
R2

∣∣∣∣ x
b

∣∣∣∣α ln
∣∣∣∣ x
b

∣∣∣∣ | f (x)|2dx

Now following the procedure of theorem 4.11 in [18] we will get desired result.

Remark 4.13. Another way to prove Logarithmic uncertainty principle for the two sided ST-QOLCT is by using
relation between QFT and ST-QOLCT in Logarithmic uncertainty principle for the QFT (see[20] Logarithmic
uncertainty principle for the QWLCT ).

5. Conclusions

In this paper, first we establish a relation between two-sided QFT and two-sided ST-QOLCT. Second, we
established some basic properties of the two-sided ST-QOLCT including the Moyal’s formula which are
proved in [21]. These results are very important for their applications in digital signal and image processing.
Finally, the uncertainty principles for the ST-QOLCT such as Donoho-Stark’s uncertainty principle, Hardy’s
uncertainty principle, Beurling’s uncertainty principle, and Logarithmic uncertainty principle are obtained.
In our future works, we will discuss the physical significance and engineering background of this paper.
Moreover, we will formulate convolution and correlation theorems for the ST-QOLCT.

References

[1] K. I. Kou, Y. O. Jian, J. Morais, On uncertainty principle for quaternionic linear canonical transform. Abstr. Appl. Anal. 2013 1-14
(2013)

[2] X. L. Fan, K. I. Kou, M. S. Liu, Quaternion Wigner-Ville distribution associated with the linear canonical transforms. Signal
Process. 130 129-141 (2017)

[3] E. Hitzer, New Developments in Clifford Fourier Transforms, in N. E. Mastorakis, et al. (eds.), Adv. in Appl. and Pure Math.,
Proc. of the 2014 Int. Conf. on Pure Math., Appl. Math., Comp. Methods (PMAMCM 2014), Santorini, Greece, July 2014, Math.
& Comp. in Sci. & Eng., Vol. 29, 7 pages.

[4] E. Hitzer, Two-Sided Clifford Fourier Transform with Two Square Roots of -1 in Cl(p; q) Adv. Appl. Cliffrd Algebras, 24 (2014),
pp. 313-332, DOI:10.1007/s00006-014-0441-9.

[5] E. Hitzer, S. J. Sangwine, The Orthogonal 2D Planes Split of Quaternions and Steerable Quaternion Fourier Transformations, in E.
Hitzer, S.J. Sangwine (eds.), ”Quaternion and Clifford Fourier transforms and wavelets”, Trends in Mathematics 27, Birkhauser,
Basel, 2013, pp. 15-39. DOI : 10.1007/978 − 3 − 0348 − 0603 − 92, Preprint: http://arxiv.org/abs/1306.2157.

[6] Bhat, M.Y., Dar, A.H, Quaternion Linear Canonical S-Transform and associated uncertainty principles; International Journal of
wavelets, Multiresolution and Information Processing (2022) DOI: 10.1142/S0219691322500357.

[7] Bhat, M. Y., Dar, A. H, Wavelets packets associated with linear canonical transform on spectrum. International Journal of Wavelets
Multiresolution and Information Process. 19(6), Art. 2150030 (2021)

[8] Bhat, M. Y., Dar, A. H, Multiresolution analysis for linear canonical S transform. Advances in Operator Theory 68(6), 1–11 (2021)
[9] Bhat, M. Y., Dar, A. H, Convolution and correlation theorems for Wigner–Ville distribution associated with the quaternion offset

linear canonical transform. Signal, Image and Video Processing 16(2022), 1235-1242. DOI: 10.1007/s11760-021-02074-2.
[10] Bhat, M.Y., Dar, A.H.: Octonion spectrum of 3D short-time LCT signals. Optik - International Journal for Light and Electron

Optics 261 (2022) 169156.
[11] Bhat, M.Y., Dar, A.H., The 2-D Hyper-complex Gabor Quadratic-Phase Fourier Transform and Uncertainty Principles, J.

Anal.(2022) https://doi.org/10.1007/s41478-022-00445-7.
[12] Heisenberg W. Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift fur Physik. 1927;

43(3): 172–198.
[13] Stern A. Sampling of compact signals in offset linear canonical transform domains. Signal, Image and Video Processing. 2007;

1(4): 359–367.
[14] Huo H. Uncertainty principles for the offset linear canonical transform. Circuits, Systems, and Signal Processing. 2019; 38(1):

395–406.



A. H. Dar, M. Y. Bhat / Filomat 37:14 (2023), 4467–4480 4480

[15] Kou KI, Xu RH, Zhang YH. Paley–Wiener theorems and uncertainty principles for the windowed linear canonical transform.
Mathematical Methods in the Applied Sciences. 2012; 35(17): 2122–2132.

[16] Bahri M, Ashino R. Some properties of windowed linear canonical transform and its logarithmic uncertainty principle. Interna-
tional Journal of Wavelets, Multiresolution and Information Processing. 2016; 14(3): 1650015.

[17] Biao et al. Uncertainty principles for the windowed offset linear canonical transform.
[18] Haoui El.Y, Hitzer E. Generalized uncertainty principles associated with the quaternionic offset linear canonical trans-

form.Complex variables and elliptic equations DOI: 10.1080/17476933.2021.1916919 (2021).
[19] Zhu X., Zheng X.: Uncertainty principles for the two-sided offset quaternion linear canonical transform.Mathematical Methods

in the Applied Sciences DOI: 10.1002/mma.7692
[20] Gao W.B, Li B.Z :Uncertainty principle for the two-sided quaternion windowed linear canonical transform. Circuits Systems and

Signal Processing.DOI: 10.1007/s00034-021-01841-3(2021)
[21] Bhat, M. Y., Dar, A. H, The algebra of 2D Gabor quaternionic offset linear canonical transform and uncertainty principles.The

journal of Analysis, https://doi.org/10.1007/s41478-021-00364-z (2021).
[22] G. L. Xu, X. T. Wang, X. G. Xu, Uncertainty inequalities for linear canonical transform. IET Signal Process. 3 (5) 392-402 (2009)
[23] T.A. Ell, Quaternion-Fourier transfotms for analysis of two-dimensional linear time-invariant partial differential systems. In:

Proceeding of the 32nd Conference on Decision and Control, San Antonio, Texas, pp. 1830-1841 (1993).
[24] S.C. Pei, J.J. Ding, J.H. Chang, Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D

complex FFT. IEEE Trans. Signal Process. 49(11), pp. 2783-2797 (2001).
[25] L. P. Chen, K. I. Kou, M. S. Liu, Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform.

J. Math. Anal. Appl. 423 (1) 681-700 (2015)
[26] G.H. Hardy, A theorem concerning Fourier transform, J. London Math. Soc. 8 (1933), pp. 227-231.
[27] Haoui YE, Fahlaoui S. The uncertainty principle for the two-sided quaternion Fourier transform. Mediterr J Math. 2017; 14(6):

221
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