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Abstract. In this study, we give the monotonicity of the Bernstein-Chlodowsky max product operator.
Then, we introduce Bernstein-Chlodowsky-Kantorovich operators of max-product type and obtain this
operator preserves quasi-concavity. Also, we give some approximation properties of Lipschitz functions
by max-product kind of Bernstein-Chlodowsky-Kantorovich operators.

1. Introduction

The properties of approximation for linear positive operators especially Bernstein operators have a
significant impact on the approximation theory ([20]-[24]). Bernstein operators and its generalizations
have an substantial role in Computer-Aided Geometric Design (CAGD) to introduce surfaces and curves
and have been investigated in many papers (see [17]-[19]). The numerical solution of partial differential
equations, CAGD, 3D modeling and font design are some areas of application.

In recent years, positive nonlinear operators have been introduced instead of positive linear operators.
These nonlinear operators have better approximation behavior to the linear operator. The nonlinear positive
operators introduced by Bede et al. in [1]. In ([1]-[16]) ”max-product type operators” were introduced by
using maximum on the behalf of sum in usual linear operators and gave Jackson-type error estimate
according to modulus of continuity. Since max-product kind of approximation theory is a very rich and
useful phenomena of approximating continuous functions, researchers have turned to this new field in
recent years. The max-product sampling type operators, the neural network max-product type operators,
and several others have been studied ([25]-[28]). In [29], the authors showed that the Bernstein operators
of max-product type can convenient in approximating fuzzy numbers.

In this study, our aim is that max-product kind Bernstein-Chlodowsky operator preserves quasi-
concavity, firstly. Then, we give the construction of max-product Bernstein-Chlodowsky operators of
Kantorovich type. Also, we obtain quantitative approximation conclusions in the uniform norm and give
some shape preserving properties.
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2. Preliminaries

Here, it is emphasized some general notations about the nonlinear operators of maximum product
(max-product) kind. We handle the operations

∨
and ·which means is maximum and product respectively.

Then (R+,
∨

, ·) is called Max-Product algebra over the set of positive reals, has a semiring structure and
it is called as. Let A ⊂ R be a bounded or unbounded interval, and CB+(A) be a space of continuous and
bounded functions on A. The general form of max product approximation operator Ln : CB+(A) → CB+(A)
defined as follows:

L(M)
n

(
f
)

(x) =

∨
k∈An
℘n,k(x) · f (xn,k)∨
k∈An
℘n,k(x)

(1)

where n ∈N, f ∈ CB+(A) and xk ∈ A, for all k, finite or infinite families of indices are An. These operators are
nonlinear, positive operators and satisfy a pseudo linearity condition of the form

L(M)
n (ρ · r ∨ ϱ · s)(x) = ρ · L(M)

n (r)(x) ∨ ϱ · L(M)
n (s)(x),∀ρ, ϱ ∈ R+ and r, s : A→ R+.

In order to give some properties of the operators L(M)
n , we present the following auxiliary Lemma.

Lemma 2.1. ([2]) Let us take A ⊂ R and L(M)
n : CB+(A) → CB+(A), n ∈ N be a sequence of operators satisfying the

following properties :

i. (Monotonicity) If r, s ∈ CB+(A) provide r ≤ s then L(M)
n (r) ≤ L(M)

n (s) for all n ∈N ;

ii. (Subadditivity)If L(M)
n (r + s) ≤ L(M)

n (r) + L(M)
n (s) for all r, s ∈ CB+(I),

then we get

|L(M)
n (r)(x) − L(M)

n (s)(x)| ≤ L(M)
n (|r − s|)(x),

for all r, s ∈ CB+(A), n ∈N and x ∈ A.

Remark 2.2. Max-product operators defined by (1) verify the conditions in Lemma 2.1, (i), (ii). In fact, instead of (i)
it satisfies the stronger condition

L(M)
n (r ∨ s)(x) = L(M)

n (r)(x) ∨ L(M)
n (s)(x), r, s ∈ CB+(A).

Actually, taking in the above equality r ≤ s, r, s ∈ CB+(A), it easily follows L(M)
n (r)(x) ≤ L(M)

n (s)(x).
Furthermore, the operators of max-product type is positive homogenous, that is L(M)

n (λr) = λL(M)
n (r) for all λ ≥ 0.

Corollary 2.3. ([2]) Let L(M)
n : CB+(A) → CB+(A), n ∈ N be a sequence of operators providing the circumstances

(i)-(ii) in Lemma 2.1 and in addition be a positive homogenous operator. Then for all r ∈ CB+(A), n ∈ N and x ∈ A
we have

| f (x) − L(M)
n (r)(x)| ≤

[1
δ

L(M)
n (φx)(x) + L(M)

n (e0)(x)
]
ω1(r; δ)I + r(x) ·

∣∣∣L(M)
n (e0)(x) − 1

∣∣∣ ,
where δ > 0, e0(t) = 1 for all t ∈ I, φx(t) = |t − x| for all t ∈ A, x ∈ A. Here, ω1(r; δ)A = max x,y∈A

|x−y|≤δ
|r(x) − r(y)| is the

first modulus of continuity. If A is unbounded interval then we suppose that there exists L(M)
n (φx)(x) ∈ R+

⋃
{+∞},

for any x ∈ A,n ∈N.

Corollary 2.4. ([2]) Assume that in addition to the conditions in Corollary 2.2, the sequence (L(M)
n )n satisfies

L(M)
n (e0) = e0, for all n ∈N. Then for all f ∈ CB+(I), n ∈N and x ∈ A we have

|r(x) − L(M)
n (r)(x)| ≤

[
1 +

1
δ

L(M)
n (φx)(x)

]
ω1(r; δ)I.
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In [8], authors defined Kantorovich variant of each max-product operator L(M)
n ( f ) as follows:

LK(M)
n

(
f
)

(x) =

∨
k∈An
℘n,k(x) ·

(
1/(xn,k+1 − xn,k)

)
·

∫ xn,k+1

xn,k
f (t)dt∨

k∈An
℘n,k(x)

. (2)

In that paper, the authors presented that Kantorovich type of various max-product operators are subad-
ditive, monotone and positively homogenous, also proved that quantitative estimates, shape preserving
properties and localization results for these operators. Here, we want to present structure of Bernstein-
Chlodowsky-Kantorovich operators of max-product kind and obtain quantitative approximation results.
But, firstly we need some consequences about Bernstein-Chlodowsky max-product operators.

In the paper [12], it was proved that the C(M)
n ( f ) max-product operator preserves the quasi-convexity. In

the following theorem, we want to determine the monotonicity of C(M)
n ( f ) on [0, bn] as we will need some

results for the following theorems.

Theorem 2.5. Let us take the function f : [0, bn] → R+ and let us fix n ∈ N, n ≥ 1. Now, we assume that there
exists c ∈ [0, bn] such that f is non-decreasing on [0, c] and non-increasing on [c, bn]. Then, there exists c′ ∈ [0, bn]
such that C(M)

n ( f ) is non-decreasing on [0, c′] and non-increasing on [c′, bn]. We have also | c − c′ |≤ bn
n+1 and

| C(M)
n

(
f
)

(c) − f (c) |≤ ω1

(
f ; bn

n+1

)
.

Proof. For the proof, we will show that the monotonicity on each interval of the form
[
bn

j
n+1 , bn

j+1
n+1

]
, j ∈

{0, 1, · · · ,n} . Let us take jc ∈ {0, 1, · · · ,n} such that c ∈
[
bn

jc
n+1 , bn

jc+1
n+1

]
. Then, we will be able to determine the

monotonicity of C(M)
n ( f ) on [0, bn] by the continuity of C(M)

n ( f ).
Let us choose arbitrary j ∈

{
0, 1, · · · , jc − 1

}
and x ∈

[
bn

j
n+1 , bn

j+1
n+1

]
. Using the monotonicity of f , we have

f
(
bn

j
n

)
≥ f

(
bn

j−1
n

)
≥ · · · ≥ f (0). By Lemma3 in [12], it is easy to see that f j,n, j(x) ≥ f j−1,n, j(x) ≥ · · · ≥ f0,n, j(x).

Then we can say that C(M)
n

(
f
)

(x) =
∨n

k= j fk,n, j(x). Because C(M)
n

(
f
)

is defined as the maximum of non-

decreasing functions, it follows that it is non-decreasing on
[
bn

j
n+1 , bn

j+1
n+1

]
. Considering the continuity

of C(M)
n

(
f
)
, f is non-decreasing on

[
0, bn

jc+1
n+1

]
. Let us consider arbitrary j ∈

{
jc + 1, jc + 2, · · · ,n

}
and x ∈[

bn
j

n+1 , bn
j+1
n+1

]
. By the monotonicity of f , we get f

(
bn

j
n

)
≥ f

(
bn

j+1
n

)
≥ · · · ≥ f (1). By Lemma3 in [12], it is

easy to see that f j,n, j(x) ≥ f j+1,n, j(x) ≥ · · · ≥ fn,n, j(x). Then, we can say that C(M)
n

(
f
)

(x) =
∨ j

k=0 fk,n, j(x).Because
C(M)

n
(

f
)

is defined as the maximum of non-increasing functions, it follows that it is non-increasing on[
bn

j
n+1 , bn

j+1
n+1

]
. Considering the continuity of C(M)

n
(

f
)
, f is non-increasing on

[
bn

jc+1
n+1 , bn

]
.

Let us evaluate the case j = jc. If bn
j
n ≤ c, then by the monotonicity of f it follows that f

(
bn

jc
n

)
≥

f
(
bn

jc−1
n

)
≥ · · · ≥ f (0) . Hence, in this case we get that f is non-decreasing on

[
bn

jc
n+1 , bn

jc+1
n+1

]
. It follows

that f is non-decreasing on
[
0, bn

jc+1
n+1

]
and non-increasing on

[
bn

jc+1
n+1 , bn

]
. Also, c′ = jc+1

n+1 is the maximum

point of C(M)
n ( f ) and | c − c′ |≤ bn

n+1 . If bn
j
n ≥ c, then by the monotonicity of f it follows that f

(
bn

jc
n

)
≥

f
(
bn

jc+1
n

)
≥ · · · ≥ f (1) . Hence, in this case we get that f is non-increasing on

[
bn

jc
n+1 , bn

jc+1
n+1

]
. It follows that

f is non-decreasing on
[
0, bn

jc
n+1

]
and non-increasing on

[
bn

jc
n+1 , bn

]
. Also, c′ = jc

n+1 is the maximum point of

C(M)
n ( f ) and | c − c′ |≤ bn

n+1 .

Now,let take into account that C(M)
n (x) ≤ f (c) for all x ∈ [0, bn]. Actually, this is by the description of

C(M)
n ( f ) and according to c is the global maximum point of f . Therefore, we have

| C(M)
n

(
f
)

(c) − f (c) |= f (c) − C(M)
n

(
f
)

(c) = f (c) −
n∨

k=0

fk,n, j(c)

≤ f (c) − f jc,n, jc (c) = f (c) − f
(
bn

jc
n

)
.

(3)
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As c, bn
jc
n ∈

[
bn

jc
n+1 , bn

jc+1
n+1

]
, we can obtain f (c) − f

(
bn

jc
n

)
≤ ω1

(
f ; 1

n+1

)
.

Now, let us construct of max-product kind Bernstein-Chlodowsky operators of Kantorovich type as
follows;

CK(M)
n ( f )(x) =

∨n
k=0 sn,k(x) n

bn

∫ bn (k+1)
n

bnk
n

f (t)dt∨n
k=0 sn,k(x)

(4)

with

sn,k(x) =
(
n
k

) ( x
bn

)k (
1 −

x
bn

)n−k
,

where x ∈ [0, bn] and (bn) is a sequence of positive real numbers such that limn→∞ bn = ∞, and limn→∞
bn

n
= 0.

3. Shape preserving properties

Here, we give some shape preserving properties by the Bernstein-Chlodowsky-Kantorovich operators
CK(M)

n .

Theorem 3.1. For f ∈ C+ ([0, bn]),

1. Let f is non-decreasing (non-increasing) on [0, bn] then for ∀n ∈N CK(M)
n is non-decreasing (non-increasing)

on [0, bn],
2. Let f is quasi-convex on [0, bn] then ∀n ∈N CK(M)

n is quasi-convex on [0, bn].

Proof. (1) Since we have LK(M)
n given in (2), we can write CK(M)

n as follows;

CK(M)
n ( f )(x) =

∨n
k=0

(n
k
) ( x

bn

)k (
1 − x

bn

)n−k
f (ξn,k)∨n

k=0
(n

k
) ( x

bn

)k (
1 − x

bn

)n−k
,

where ξn,k ∈ (xn,k, xn,k+1) for all k = 0, · · · ,n. Taking into account the proofs of the paper [12] for the Bernstein-
Chlodowsky max-product operators, Bernstein-Chlodowsky-Kantorovich operators proofs will be based
on the following functions properties

fk,n, j(x) =

(n
k
)(n

j
) · ( x

bn − x

)k− j
f (ξn,k).

From [12] in Shape-Preserving properties section,one can see that the functions act identically for the
function fk,n, j(x). Therefore, one can get the required results.

(2) Because of Corollary 4 in [12], the properties from the previous condition (i), we can obtain the
desired result.

Now, we will present that Bernstein-Chlodowsky-Kantorovich operators CK(M)
n preserves quasi-concavity.

This qualification is provided for the operator C(M)
n in [12]. Since it is difficult to apply this proof to the

Kantorovich variant, it is planned to find a direct relationship between these two operators and preserve
quasi-concavity property.

Let us take the arbitrary function f ∈ C+ ([0, bn]) and consider

fn(x) =
x
bn

∫ (nx+bn)/(n+1)

nx/(n+1)
f (t)dt. (5)
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Hence, the operator CK(M)
n can be introduced from the operator C(M)

n . In other words, we can write
C(M)

n ( fn)(x) = CK(M)
n ( f )(x) for all x ∈ [0, bn]. Here, fn ∈ C+ ([0, bn]) and when f is strictly positive then so is fn.

A function f : [α, β] → R is quasi-concave when f is quasi-convex. Once f is continuous, quasi-concavity
equivalently means that there exists c ∈ [α, β] such that f is non-decreasing on [α, c] and non-increasing on
[c, β].

Now, let us show that the operator CK(M)
n preserves quasi-concavity.

Theorem 3.2. Let the function f : [0, bn] → R+ is continuous and quasi-concave on [0, bn] then CK(M)
n ( f ) is

quasi-concave on [0, bn], for all n ∈N.

Proof. Let us take the function fn defined in 5 and take c ∈ [0, 1] such that f is non-decreasing on [0, c] and
non-increasing on [c, 1]. Then, let j(c) ∈ {0, ...,n} such that bn j(c)

n+1 ≤ c ≤ bn( j(c)+1)
n+1 .

Now, we evaluate the function hn which interpolates fn at all knots kbn
n ,k = 0, 1, · · · ,n and which is

contiuous on [0, bn] and affine on any interval
[

kbn
n ,

(k+1)bn
n

]
. It means that hn is the continuous polygonal line

which interpolates fn at all the knots kbn
n , k = 0, 1, · · · ,n. It means that

C(M)
n ( fn)(x) = C(M)

n (hn)(x), x ∈ [0, bn],

therefore we get
CK(M)

n ( f )(x) = C(M)
n (hn)(x), x ∈ [0, bn].

Let us take 0 ≤ k1 < k2 ≤ j(c) − 1.We get

hn

(
k1

bn

n

)
=

n + 1
bn

∫ (k1+1) bn
n+1

k1
bn

n+1

f (t)dt,

hn

(
k2

bn

n

)
=

n + 1
bn

∫ (k2+1) bn
n+1

k2
bn

n+1

f (t)dt.

As k1+1
n+1 ≤

k2
n+1 and f is increasing on

[
0, (k2 + 1) bn

n+1

]
, we get hn

(
k1

bn
n

)
≤ hn

(
k2

bn
n

)
by applying the mean

value theorem. The description of hn implies that hn is increasing on
[
0, j(c)−1

n bn

]
. Similarly, we also get hn is

decreasing on
[ j(c)+1

n bn, bn

]
. Now, let us assume that f

( j(c)bn

n+1

)
≥ f

( ( j(c)+1)bn

n+1

)
. As f is a quasi-concav function,

f (x) ≥ f
(
( j(c) + 1) bn

n+1

)
for any x ∈

[
j(c) bn

n+1 , ( j(c) + 1) bn
n+1

]
. Because there exists x0 ∈

[
j(c) bn

n+1 , ( j(c) + 1) bn
n+1

]
such that

n
bn

∫ ( j(c)+1)bn/n

j(c)bn/n
= f (x0) = hn

(
j(c)

bn

n

)
,

and taking into account that f is increasing on
[
( j(c) + 1) bn

n , bn

]
we obtain f

( ( j(c)+1)bn

n+1

)
≥ hn

( ( j(c)+1)bn

n

)
. Then

we have hn is decreasing on
[
j(c) bn

n , ( j(c) + 1) bn
n

]
. But f is affine on

[ ( j(c)−1)bn

n ,
j(c)bn

n

]
. This implies that hn is

either increasing on
[
0, ( j(c)−1)bn

n

]
and decreasing on

[ ( j(c)−1)bn

n , bn

]
or it is increasing on

[
0, j(c)bn

n

]
and decreasing

on
[ j(c)bn

n , bn

]
. It means that hn is quasi-concave on [0, bn] .When f

( j(c)bn

n+1

)
≤ f

( ( j(c)+1)bn

n+1

)
, we obtain the same

results by similar reasoning. By [12], one can easily see that C(M)
n (hn) is quasi-concave on [0, bn]. Since

C(M)
n (hn) = CK(M)

n ( f ), it follows that CK(M)
n ( f ) is quasi-concave on [0, bn].

Now,we obtain an upper bound for the approximation of f by the uniform norm with fn by taking into
account the function fn given in 5. For some x ∈ [o, bn], there exists ξx ∈

[
nx

n+1 ,
nx+bn
n+1

]
such that fn(x) = f (ξx)

by using mean value theorem. We can easily see that | ξx − x |≤ bn
n+1 that means

| f (x) − fn(x) |≤ ω1
(

f ; bn/(n + 1)
)
, x ∈ R, n ∈N. (6)
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In the following theorem, we present the order of approximation bn/n in the approximation by the
operator CK(M)

n for the class of Lipschitz function, hence a similar conclusion which holds for the operator
C(M)

n .

Theorem 3.3. Let us take f is Lipschitz on [0, bn] with Lipschitz constant C and assume that m f > 0 is the lower
bound of f . Then, we obtain

∥ CK(M)
n ( f ) − f ∥≤ 2C

(
C

m f
+ 5

)
bn

n
, n ≥ 1.

Proof. The proof is easily seen from [12], the authors give the result that when f ∈ C+ ([0, bn]) is concave
on [0, bn], then they get | CK(M)

n
(

f
)

(x) − f (x) |≤ 2ω1

(
f ; bn

n

)
and by the estimation the above result and also

taking into account that ω1

(
f ; bn

n

)
≤ C. bn

n .
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