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An L-fuzzy rough set model based on L-double fuzzy generalized
neighborhood systems
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Abstract. In this paper, we consider a commutative quantale L as the truth value table to introduce the
notion of L-double fuzzy generalized neighborhood (L-DFGN for short) systems. Inaddition, we specify and
study a pair of L-double rough approximation operators based on L-DFGN systems. Moreover, we study
and characterize the related L-double rough approximation (L-DRApprox for short) operators when the
L-DFGN system satisfies the conditions of seriality, reflexivity, transitivity, and being unary, respectively.
Furthermore, we define and study the measure of L-DRApprox, which characterizes the quality of the
obtained approximation. Finally, we interpret the operators of double measures of L-double fuzzy lower

and upper approximation as an L-double fuzzy topology and an L-double fuzzy co-topology on a set X,
respectively.

1. Introduction

Pawlak [33, 34] established the rough set theory, which is an important technique that deals with inexact,
ambiguous, or uncertain data. It's been used in a variety of fields like machine learning, knowledge
discovery, data mining, expert systems, pattern recognition, granular computing, graph theory, algebraic
systems, and partially ordered sets [9, 16, 18, 25, 35, 43].

The majority of rough-set studies and their beginnings have focused on constructive techniques. Equiv-
alence relation was a strict condition and primitive concept in Pawlak’s rough set model [32]. Thus, the
classical rough model has been extended to include binary relations [8, 60, 61] and coverings [52, 54, 59]
and generalized neighborhood systems [54, 57].

According to the development of fuzzy mathematics, the concept of Pawlak’s rough set models has
been generalized to a fuzzy environment. Dubois and Prade [15] firstly proposed fuzzy generalizations of
rough sets. Several authors have studied the generalization of rough sets; for instance, Radzikowska and
Kerre [38] examined fuzzy rough sets models based on L-fuzzy relations.

The notion of L-fuzzy generalized neighborhood (L-FGN for short) systems was offered in [56]. It was
shown that the L-FGN systems based on approximation operators included the notions of generalized
neighborhood system [48, 54, 57] (resp., L-fuzzy relation [22, 44] and L-fuzzy covering [28, 29]) based
approximation operators as their special cases.
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Recently, there has been an increased interest in studying the link between fuzzy rough sets and L-
topology [23, 36,49, 53]. In 2014, Sostak [46] proposed an interpretation of measures of rough approximation
based on transitive, and reflexive L-relation in terms of L-fuzzy topologies [26, 47].

On the other hand, the notion of an intuitionistic fuzzy set [2, 3] appeared as a useful tool for dealing
with imprecise, and imperfect data. One of the most important applications of intuitionistic fuzzy is the
area of multi-attribute decision making (see [30, 50, 51]). Combining intuitionistic fuzzy set theory and
rough set theory could be a fascinating field worth further investigation. Concerning this subject, some
studies have already been done [24, 37, 41]. Coker [12], for example, was the first to establish a link between
intuitionistic fuzzy set theory and the theory of rough set, demonstrating that a fuzzy rough set was actually
an intuitionistic L-fuzzy set.

Using intuitionistic (which is named L-double [19]) fuzzy sets, Coker and his colleagues [11, 13] es-
tablished the notion of intuitionistic fuzzy topology. As a generalization of L-fuzzy topology [47] and
intuitionistic fuzzy topology [11], Samanta and Mondal [31] developed the notion of intuitionistic grada-
tion of openness (which is called L-double fuzzy topology [19]).

In 2016, as L is a completely distributive lattice with an order reversing involution * : L — L, Abd
el-Latif and A. Ramadan [1] used the notion of Goguen L-fuzzy sets [21] to define the concept of L-double
relation, and they used it as a tool to define and study L-double fuzzy rough set models. Recently, there
have been some other generalized fuzzy neighborhood system-base rough sets, for example [17, 27].

In this paper, assuming that L is a commutative quantale, we propose the notion of L-DFGN systems as a
generalization of L-FGN systems [55, 56] and then a pair of L-double rough approximation operators based
on it and study some of the properties. Also, it is illustrated that L-double relation-based approximation
operators [1] can be considered as special L-DFGN system-based approximation operators. Finally, we
interpret the operators of double measures of L-double fuzzy lower and upper approximation as an L-
double fuzzy topology and an L-double fuzzy co-topology on a set X, respectively.

The following is a description of the paper’s structure. Some concepts and results from this study are
reviewed in Section 2. In Section 3, we define the concept of L-DFGN systems and utilize it to introduce a
pair of L-double rough approximation operators and study some of their properties. In Section 4, through
the constructive approach, we study and characterize the related L-DRApprox operators when the L-DFGN
system is seriality, reflexivity, transitivity, and unary, respectively. Also, we define the double measure of L-
DRApprox, which characterizes the quality of the obtained approximation. Accordingly some properties of
such double measures are established. In Section 5, from L-DRApprox operators, we generate the concepts
of L-double fuzzy topology and L-double fuzzy co-topology, respectively.

2. Preliminaries

A complete lattice (L, <, \/, A\, T1, L) endowed with a binary operation ® : L X L — L and denoted by
a semi-quantale L = (L, <, ®) [39]. Also, we called
(1) L is a unital [39] when ® has elemente € L, withe®u = u®e = u, Yu € L. If e = T is defined to be a
strictly two-sided (st-s for short) semi-quantale.
(2) L is a commutative [39] when u® v =v®u, Yu,v € L.
(3) L is a quantale [40] when ® is a associative and

u®(Vo)=Vwuev)and (Vov)ou=\(v;®u)foralluel,{v;:je ]} CL.
j€l j€l j€l j€l

In a commutative quantale (L, <, ®) the function # ® (=) : L — L has a right adjointu — (=) : L — L
specified by u = v = \/{c: u®c < v}. The residual —: L X L — L fulfilling the next axiom

URU<cou<v-—-c

Now, L is always taken to be a commutative quantale with the double negation law through this paper,
unless otherwise stated.
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Suppose that X is a non-empty set and L is a semi-quantale. The family of all L- subsets on X denoted
by LX. The smallest and largest elements in LX are denoted by L and T, respectively. The operators ®, \/, —
on L can be interpreted onto L* in a pointed wise as follows:

(A®B)(x) = A(x) ® B(x),x € X,

(VANE) =V Aj(),

i€l jel
(A = B)(x) = A(x) — B(x),
where A, B, A; € L*. One can see that (L%, ®, /) is a semi-quantale.
Lemma 2.1. [5, 7, 20, 40, 45] For all u,v,w € L and {u;,v; : j € J} C L, the next properties are achieved:
1D u®u—-v)<v,andv<u— (UQV);
(2) If (L, £,®) is st-s, then u — v = T, whenever u < v;
(©) (\/je] vj) DW= /\je](vj - w);
(@) u— (Njggvj) = Njgg(u = v)), and u ® (N\j;vj) < N\jeg(u ®v;);
B)u(v-w)<v—- (UwW);
6) Vje(u—=vp) <u—(Vigo)),
() (\/je] uj)®v = \/je](uj ®0);
(8) /\je](uj —0j) < (\/je] uj) — (\/je] v;) and /\je](uj —7vj) < (/\je] uj) — (/\je] 0)).
L is said to fulfill the double negation if
u—>1)—> L=uVuel.
Additionally, we denote u @ v = =(—u ® —v) for every u,v € L, where —u is used to denote u — L.

Proposition 2.2. [14] For all u,v € L and {u; : j € |} C L, the next properties are achieved by satisfying the law of
double negation:

1) u—>v=-(u®-v);

(2) u— (~v) =v = (-u);
3) ~(V jo uj) = Aoy ~();
(4) u < vimplies —v < —u.

The subsethood degree S : LX X LX — L [6] and the intersection degree T : LX x LX — L [10], of any two
L-subsets P,Q € L¥, are given by

S(P,Q) = Awex(P(x) = Q(x)) and T(P, Q) = XYX(P(x) ® Q(x)),
respectively.
Lemma 2.3. [5,6,10] Forall P,Q,D,E € L*, a € Land {P;, Q; : j € J} C L%, the next properties are achieved:
(1) P<Q = S(D,P) < S(D,Q) and S(Q,D) < S(P,D) ;
2) S(P,Q®S(Q,D) < S(P,D);
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B) SPQ®S(D,E)<S(P®D,Q®E);
4) S, /\je] Qj) = /\je] S(P,Qj) and S(\/jej P;, Q)= /\je] S(P;, Q)
() T(P, Vg Qj) = V ey T(P, Q)) and T(P, \je; Qj) < Njey T(P, Q));
(6) If L satisfies the double negation law then S(P, Q) = S(=Q, —=P).
Definition 2.4. [38, 44] An L-relation R € L**X, is called:
(1) serial when \e/X R, y)=T,VxeX,
y

(2) reflexive when R(x,x) = T, Vx € X,
(3) transitive when R(x, y) ® R(y,z) < R(x,z), Vx,y,z € X.

Definition 2.5. [38, 44] For an L-relation R € LX** and A € L%, the upper and lower approximation operators are
given as follows:

R(A)(x) = T(R(x, =), A) = V (R 1) @ AY))-
ye

RAE@ = SR, =), A) = ARG y) = AW)),
ye

respectively.

Definition 2.6. [55, 56, 58] By an L-FGN system operator on a universe of discourse X, we mean a function
N:X — L, if N(x) is non-empty, i.e., \/ Nx)(A) =T, VxeX.
AeLX

Definition 2.7. [55, 56, 58] For an L-FGN system operator N : X — LY and A € LX, the lower and upper
approximation operators N(A) and N(A) are given by:

N@A)x) = V (NX)(K) @ S(K, A)),

KelX

N(A)x) = K/EX(N ()(K) = T(K, A)).

Definition 2.8. Let X be an arbitrary sets. The pair (R, R*) of maps R,R* : X x X — L is called an L-double
relation (or L-double fuzzy relation) on X, if R(x, y) < =(R*(x, 1)), V (x, y) € Xx X. R(x, y) (resp., R*(x, y)), referred
to as the degree of relation (resp., non-relation) between x and y.

If L = (L,A,V,,0r,1;) is taken to an order reversed completely distributive lattice then the above
definition coincided with the definition of [1].

3. A double rough approximation operators

Through this section, we will introduce the notion of L-DFGN systems, and use it to define a pair
of L-DRApprox operators, and study some of their properties. Also, we show that L-double relation-
based approximation operators [1] can be considered as special cases of the above L-DFGN system-based
approximation operators.

Definition 3.1. Assume that X is the universe of discourse. The pair (N, N*) of maps N, N* : X —s L¥" is said to
be an L-DFGN system operator on X, if forany x € X, \/ N(x)(D) = T and N (x)(D) < ~(N*(x)(D)). The triplet
AeLX

(X, N, N*) is said to be an L-DFGN space.
Usually, the pair (N (x), N*(x)) is said to be an L-DFGN system of x and N (x)(D) (resp., N*(x)(D)) is interpreted as
the degree of neighborhood (resp., non-neighborhood) of x.
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In what follow, we shall establish an example of an L-DFGN system operator.

Example 3.2. Assume that X = {x} is a single point set, and L = [0, 1] is the usual unit interval. Define an L-DFGN
system operator N, N* : X —s L by

1 for D=1x; 0 for D=1x;
N(x)(D) = % for D = X1 N*(x)(D) = % for D = Xy
0 otherwise. 1 otherwise.

It is easy to have that N, N* : X —s L¥" is an L-DFGN system operator.

Remark 3.3. Assume that X is the universe of discourse and N : X — LY be an L-DFGN system operator on X.
Define a map N* : X — LY by N*(x) = ~N(x) Vx € X, then the pair (N, N*) is an L-DFGN system. Therefore
every L-FGN system operator [55, 56] corresponds to the following L-DFGN system operator (N, =N and we can
say that an L-DFGN system is a generalization of L-FGN system [55, 56].

Definition 3.4. Let (N, N*) be an L-DFGN system operator. Define two mappings N, N* : LX — LX as follows:
Nx)(A) = K\{X(N (0)(K) ® 5(K, A)),
€

N (0)(A) = K/}X("N "(X)(K) = T(K, =A)),
where x € X, and A € LX.

The pair (N, N7) is said to be an L-double fuzzy lower approximation (L-DFLApprox for short) operator and the
triplets (X, N, N*) is called an L-DFLApprox space.

Remark 3.5. Assume that N : X — L is an L-DFGN system operator on X and N : LX — LX be a lower
approximation operator [55, 56]. Define a map N* : LX — LX by

N (x)(A) = =N (x)(A) Vx € X and A € LX.

Then the pair (N, =N) is an L-DFLApprox operator. Therefore every lower approximation operator N : LX — LX
[55, 56] corresponds to the following L-DFLApprox operators (N, =N).

Definition 3.6. Assume that (N, N*) is an L-DFGN system operator. Define two mappings N, N :LX — [Xgs
follows:

N@@ = A N@EK) = TK A),
N @A) = V N @K @SK -4),

where x € X, and A € LX.
The pair (N, N) is called an L-double fuzzy upper approximation (L-DFUApprox for short) operator and the triplets
(X,N,N) is said to be an L-DF UApprox space.

Similarly to what given in Remark 3.5, we can say that every upper approximation operator N:LX — X
[55, 56] corresponds to the following L-DFUApprox operator having the form (N, =N).

_—

Definition 3.7. Let (X, N, N*) be an L-DFGN space. Then the quaternary (N, N°N,N") is said to be L-double
fuzzy rough set.

Example 3.8. Suppose that X = {x} is a single point set and L = [0, 1] with the adjoint pair (+, =) on [0, 1] defined
as follows forall ,0 € L,

e+0=max{0,e+0—-1}, ¢ > 0 =min{l,1—¢+ 6}.
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For L-DFGN system operator (N, N*), given in Example 3.2, an L-DFLApprox operator N, N* given by: For
A=x1
3
Ny = V (Nl *S(K )
€
= (Na(1x) * S(1x,%1)) V (Nalxy) * S(xy, 1))
=1+ (1> )V G- )

(1*_)\/(2 6)
=3V(3-3)
=lyl=1

wI

N (@0)(x1) = /\ (ﬂN*(K)(X) — T(K, ~(x1))
(ﬁN*(x)(lx) = T(lx, ~(x1))) A (BN (@)(x1) = T(x1, =(x1)))
=1->1+NAE - (5+3)
-0- b=
A 30°

Also, an L-DF UApprox operator N, N given by: For A = x2
N@)(xz) = /\ N()(K) = T(K, x2))
(N(X)(lx) — T(lx,x2)) A (N(x)(x1) = T(xy, x2))
(16(1*2))/\(2 _)(2 3))
SRCICE
= 373

N @)= V N0 * S(K.~(x3))

(ﬂN*(x)(lx) S(1x, =(x2)) V (AN (x)(x1) * (3, (x2)))
=(1+(1 >N VE=G—3)
=1+ V()

In the sequel, we will prove that the L-DFGN system has quantale-valued ( or L-double) relation-based
approximation operators [1] as a special case. Before going to the end, we give the following definition:

Definition 3.9. Assume that (R, R*) is an L-double relation on X. Define four mappings R, R", R, R :1X > [Xgs
follows

(@) RA)E) = SRx, =), 4) = A (RGx,y) = Aly)), and
ye

R (A)x) = TR (x,—), =A) = V (=R (x, y) ® 2A(y)),

yeX

(if) R(A)(x) = T(R(x,-),A) = V (R, y) ® A(y)), and
yeE

R (A)x) = SR (x, ), =A) = /\X(ﬂR*(x, y) = ~AY),
ye

where x € X and A € LX._
The pairs (R, R") and (R, R ) are said to be L-DFLApprox and L-DFUApprox operators, respectively, and the triplets
X, R R), (X, R, R') are said to be L-DFLApprox and L-DFUApprox spaces, respectively.

Example 3.10. According to Remark 3.5, we have the following:

(1) Every lower L-fuzzy rough approximation operator R : LX — L* [38] can be recognized with an L-DFLApprox
operator in the form (R, =R).
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(2) Everyupper L-fuzzy rough approximation operator R : LX — LX[38] can be recognized with an L-DFUApprox
operator in the form (R, =R).

Now, it is time to explain that an L-DRApprox operator based on an L-double relation [1] is a special case
of an L-DRApprox operator based on L-DFGN systems.

Lemma 3.11. Let (L, <,®) be a st-s, and let R, R* : X x X — L be an L-double relation on a set X. We define an
L-DFGN system operator Ng, Ny, as follows: For any x € X, K € L%,

TL/ K= R(x/ _)/
1;, otherwise.

J—L/ K= _|R*(X, _)/
T., otherwise.

Nr(x)(K) = { Nig. (0)(K) = {

Then, N(A) = R(A), Ny (A) = R'(A) and Ng(A) = R(A), Ng.(A) = R (A).
Proof. For any x € X, we have
Vierx NrO(K) 2 Nr(OR(, =) = T, Agerx Nig. (1)(K) < N (x)(=R*(x, =) =Ly

Hence Ng, Ny, is an L-DFGN system operator. Then for any A € L* and x € X. By the definition of Nz, N,
we get

Ng()(A) = Vierx(Nr(x)(K) ® S(K, A)) = TL ® S(R(x, =), A) = R(A)(x),
N ()(A) = Agerx(Ng. (K) = T(K, ~A)) = =~ L= T(=R(x, ), ~A) = R'(x)(A),
NROE(A) = Agerx(NR(@)(K) = T(K, A)) = Tr = T(R(x, -), A) = RE)(A),
N ((A) = Vierx(=Nip () (K) ® S(K, ~A)) = = L 8(-R*(x, -), =A4) = R (2)(A).
Hence, Nz(A) = R(A), Ni(A) = R'(A), and Nr(A) = R(A), Ng.(A) =R (A) forany A€ L¥. O

Theorem 3.12. Let (N, N*) be an L-DFGN system operator on X. Then the L-DFLApprox operator (N, N™) satisfies
the next properties: Forall A,B € LX, and A; C LX,

(1) N()(A) < =N (x)(A);

2) ONE)(Nier Ai) < Nieg N(x)(Ay); and (i) N"()(Nier Ai) = Vit N (x)(Ai);
@) ON(Vier Ai) 2 Vit N(x)(Ai); and (i) N"()(Vier Ai) < Niet N (x)(Ai);
(4) If Lis st-s ( sometimes called integral), then
() N(T) = T, and @) N'(@D =L
(5) If A < B, then
O N)(A) < N(x)(B); and (i)) N*(x)(A) = N"(x)(B);
(6) () N()(A) = =N(x)(=A); and (if) N (x)(A) = =N (x)(=A).
Proof. (1) N(x)(A) = KVLX(N ()(K) ® S(K, A))
< K\{X(ﬂN"(x)(K) ® 5(K, A))
=V (-N*(x)(K) ® =T (K, ~A)) (by Proposition 2.2 (1))
KelLX
= Kléx (=N (x)(K) = T(K, =A))
=-( A ("N (x)(K) = T(K, ~A))) (by Proposition 2.2 (3))
KeLX

= N (©)(A).
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(2) Forall{A; :i €I} C L%, we get
(@) N)(Nier Ai) = K/EX(N(X)(K) ® S(K, Nier Ai))
€

= A IN@)(K)® Aies S(K A))) (by Lemma 2.3 (4))
KeLX

< Niet( A (IN(xX)(K) ® S(K, A;))) (by Lemma 2.3 (5))
KelLX

= Nier N(O)(A)).
(i) N'(O)(Aier A)) = KQX("N*(X)(K) = T(K, = Aieg Ai))
= KQX(—'N*(X)(K) = T(K, Ve ~A)
= /\X("N "(X)(K) = Vg T(K,=A4;)) (by Lemma 2.3 (5))
> Ii/ejd(KéX("N "(0)(K) = T(K, =A;))) (by Lemma 2.1 (6))

= Vi N (0)(4)).
(3) Forall {A; :i € I} € LX, we have
@A) NO(Vier Ai) = K\{X(N(x)(K) ® S(K, Vier A1)
>\ (N(@)(K)® Ve S(K Ai)) (by Lemma 2.1 (6))

KeLX

= Via( V N@)(K) ® S(K, A;))) (by Lemma 2.3 (5))
KelLX

= Via N(x)(A)).
(i) N°()(Vie Ai) = K/}X(ﬂN "(O(K) = T(K, = Vi A))

= K/>X(“N*(x)(K) = T(K, Nier ~A1)
< A BN (@)(K) = Aier T(K, —A))) (by Lemma 2.3 (5))
KelX

= Niet( A (=N (x)(K) — T(K, =4;))) (by Lemma 2.3 (4))
KeLX
= Nier ﬂ*(x)(Ai).

For the items (4) — (6), we prove only the second part (ii), since the proof of the first part (i) is the same
as given in [56].

(4) Suppose that L is st-s quantale, then
N ()(T) = K/} (=N ()(K) = T(K, ~T))
el X

= K/EX(—'N "(O(K) = T(K, L))
= N N (0)(K) = 1)
KeLX
= V (=N*(x)(K)) — L (by Lemma 2.1 (3))
KeLX
=-( A N'(@x)(K)) - L
KeLX
==l—->1l=T—>1=1;.

(5) VA, B € L%, with A < B, we find

N'(@)(A) = K/EX(ﬂN "(®)(K) = T(K, =A))
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> A (-N*(x)(K) = T(K, —B)) (by Lemma 2.3 (1))
KeLX

= N'(x)(B).
(6) ~N (¥)(=A) =~ K\{X(ﬂN "()(K) ® S(K, A))

= A (=N (0)(K) @ S(K, A))

KelX

= A (=N (x)(K) = =5(K, A)) (by Proposition 2.2 (1))
KeLX

= A\ CN@E) = T(K ~4)
= N'(9(A).
|

4817

Theorem 3.13. Let (N, N*) be an L-DFGN system operator on X. Then the L-DFUApprox operator (N, N*)

satisfies the next properties:

(1) N(x)(A) = ~N (x)(A);

@ NNt A) < Niegg N(X)(A)); and (i) N 0 Aier A1) 2 Vit N (x)(Ai);
B) ON®(Vier A) 2 Vi N(x)(A)); and (i) N (0)(Vier A) < Nt N (9(A);
(4) If L is st-s (sometimes called integral), then

(i) N(L) = L; and (i) N (L) = T;
(5) If A < B, then

(i) N(x)(A) < N(x)(B); and (ii) N (x)(A) > N (x)(B);
6) (YN@)(A) = =N(x)(~A); and (i) N (9)(A) = ~N"(@)(=A),

where A,B € LX, and A; C LX.
Proof. (1) ﬁﬁ*(x)(A) == K\{X(—-N*(x)(K) ® S(K, —A))

= A ~(=N*(x)(K) ® S(K, ~A)) (by Proposition 2.2 (3))
KeLX

= A (“N*(x)(K) = =S(K, ~A)) (by Proposition 2.2 (1))
KelX

< A IN@(K) = T(K, A))

KeLX
= N(x)(A).
(2) Forall {A; :i €I} C LX, we have
(i) N@)(Aier Ai) = KQX(N ()(K) = T(K, N\jeg A1)
< Vier K;{X(N (x)(K) = Nig T(K, A)) (by Lemma 2.3 (5))
= /\ieI(K;{X(N (0)(K) = T(K, Ay))) (by Lemma 2.3 (4))

= At N@)(A).
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i) N @(Na ) = V N WK@K A A)
= V CNEE) O SK, Vig ~A))

KelX

>V (N (0)(K) ® Ve S(K, —A))) (by Lemma 2.1 (6))
KeLX

= Vil V (N (@(K) @ S(K, ~49) (by Lemma 21.(7)
= Vg N (0)(A).

(3) Forall {A; :i € I} € LX, we have

() N@)(Vier A) = K/}X(N ()(K) = T(K, Vi Ai)
= N INW(K) = Vi T(K, Aj)) (by Lemma 2.3 (5))

KeLX

> vief(K/Ex(N(x)(K) — T(K, A;))) (by Lemma 2.1 (6))

= Via N@)(A).
(i) N (Ve Ai) = Y NGO @ S(K = Vi A1)
V (N ()(K) ® S(K, Aie; ~A))

KelX
= V (=N @)(K) ® Ajes S(K, =A))) (by Lemma 2.3 (4))

KeLX

< /\ieI(K\{X(—'N*(x)(K) ® S(K, —A)))) (by Lemma 2.3 (5))

= Aia N (0)(A)).

4818

For the items (4) — (6), we prove only the second part (ii), since the proof of the first part (7) is the same

as given in [56].

(4) Suppose that L is st-s quantale, then

N @)(L) = K\{X(ﬁN "()(K) ® 5(K, ~1))

= V (=N'(0)(K)®S(K, 1))
KeLX

=V (-N'(x)(K)® T) (by Lemma 2.1 (2))
KeLX

=V (-N'(x)(K))® T (by Lemma 2.1 (7))
KeLX

= ﬂ(K/EX N'()(K)®T
=-1l®T=T®T =T,

(5) YA, B € LX, with A < B, we find

N (@)(A) = K\{X(ﬁN "(0)(K) ® S(K, ~A))

>V (=N*(x)(K) ® S(K, —=B)) (by Lemma 2.3 (1))
KeLX

= N (x)(B).
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(6) ~N'(x)(=A) = ﬂ(K/EX(ﬂN "()(K) = T(K, A)))

V (=N (x)(K) = T(K, A)))
KeLX

\ (=N*(x)(K) ® =T (K, A))) (by Proposition 2.2 (1))
KelX
V (=N (0)(K) ® S(K, =A))

KelX

=N (x)(A).

O

Let (N, N*) be an L-DFGN system operator on X. The L-double measure of roughness of L-DFUApprox
(U, U,), ofan A € LX, given by:

U(A) = SIN(A),A), Uy, (4) = TN (A),~4),
and the L-double measure of roughness of L-DFUApprox (£, £,.) by
L,(A) =5A,N(A), L.(A)=TA N (A)).

By the above definition, we can denote the double measures of roughness of L-DFLApprox and L-
DFUApprox by the following mapping:

U, U, :L*X—Land £, L. : X — L,

respectively.

In the following corollary, we give some properties of the L-double operator of L-DFLApprox and L-
DFUApprox £, L,. : LX — L,and U,,, U, : LX —> L, respectively.

Corollary 3.14. An L-double measure of roughness of L-DFLApprox L, L,. : LX —> L satisfies the next properties:
(1) IfLis st-s, then

@) L,(D =T, and @) £, (D=1,
@) DLV A) 2 \Ly(A), and (i) L (V A) < V L. (A).

Proof. (1) If L s st-s, then

@) LD =SCND)=5TD)=T,.
@) L.(D=TTCN @) =TT, L= 1,.

2 @ LN(\E/IAi) = S(ZAi/ﬂ(\E/IAi))
> S(\V Ai, V N(A))) (by Theorem 3.12(3))
iel i€l

> A S(Ai, N(Ai))(by Lemma 2.1 (8))
iel
= A L. (A).

iel
(i) £N*(.\/1Ai) = T(\/IAi,ﬂ*(\/IAi))
< T(V Ai, A N'(Aj)) (by Theorem 3.12(5))

iel iel
<ST(V A, N'(A))
iel

=V T(Ai, N"(A))(by Lemma 2.1 (7))
iel
=V L,.(A).

iel
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Corollary 3.15. An L-double measure of roughness of L-DFUApprox U, U, : LX —> L satisfies the next proper-
ties:

1) UL =T, and (@) Uy (L) = L,
@) OUNA) = N UA), and (i) Uy (N A) < V Uy, (A).

Proof. (1) (i) Uy(L) =SIN(LD), L) = S(L, L) = T,.
(i) Uy (L) = T(-N (L), ~L) =T(~-T, D =T(L,T) = L,.
@ O UNA) = S(N(,-é\l A), NA)
> S( Qz N(A), /E\I A)) (by Theorem 3.13(2))
> A\ S(N(A)),A;) (by Lemma 2.1 (8))
= ZWN (Aj).

(ii) Uy (N A) = TN (A A), = A A)

iel i€l iel

<T(=VN (A),V =A) (by Theorem 3.13(4))
iel iel
= T(A\ =N (A)), V ~A;) (by Proposition 2.2(3))
iel iel

S T(-N (4, ~A)
iel
= \/ T(=N (A;), ~A;) (by Lemma 2.3(5))
iel
= VU (4).

O

Corollary 3.16. For an L-double measures of roughness of L-DFLApprox and L-DFUApprox L, L,., U, U,. :
LX — L, we have

(i) £,(=D) = U, (D) and U, (-D) = L, (D),

(i) L,.(~D) = U, (D)and U,.(~D) = L,.(D), forall D € LX.

Proof. (i) L,(=D)=S(=D, N(-D))
= S(=D, ~N(D))
= S(N(D), D) (by Proposition 2.2(2))
= U, (D).

Now, we prove the second part, U, (-D) = S(N(—'D), =-D)
= S5(=N(D),-D)
= S(D, N(D)) (by Proposition 2.2(2))
=L,D).
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(it) £L,.(=D) = T(=D, N'(-D))

= T(~D, =N (D))
= T(-N (D), ~D)
=U,. (D).
Now, we prove the second part, U,.(-D) = T(ﬂﬁ*(—'D), —(=D))
=T(N"(D),D)
=T(D, N'(D))
= £.(D).

U
4. Special L-double fuzzy generalized neighborhood systems and related L-double rough approxima-
tion operators

Some special L-DFGN systems and related L-DRApprox operators will be proposed in this section.
Also, we shall show that different L-DRApprox operators correspond to different modal logic systems,
respectively.

4.1. Serial L-DFGN systems

The concept of serial L-DFGN system operators will be introduced and we will discuss their related
L-DRApprox operators

Definition 4.1. An L-DFGN system operator (N, N*) is called a serial, if

(SE) N(x)(A) <V yex Ay), and (SE) N*(x)(A) = N\ yex(=AW)),
where x € X, A € LX.

Remark 4.2. Every serial L-FGN system operator N' : X —s L' [56], can be identified with a serial L-DFGN
system operator of the form (N, ~N). Thus, the serial condition in L-DFGN system operator is an extension of the
corresponding condition in L-FGN system operator. Moreover, it is easily observed that: for an L-double relation
(R, R) [11, (Ng, N,.) is serial iff (R, R") is serial. Where (N, N,.) is defined in Lemma 3.11.

Proposition 4.3. Let (L, <,®) be st-s. Then (N, N*) is serial iff
() N =Land N(D =T,
(i) N'(L) =T, and N (T)= L.
Proof. Let (N, N*) be a serial L-DFGN system operator , then:

(i) By Propositions 4.2 and 4.3 of [56], we have:
N@)A) < Vyex Ay) © N = L and N(D =T,

(i) Let N*(x)(A) = A yex(=A(Y)), then for any x € X, we have that

N @)L) = KALX(ﬂN "(®)(K) = T(K, =L1))
= N (N (0)(K) = T(K, 1))

KelX
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= N EN®EK) =V (K(y) ® TL))
KeLX yexX
= A N(X)(K) - ([ \/X K(y)]® T1)) (by Lemma 2.1 (7))
KeLX ye
SE*
2 N[V Ky]—= TV KyleTL)
KeLX yeX yeX
> T, (by Lemma 2.1 (1)).
Hence, N*(1) = T.

We prove the second part,
N (0(T) = K\{ (=N (x)(K) ® 5(K, =T))
el X

= V (-N'®)(K)®S(K, 1))

KeLX

= V (-N'(*)(K) ®y/€\X(K(J/) — 1))

KeLX

VIV K@) ®(( V K(y) = L0)I(by Lemma 2.1 @)
yE

KeLX yeX
< 11 (by Lemma 2.1 (1)).

So, N (T) = L.
Conversely, suppose that N*(x)(L) = T. Then, for any x € X, we get

N (L) = K/}X(ﬁN (K = T(K,—1) =T.

It follows that, for any K € L%,

“N'()K) = T(K-L) 2T = T -N"(x)(K) < T(K,-1)
= -N')(K) < T(K, T)
= -N'(0)(K) < yYX(K(y) ®TL)

= - N*(x)(K) < (V K(y)) ® T; (by Lemma 2.1 (7))
yeX

= "N (0)(K) < V K(y)
yeX

= N*(x)(K) = = V K(y) (by Proposition 2.2(4))
yeX

= N'(x)(K) > A\ —K(y) (by Proposition 2.2(3)).
yeX

And, suppose that N(x)(T) = L. Then, for any x € X, we get

N*(x)(T) =V (=N (x)(K) ® S(K,—~T)) = L. It follows that for any K € L¥,

KeLX
N (x)(K) ® S(K,=T) < L = -N*"(x)(K) < S(K, L) — L
= N ()(K) < /\X(K(y) ->1l)-1
Ve

= - N*(x)(K) < ((V K(y)) = L) —» L (by Lemma2.1(3))
yeX

= =N ®)(K) < V K(y)
yeX

4822
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= N*(x)(K) = =V K(y) (by Proposition 2.2(4))
yeX

= N*(x)(K) > A =K(y) (by Proposition 2.2(3)).
yeX
|

4.2. Reflexive L-DFGN systems
The concept of reflexive L-DFGN system operators will be introduced and we will discuss their related
L-DRApprox operators.

Definition 4.4. An L-DFGN system operator (N, N*) is called a reflexive, if
(RE) N(x)(A) < A(x), and (RE") N*(x)(A) > =A(x),

where x € X, A € LX.

Remark 4.5. Every reflexive L-FGN system operator N : X —» L [56], can be identified with a reflexive L-DFGN
system operator of the form (N, —~N). Thus, the reflexive condition in L-DFGN system operator is an extension of
the corresponding condition in L-FGN system operator. Moreover, it is easily observed that: for an L-double relation
(R, R) [1], (N, N,) is reflexive iff (R, R") is reflexive. Where (N, N;.) is defined in Lemma 3.11.

Proposition 4.6. Let (N, N*) be an L-DFGN system operator on X. If (N, N*) is reflexive, then for each A € LX.

() N(x)(A) < A(x), and (i) N*(x)(A) = ~A(x),
and the opposite is true if (L, <, ®) is st-s.

Proof. Let (N, N*) be reflexive, then:

(i) By [[56], Proposition 4.5], we have:
N@)(A) < A(x) & N(x)(A) < Ax).

(if) Let N*(x)(A) > ~A(x), then
N (x)(A) = /\X [N ()(K) = T(K, =A)]

KeL

A [PN(x)(K) =V (K(x) ® =A(x))]
KeLX xeX
KALX[ﬂN "(0)(K) = (K(x) ® ~A(x))]

[\

Rg K/})([K(x) — (K(x) ® =A(x))]

> —A(x) (by Lemma 2.1 (1)).
Conversely, suppose that (L, <, ®) is st-s and N"(x)(A) > =A(x) for each A € LX. For any x € X, we get

KALX [N (0)(K) = T(K, =A)] = ~A(x)
= K/EX [-T(K, =A) - N*(x)(K)] > ~A(x)
= K/EX [S(K,A) = N*(x)(K)] 2 ~A(x)

= S(K,A) = N*(x)(K) = -~A(x).
Taking K = A, we get
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5(A,A) - N*(x)(A) = ~A(x)
= Tr = N*(x)(K) = ~A(x)
= N*(x)(K) = =A(x).
U
Proposition 4.7. Let (N, N*) be an L-DFGN system operator on X. Then (N, N*) is reflexive iff
(i) N(x)(A) > A(x), and (i)) N (x)(A) < ~A(x) for each A € LX.
Proof. Let (N, N*) is reflexive, then:

(i) By [[56], Proposition 4.6], we have that

N@)(A) < A(x) & Nx)(A) > A®x).

(if) Let N*(x)(A) > —A(x), then
N @A) = V [=N"()(K) 8 S(K,~A)]

KelLX

= V [N (0)(K) ® Arex(K(x) = —A(x))]

KeLX

< V [N (@0)(K) @ (K(x) = —~A(x))]

KeLX

TV KW ® (K() — =A®)] < =A(x) (by Lemma 2.1 (1)).

KelLX

Conversely, suppose that N*(x)(A) < -A(x), for A € LX. Then for any x € X, we get

N ()(=A) < A®), ie, N (X)(=A) > A(x)
= N'(x)(A) = =A(x)
From Theorems 3.13 and 4.6, we get N*(x)(A) > ~A(x).

O
4.3. Transitive L-DFGN systems

The concept of transitive L-DFGN system operators will be introduced and we will establish their related
L-DRApprox operators.

Definition 4.8. An L-DFGN system operator (N, N*) is called a transitive, if

(TR) N(x)(A) < V {N«(B)® A (B(y) = V (Ny(By) ® S(By, A))}, and
BeLX yeX ByeLX

(TR") N*(x)(A) = B/EX{ﬁN*(x)(B) - V(B(y)® B/\Lx(ﬁN*(y)(By) — T(By, =A)))},

yeX

where x € X, A € LX.

Remark 4.9. Every transitive L-FGN system operator N : X —> LL" [56], can be identified with a reflexive L-DFGN
system operator of the form (N, =N). Thus, the transitive condition in L-DFGN system operator is an extension of
the corresponding condition in L-FGN system operator. Moreover, it is easily observed that: for an L-double relation
(R, R) [1], (N, N,.) is transitive iff (R, R") is transitive Where (N, N,.) is defined in Lemma 3.11.
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Proposition 4.10. Let (N, N*) be an L-DFGN system operator on X. If (N, N*) is transitive, then
() NO)A) < NQNA), and (i) N'(x)(A) = NN (A) for each A € L¥,
and the opposite is true if (L, <, ®) is st-s.

Proof. Let (N, N*) is transitive, then:

(i) By [[56], Proposition 4.5], we have:
N)(A) < B\{ IN:(B)® AX(B(y) - B\/L (Ny(By) ® 5(By, AD)} & N(x)(A) < N()(N(A)).
eLX ye yELX

(i) Let N*(x)(A) = B/} {=N*(x)(B) — \/X(B(]/)®B/\L (=N*(y)(By) = T(By, ~A)))}, then
eLX ye ,€LX

N ®)A) = A {=N(x)(K) = T(K, ~A)}

KelLX

S A A N@B) = VEG® A (ANW)By) = T(By ~K))]) — T(K, ~A))
KeLX BeLX yeX B,eLX

= A{V [-N(x)B)—= VBl B/.\LX(ﬁN*(y)(By) — T(By, —K)))] — T(K, ~A)}(by Proposition 2.2(3))

KeLX BeLlX yeX
= A B[N ®B) - VBH© A =N(y)(By) - T(By, =K)))I - T(K,=A)} (by Lemma 2.1 (3))
K,BeLX yeX B,eLX
= KE{\L [(=N*(x)(B) ® =( \/X(B(y) ® B/\L (=N*(v)(B,) — T(By, =K))))) — T(K, ~A)](by Proposition 2.2(1))
,BeLX ye yELX
ap B/\L [N*(x)(B) ® /\X(B(y) - ﬁ(B/\L (=N*(¥)(By) — T(By, =K))))) = T(K, ~A)](by Proposition 2.2(1))
,BelX ye yeLX
= A [N®B)e ABy) —» V =N(y)(By) ® -T(By, =K)))) = T(K, =A)]
K,BeLX yeX ByeLX
= A [GN@B)e ABy) = V =N (y)(B,) ®S5(By, K)))) = T(K, =A)]
K,BeLX yeX ByeLX
= Kl{\L =[(=N*(x)(B) ® /\X(B(y) - B\/L (=N*(y)(By) ® S(By, K)))) ® =T(K, =A)] (by Proposition 2.2 (1))
,BeLX ye yeLX
= A [N 0B ABy) = V =N(y)(By) ® S(By, K))) ® S(K, A)]
K,BeLX yeX ByeLX
> KB/\L =(=N*(x)(B) ® /\X(S(K,A) ® (B(y) — B\/L (=N*(y)(By) ® S(B,, K)))) (by Lemma 2.1 (4))
,BeLX ye yeLx

2 A\ ~EN@)(B)© /\X(B(y)—>(S(I<,A)® V (=N*(y)(B,)) ® S(By, K)))) (by Lemma 2.1 (5))
ye X

K,BeLX ByeL

= N ~CN@B)® /\X(B(y) = \/L (=N*(y)(By) ® 5(By, K) ® 5(K, A)))) (by Lemma 2.1 (7))
ye yELX

K,BeLX
> B/} =(=N*(x)(B) ® /\X(B(]/) - B\/L (=N*(v)(By) ® S(By, A)))) (by Lemma2.3(2))
cLX ve ,€LX
= B/} (=N*(x)(B) — \/X(B(y) ® B/\L (=N*(y)(B,) — —S(By, A)))) (by Proposition 2.2 (1))
eLX ye ,ELX
= AN N@X)B) - VBY)® A (=N*(y)(By) — T(By,-A)))
BelLX yeX B,eLX
= B/EX(—'N "(x)(B) = T(B, N"(A)))
= N'()=N'(A)).

Conversely, Let N*(A) > N*(=N'(A)) for each A € LX. Then for any x € X, we get N'(x)(4) >
N (x)(=N"(A)) and this lead to
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N =N ()(K) = T(K =A)} = A {=N"(x)(B) = T(B, N"(A))}. So, we find:
KeLX BelX

“N'@®)(K) = T(K,=A) 2 A {=N*(x)(B) = T(B, N'(A))}

BelX
ie., 7(=N*(x)(K) ® S(K, A)) > B/EX{—'N*(x)(B) — T(B, N'(A))}.

taking K = A, we get
SN @A) ®T) 2 A (=N*(x)(B) = T(B, N'(A)

BelX

= (=N (0)(A) = A {=N(x)(B) - T(B, N'(A))}

BelLX

= N @)(A) > A (=N (x)(B) = V (B(y) @ N'(A))}
BelLX yeX

BeLX

> A\ {(=N"(x)(B) — y\G/X(B(y) ® B/\LX(ﬁN*(y)(By) — T(By, ~A)))}.

From (i) and (ii), we find (N, N*) is a transitive.
O

Proposition 4.11. Let (N, N*) be an L-DFGN system operator. Then (N, N*) is a transitive iff
(i) N(A) > N(N(A)), and (i) N (A) < N (=N (A)) for each A € LX.
Proof. Suppose that (N, N*) is a transitive, then for any A € LX and for any x € X,
(i) By [[56], Proposition 4.12], we have that for any A € L%,
N@@A) < V INiB)® A (BY) = V. (Ny(B,) ®S(By, A))} & N@)(A) = Nx)(N(A)).
BeLX yexX ByeLX
(ii) Let N*(x)(A) = A {=N*(x)(B) = V B(y)® A (=N*()(By) = T(By, =A)))}, then
BeLX yeX ByeLX
N'(A) = =(N"(~A)) (by Theorem 3.13)
< =N'(=N"(=A)) (by Proposition 4.10)
= ~N'(=(=N (4))
= N (=N (4)).
Conversely, it follows by Theorem 3.13 and Propositions 4.10.

From (i) and (ii), we find (N, N*) is a transitive.
U

4.4. Unary L-DFGN systems

The concept of unary L-DFGN system operators will be introduced and we will establish their related
L-DRApprox operators.

Definition 4.12. An L-DFGN system operator (N, N*) is called unary, if
(UN) Nx)A) @ Nx)(B) < V (N(x)(K)® S(K, A® B)),
KeLX

(UN) N*()A) e N*(0)(B) 2 A (=N*(x)(K) = T(K, =(A® B)),

KeLX

where x € X and A, B € LX.
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Remark 4.13. Every unary L-FGN system operator N : X —> L¥" [56], can be identified with a unary L-DFGN
system operator of the form (N, = N).

Proposition 4.14. Let (N, N*) be an L-DFGN system operator on X. Then if (N, N*) is unary, then
() N(x)(A)® N(x)(B) < N(x)(A®B), and
(i) N'(x)(A)® N"(x)(B) > N'(x)(A ® B) for each A, B € LX.

The opposite is true if L is st-s.

Proof. Suppose that (N, N*) is a unary. Then for any x € X and A4, B € L,

(i) By [[56], Proposition 4.8], we get
N@)A) @ NX)B) < V INx)(K) ® S(K,A®B)) & N(x)(A) ® N(x)(B) < N(x)(A ® B) whenever L is
st-s. re
(if) Suppose that N*(x)(A) ® N*(x)(B) = A (=-N*(x)(K) = T(K, 7(A ® B)), then
KeLX
N'(A)® N (B) = =(=N"(A) ® =N'(B))

= (= K/EX[ﬂN*(x)(K) - T(K,—A)]| ®~ V/EX[ﬂN*(X)(V) — T(V,-B)]
= ﬂ(K\{X [=N"(®)(K) ® S(K, A)] ® V\/LX [=N*()(V)® 5(V, B)]
==V [N (@0K) @ -N*(x)(V) ® 5K, A) ® S(V, B)])

K,VelLX
>=(V [N (x)(K) & N*(x)(V)) ® S(K® V, A ® B)])( by Lemma 2.3(3))
K,VelLX
DV AN ~NEU) - TU~Ke V) ® S(Ke V,AeB)
KVvelX  UelX

==V (V - N@OURS(UK®V))®@S(K®V,A®B))
K VelX UelX

==(V V - NOUS(UK®V)®S(K®V,A® B))
K, VelX UelLX

>-(V N (x)(U) ® S(U, A® B)) (by Lemma 2.3 (2))
UeLX

= u/\LX(ﬁN*(x)(U) - T(U,~(A®B)))

= N'(A®B).

Conversely, suppose that L is a st-s (integral) quantale and N*(A®B) < N"(A)® N"(B). For any x € X,
we get N'(A® B) < N'(A) ® N'(B). So, it follows:

A [=N*(@)(U) — T(U, ~(A® B))]

UeLX
[=N*()(K) = T(K, ~(A)] @ [-N*(x)(V) = T(V,~(B)]
(=[N (x)(K) = T(K, ~(A)] ® =[=N*(x)(V) = T(V, ~(B))])
([=N*(x)(K) ® S(K, A)] ® [=N*(x)(V) ® S(V, B)]).
By taking K = A and V = B in the above inequality we find

= 2[(=N'(x)(A) @ T1) ® (=N (x)(B) ® T1)]

= =[-N*(0)(A) ® ~N*(x)(B)]

A
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= N (x)(A) & N*(x)(B).

From (i) and (ii), the proof completed.
O

The relationship between the double measures of roughness of their L-DFLApprox and an unary L-DFGN
system operators is given in the next lemma:

Lemma 4.15. Let (N, N*) be a unary L-DFGN system operator on X. Then the L-double measure of roughness of
L-DFLApprox L, L,. : LX — L has the next properties:

(i) L£(A®B)> L, (A)® L, (B), and
(i) £,,(A®B) < £,.(A)® L,.(B) forall A,B € LX.
Proof. (i) £,.(A®B)=S(A®B,N(A®B))
> S(A® B, N(A) ® N(B))
> S(A, N(A)) ® S(B, N(B))
=L, (A)® L,B)

(i) £,.(A®B)=T(A®B,N'(A® B))
<T(A®B,N"(A)® N(B))
< T(A, N'(A)) & T(B, N'(B))

=L, (A) e L,.(B)
O

Proposition 4.16. Let (N, N*) be an L-DFGN system operator on X. If (N, N*) is a unary, then
(i) N(A®B) < N(A)® N(B), and
(i) N'(A®B) > N (A)® N (B) for each A, B € LX.

The opposite is true if L is st-s.

Proof. Assume that (N, N*) is a unary. For any x € X and A, B € L%, then

(i) By [[56], Proposition 4.9], we have:
N@)(A) @ Nx)(B) <V (N(X)(K) ® S(K, A ® B)) & N(x)(A) & Nx)(B) > N(x)(A @ B) whenever L is
KeLX

st-s.

(i) (=) Let N*(x)(A) e N*(x)(B) = A (=N*(x)(K) = T(K, =(A ® B)), then
KeLX

N (A)® N (B) = [-N"(~A) ® =N (=B)] (by Theorem 3.13)
—[N'(=A) @ N'(=B)]
=(N*(—A ® =B)) (by Proposition 4.14)
~(N'(=(A®B)))
=N (A& B).
(<) It follows by Theorem 3.13 and Proposition 4.14.
From (i) and (ii), the proof completed.

IIA

O
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The relationship between unary L-DFGN system operators and the double measures of roughness of their
L-DFUApprox is given in the next lemma:

Lemma 4.17. Let (N, N*) be a unary L-DFGN system operator on X. Then the double measure of roughness of
L-DFUApprox U, U,. : LX —> L has the next properties:

(i) U, (A®B)>U,(A)®U,B), and
(i) U, (A®B) <U,.(A)dU,. (B), YA, B e LX.

Proof. (i) U (A®B)=S(N(A®B),A® B)
> S((N(A)® N(B)), A B)
= S(=(=N(A) ® =N(B)), ~(-A ® -B))
= $(~A ® B, ~N(A) ® “N(B)) (by Lemma 2.3 (6))
> S(=A, ~-N(A)) ® S(-B,~N(B)) (by Lemma 2.3 (3))
= S(N(A),A) ® S(N(B), B) (by Lemma 2.3 (6))
= U (A)® U, (B).

(i) U.(A®B) = T(~-N (A® B),~(A & B))
< T(-(N'(A) @ N (B)), ~A ® —B)
= T(~A®-B,-N (A)®-N (B))
< T(=A, ~N (A))® T(=B,~N (B))
= T(~N (A),~A)® T(=N (B), ~B)

= U (A) o U, (B).
O

5. Relationships between L-double fuzzy topologies and L-double rough approximation operators

In this section, we shall study the relationship between L-DFUApprox operators based on L-DFGN
system operator and L-double fuzzy topologies . In [31, 42], we offered the notion of L-double fuzzy
topology. For (L, <, ®) is semi-quantales and X a non-empty set. The pair (7,7 ) of maps 7,7 : LX — L
is said to be an L-double fuzzy topology on X [4] if it satisfies the next conditions: For all A, B € LX and for
every family {A; : j € J} C L%,

(T1) T(A) = ~(T7(A)),

(T2) 7(L)=7(T)=Tr,and (T =T = L1,
(Ts) T(A)®T (B) < T (A®B), and (T;) T (A) @ T*(B) = T (A®B),
(Ty) /\] T(A)) < ’T(\/] Aj), and (T) \/] T(A)) = fr*(\/] Aj),

J& = € &

The triple (X, 7,7) is called an L-double fuzzy topological space.

Example 5.1. [4] Suppose that X = {c,d}isaset, L= M = [0,1] and c®d = max{0,c+d —1},c®d = min(1, c+d}.
Then ([0, 1], <, ®) is a left-continuous t-norm with an order-reversing involution defined by ¢’ = min{l — ¢, 1}. Let
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5,7 € [0,11X be defined as follows: 5(c) = 0.6,6(d) = 0.3,y(c) = 0.5,)(d) = 0.7. Define t,t* : [0,1]X — [0,1] as
follows:

1, if n=01 0, if n=0,1

08, if n=20; 02, if n=0;

_) 03 if n=y; =) 07, if n=y;
=\ 07, ifp=6vy; TWTV03 if n=6vy;
02, if n=0AY; 08, if n=0AY;

0, otherwise. 1, otherwise.

Then, the pair (t,7") is an (L, M)-double fuzzy topology on X.

Definition 5.2. For (L, <, ®) is semi-quantales and X a non-empty set. The pair (K, K*) of maps K, K* : LX — L
is called an L-double fuzzy co-topology on X [31, 42] if it satisfies the next conditions: For all A,B € LX and for every
family {A;: je Jy € L%,

(COTy) K(A) < =~(K*(A))

(COT,) K(L) =K(T) = T, and (COTH K (L) =K(T) = L1,
(COTs) K(A)®K(B) < K(A® B), and (COT;) K*(A) & T*(B) > K*(A @ B),
(COT) \K(A) < KU\ A, and (COTy) VK (4 2 (A Ay

IS IS j€ j€

The triple (X, K, K*) is said to be an L-double fuzzy co-topological space, K and K* may be interpreted as
gradation of closedness and gradation of non closedness, respectively.

According to Lemma 4.15 and Corollary 3.14, we get the next result:

Theorem 5.3. An L-double measure of roughness of L-DFLApprox L, L,. : LX — L has the next properties: For
all A, B € LX and for every family {A; : i € I} € L%;

(1) IfLis st-s, then

@) Ly(T) =T, and (i) £,.(T) = L,
2) @) LN(\E/IAi) 2 /E\ILN(Ai), and (i) LN*(.\E/IAI‘) < ,\E/ILN* (Ai),

3) () L(A®B) > L (A)®L,(B),and (i) L,.(A®B) < L.(A) & L,.(B).

X — L constitute an L-double fuzzy

The statements of such theorem means that the operators £, £,. : L
topology on X.

According to Corollary 3.15, and Lemma 4.17, we can conclude that:

Theorem 5.4. An L-double measure of roughness of L-DFUApprox U, U, : LX — L has the next properties: For
all A, B € LX and for every family {A; :i € I} C LX;

M OU(L) =T, and (i) Uy (L) = L,
2) @ (LIN(/E\I A) 2 /E\I U, (Ai), and (if) (L{N*(/e\z A < ,\E/I‘UN* (Ai),

®) () U (A®B) > U (A)U,B), and  (ii) U,.(A®B) < U,.(A) & U,.(B).

X

What was stated in the previous theorem means that the operators U, , U,. : L* — L constitute an L-double

fuzzy co-topology on X.
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6. Conclusions

In this paper, we have defined and studied the notion of L-DFGN systems as a generalization of L-FGN
systems [55, 56]. Additionally, a pair of L-DFLApprox andL-DFUApprox operators based on L-DFGN
systems have been proposed. Their respective double measure of roughness has been given. As L is a
quantale, we have redefined the L-double relation [1] and used it to define the quantale-valued double
fuzzy rough set. In addition, it has been proved that L-DFGN system-based approximation operators has
L-double relation as a special case. Furthermore, different kinds of L-DRApprox operators corresponding
to the different special L-DFGN system have been presented and studied. Finally, we have interpreted
the operators of double measures of L-DFLApprox and L-DFUApprox as an L-double fuzzy topology and
an L-double fuzzy co-topology on a set X, respectively. In the future, we will attempt to consider some
potential applications of the L-double fuzzy rough set theory of multi-attribute decision making.
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