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Abstract. The aim of current study is to establish two crucial (p, q)"-integral identities for midpoint
and trapezoid type inequalities. Utilizing these identities, we developed some new variant of midpoint
and trapezoid type integral inequalities of differential (a, 7)-convex functions using right post quantum

integral approach. Moreover, we have presented the application of derived results related to special means
of positive real numbers.

1. Introduction

The notion of convexity is key to many branches of applied mathematics. Modern analysis devised
the applications of convexity in various disciplines of engineering and mathematics. Convex functions
are useful in the study of optimization theory and integral inequalities of convex functions has become
an emerging area of research for last few decades. The concept of convexity has been generalized to a
great extent and different types of convex functions like quasi-convex [1], (a, m) convex [2], h-convex [3],
p-convex [4], exp-convex [5], log-convex [6], harmonically convex [7], E-convex [8], s-convex [9] etc. have
been developed and analyzed thoroughly. A function F : I — R is said to be convex if

F(Ex +(1=&)y) < &F(») + (1 - &F(y)

where »,y € I and & € [0, 1].
Mihesan introduced the class of («, m)-convex functions and stated as:

Definition 1.1. [10] A function F : I — R is called («t, m)-convex, if the inequality
F(Ex+m(Q=8)y)<EFG)+m-EYF(y)

holds forall x,y €1, £ €[0,1],a € [0,1] and m € [0, 1].
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It is notable that F is convex if and only if it satisfies the Hermite-Hadamard'’s inequality, stated below:

a+p 1 o F(o) +F(p)
F( - )sp_anF(%)d%s—z

where F : [ — Ris a convex function and o, p € I with 0 < p. The idea of convexity is substantially unified
with quantum and post quantum calculus to develop generalized versions of integral inequalities [11].
Quantum and post quantum variants of Hermite Hadamard’s inequalities, Simpson’s type inequalities,
Midpoint type inequalities, Trapezoid type inequalities, Newton’s type inequalities etc. have been focused
in recent research publications.

On the other hand, the work of Leonhard Euler (1707-1783) on newton’s infinite series initiated the
field of quantum calculus in early eighteenth century. Quantum calculus is also known as calculus without
limits, it became popular after research publications of Albert Einstein in 1905. Later on, in 1910, F. Jackson
thorough study of the subject developed many areas of g-calculus. Many researchers believe that quantum
calculus is a bridge between mathematics and physics. It has lot of applications in field of number theory,
combinatorics, cryptography, hypergeometric functions, mechanics, theory of quantum, theory of relativity
etc. [12, 13]. In 1966, Al-Salam [14] introduced a g-analogue of the g-fractional integrals and g-Riemann-
Liouville fractional. Thenceforth, the work provided foundation to latest area of research and increased the
research in field of quantum fractional analysis. In particular, in 2013, Tariboon and Ntouyas introduced
the left quantum difference operator and left quantum integral in [15]. In 2020, Bermudo et al. introduced
the notion of right quantum derivative and right quantum integral in [3].

The post quantum calculus is the generalized version of quantum calculus. Quantum and post quantum
integral inequalities have been explored by many researchers for different types of convexities. For example,
in [16-22], the authors proved Hermite-Hadamard integral inequalities and their left-right estimates for
integrals. In [23], the generalized version of g-integral inequalities was presented by Noor et al. In [24]
Nwaeze et al. proved certain partametrized quantum integral inequalities for generalized quasi convex
functions. Khan et al.proved Hermite-Hadamard inequality using the green function in [25]. For convex
and co-ordinated convex functions, Budak et al. [26], Alietal. [27,28] and Vivas-Cortez et al. [29] developed
new quantum Simpson’s and Newton’s type inequalities. For quantum Ostrowski’s type inequalities for
convex and co-ordinated convex functions, please refer to [30-32].

Motivated by ongoing research, we have developed some new variants of Midpoint and Trapezoid type
inequalities for (a, m)-convex functions by utilizing (p, ) integral of post quantum calculus . The obtained
post quantum inequalities can be turned into quantum Midpoint and trapezoid type inequalities for convex
functions [33]. Moreover, these quantum inequalities can be further reduced to classical Midpoint type
[34] and the classical Trapezoid type inequalities for convex functions [35] without proving each of them
separately.

The structure of this paper is as follows: Section 2 provides a brief overview of the fundamentals of
(p, 9)-calculus as well as related results of the field. Section 3 focuses on two major identities that are crucial
in establishing the main results of the paper. The Midpoint and Trapezoid type integral inequalities for
(p, g)-differentiable functions via (p, q)-integrals are presented in section 4 and section 5. The applications of
main results to special means are discussed in section 6. Section 7 concludes the article with some feasible
research suggestions for the future.

2. Preliminaries and definitions of (p, g)-calculus

In this section, we first present the definitions and some properties of quantum integrals. We also
mention some well known inequalities for quantum integrals. Throughout this paper, weassumed 0 < g < 1
and 0 < p < 1be the parameters.

The (p, g)-number or (p, g)-analogue of n € IN is given by

[n]p,q =
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The classical (p, )- integral defined in [36] from 0 to p as follows:

0 © n n
q q
f FOOdpgn = (p=p ) —gFp—s)
0 n=0 p p
provided the sum converges absolutely.

Definition 2.1. [36] Let F : I — R be a continuous function and let x € I. Then the (p, q), derivative on I of F at »
is defined as

F(px + (1 -p)o) — F(g» + (1 — g)o)
(=g —o0)

oDpgF (%) = n#+o, (1)

oDpF(0) = limy_s sDpgF(x).
If 0 = 0in (1), then we get classical (p, q)-derivative of F(x) at » € I, given by

F(px) - F
Dy 00 = Dy 0 = o T

Definition 2.2. [36] Let F : I — R be a continuous function. Then the (p, q)o-integral on I is defined as

f F€oat = (=)o = 0) Y S FCer (L= 2 00) @
g n=0

fornel Ifo =0in(2), then

fF(E)odp,qcf=f F(&)dyqé,
0 0

where fox F(&)dy & is familiar classical (p, q)-definite integral on [0, %] defined by the expression

n

[ F@ntnat = [ F@tat = - Y A0,
0 0 =P p

Moreover, if ¢ € (0, 1), then the (p, q)-integral on I is defined as

f F(E)gdp,qg Zf F(é)odp,qé - fF(E)Jdp,qE-

Theorem 2.3. [36]IfF : [0, p] — R is a continuous function and z € [o, p], then the following identities hold:

(l) on,qf F(%)odp,q% = F(Z)
(1) f oDpgF (3)sdp g = F(2)

(1ii) fz oDy gF (1) sdpgn = F(z) = F(c) for c € (0,z2)

Definition 2.4. [37] Let F : I — R be a continuous function and let x € I. Then the (p, q)P derivative on I of F at »
is defined as
Flpx + (1 —p)p) —Flgn + (1 — q)p)
PD,.F(») = HE P,
pat 9 (P =)= p) g

PD,qF(p) = limy, "Dy F(20).
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Definition 2.5. [37] Let F : I — R be a continuous function. Then the (p, q)°-integral on I is defined as

St 0) ©)

P = gt
[ Ferae = m-np-0Y,
n n=0

fornel Ifp=1in(3), then

1 1
f F(é)ldp,qé :f F(g)dp,qé/

where fo% F(&)dy & is familiar (p, q)-definite integral on [0, ] defined by the expression

[ F@ndat = [ F@Me = -2 Y 0.
0 0 = P p

Moreover, if ¢ € (0, 1), then the (p, q)-integral on I is defined as

f F(é)adp,qé :f F(é)odp,qé_ fF(é)adp,qé-

In [38], M. Kunt et al. proved the corresponding Hermite-Hadamard inequalities for convex functions
by using (p, q)s-integrals, which is given by

Theorem 2.6. [38] If F : [0,p] — R be a convex differentiable function on [o,p] and 0 < q < p < 1. Then,
Hermite-Hadamard inequalities is given by

pp+(1-p)o
qo +pp 1 qF (o) + pF (p)
< F &) jd& <17 1
( a2, ) = pp-0) (&) oy <=1 -

(4)
M.A. Ali et al. proved the corresponding Hermite-Hadamard inequalities for convex functions by using
(p, 9)°- integrals, as follows:

Theorem 2.7. [39] If F : [0,p] — R be a convex differentiable function on [o,p] and 0 < q < p < 1. Then,
(p, 9)P-Hermite-Hadamard inequalities

P
po +4qp 1 pF (o) +qF (p)
F F() v P =g,

( 2, )S -0 f (&) Plpa> <51 ©

A

op+(1-p)p

Now, we present a new lemma for post quantum calculus which is significant in proving the upcoming
lemmas.

Lemma 2.8. For continuous functions F, g : [0, p] = IR, the following equality true:

c

g
g(5)F(Eo+1-&)p)
(7) +P(p1_0) fo Dp,qg(g)F(qéaJr(l—%)P)dp,qcf
0

p—0

fo JEY Dy F(Ea+ (1= E)p)dyl = —

Proof. The lemma can be demonstrated using simple calculations, hence it is omitted. [

Remark 2.9. If we take p = 1 in Lemma 2.8, we get relevant result in quantum calculus [40, Lemma 1].
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3. Crucial Identities

In this section, we prove two major post quantum integral identities utilizing the integration by parts
method for post quantum integrals, which are helpful to obtain our main outcomes.

Lemma3.1. For F : I C R — R be a (p,q) differentiable function on I, and o,p € I with o < p. If "Dy F is
continious and integrable on 1, then one has the identity for m € [0,1]:

i 1 1
q@m—oﬂj”]émﬂhf@o+ma—émmmé+j“<é—yMH%f@o+ma—émww4
0 P

2lp,q

po + mqp) 1 f " -
F(o)-F + F(»)"Pd, ;x. 6
( ) ( [Z]P,li Pz(mp - O') po+m(1-p)p ( ) P ( )

Proof. From fundamental properties of post quantum integrals, we have

p-9p-1)
2

er'w 1 1
[f” E"PDy4F (&0 +m(1 = &)p)dy.& + f (&- a) "Dy gF (&0 +m(1 - E)P)dp,qé}
0 4

[2lp,q

By 1
[f“ émth@a+ma—émmwé+jké—5wth@o+ma—émmwa
0 0

By 1
_ j;[ ] (- a) "D, F(E0 +m(1 - E)P)dﬂlqé]

L+ —13.

Using the Lemma 2.8, we have

L = fmp/ﬂ EPM"DyoF (S0 +m(1 = E)p)d, 4

0
EF(Eo+m(1-8p

P
12lpq

1 e
* m jo‘ F(&qo +m(1 = &q)p)dy &

p mp—o 0
1 po + mqp 1 flzl};q
= - F F 1 &q)p)dpqE. 7

Similarly, we have

1
1
L = jXé—?m%%f@a+ma—am%¢
0
P79 pm—L Fm )+;I1F(5 o +m(l - Eg)p)dy ol
pa(mp — o) qgmp—0) T Pmp—a) Jo T VPVpa
P—q 1 1 fmp m pP—9q
— 1 _Fo)- ——F - F() "Pdy % — —————F(0)(8
pq(mp — o) (©) q(mp — o) (mp) + p2q(mp = 0)? Jpssma-pyp ()™l g3¢ p2q(mp — o) @®)
and
oy 1
Iy = f[] - E)mPDPﬂF(&’ +m(l = &)p)dp,q& )
0
Y L F(mp) + —— ‘fd%F@ (1 = Eq)p)dy, &
= - - o - .
412, mp—0) * 21, | qmp—a) T pmp—o) Jy i VP)pa
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Thus from (7), (8) and (9), we have

p-9pp-1,_ 1 po+map, 1 fmp
P

F F
p*q(mp — o) (©) q(mp — o) ( (2], p2q(mp — 0)?

and we obtained required equality (6) by multiplying g(mp — o) on both sides of (10). Thus, the proof is
accomplished. [J

11+12—I3:

F(0)"Pdy x (10)
g+m(1-p)p

Remark 3.2. In Lemma 3.1,
(i) If we set m =1, then we obtain new variant of the identity.
(ii) If we set p =1 and o = m = 1, then identity reduces to quantum calculus [33, Lemma 2].
(iii) Ifwesetp =1, a = m = 1and take g — 17, then we obtain [34, Lemma 2.1].

Lemma 3.3. Assume that F : I C R — R be a (p, q) differentiable function on I, and o, p € I with o < p. If "D, ,F
is continious and integrable on I, then one has the identity for m € [0, 1]

@ +pr Q@O +pafmp) 1"y
[z]p q (mP - U) po+m(1-p)p P
% f (1= [21,,, &) "Dy F(E0 + m(1 = E)p)dy 4. (11)

Proof. From fundamental properties of post quantum integral, we have
1
f (11214 &) " Dpgf (&0 + m(1 = &)p)dp,q&
0

(1 [2],,4 $)F(Eo +m(1 - E)p)|
mp — o -

_ gF@) +pFimp)  [2y, 1 )
- p(mp — o) P2(mp — o) f F(géo +m(1 — g&)p)dy,q&
_ g +pFmp) 2l (- ) Z

p(mp — o) p*q(mp — o)

[2],,4
pA(mp — o)

1
| Fago e m - g
0

0

n+1 qn+1
( n+1 o+ m(l - pn+1 )p)

n= 0
@) Ry (-0 (5 g
~ pmp-0)  p*(mp - o) [Z p_ o Fm(l = _)P) F(G)]

qgF(0) + pF(mp) — [2lp4 (2], (P —9)
= FGo™d e TF
p(mp - 0) p Q(mP CT) po+m(1-p)p G4 P qu(THP -0) @
(p* + pi® — 4HF(0) + p*qF (mp) 2], "
= - FG0)™d,) . 12
p*q(mp — o) p*q(mp = 0)? Jysama—pyp (™ g (12)

and we obtain the required equality (11) by multiplying pzq[(+:ﬂ_a) on both sides of (12). O
Thus, the proof is accomplished.
Remark 3.4. In Lemma 3.3,
(i) If we set m =1, then we obtain new variant of the identity.
(ii) If we set p =1 and o = m = 1, then identity reduces to quantum calculus [33, Lemma 1].

(iif) Ifwesetp =1, « = m =1 and take limit as g — 17, then we find [35, Lemma 2.1].
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4. Midpoint Type inequalities for (a, m)-convex functions
In this section, we will derive Midpoint type inequalities for differentiable (a, m)-convex functions.

Theorem 4.1. Under the assumption of Lemma 3.1, if |"P D 4F| is (a, m)-convex function over [o, p], then we find
the following midpoint type inequality:

‘@-wﬂ?-’DFw)_F(PG+”WP)+ 1 ‘fWP F(0) ™ d, %
p p

[2],, p*(mp = 0) Jposma—pyp
< qimp —o)[(W1(p,q) + Wa(p, D) ["" Dy gF (o)l + m (W2(p, q) + Walp, 9)) [""DpqF (o), (13)

where

a+2
P

(215" [a + 21y,

ﬁ a+1
Wi(p,q) = 3 dp,qé =
0

2 a+2

p p

2P, [R5 [a+2],

w@m—flﬁf %dé— ! L

3P, q) = - = g6 = -

e q P gla+ 1,, [a+2],,
pa+l . pa+2

ﬂmﬁWa+um [agqa+ﬂm

Wa(p, q) = j(;mw E1 =&Y dpy =

wy( >—f1 (1_5)(1—5“)01 S, S
apq =1 q P [Z]S,q [a+2]p  [21552 [a+2],,

2lpq

. pa+l 1
gl a+1],, qla+1l,

Proof. By taking modulus in (6), and using (&, m)-convexity of |"P Dy 4F|, we have

_ -1 e
‘(P ‘1)(2}7 )F(o) _F (PU + qu) = 1 F(0) rnpdp/q%
p (2], pA(mp = 0) Jporma-pp

1

Ty 1
4(mp - o) [ f T D, (£ + m(l - E)p)| dygE + f (5 - 5) "D, F(E0 +m(1 - E)p)| dp,qs}
0

<
< q(mp o) U " E D F(0)] dp g + f (&= &) " DyyF(p)l dygé

1 a 1 1
+fp (7 - 5‘”1) "PDy,gF (0)] dp4& + fp m(a - 5) (1= &%) " DpgF(p)l dwél

g @l

= qlmp — o) [W1(p, 9) 1" Dy F(@)| + m Wa(p, q) I""Dyaf(p)l + Walp, 4) "Dy F(@)] +m Wa(p, ) " DyaF ()]
= q(mp = o)[(W1(p,q) + Ws(p, 9)) " DpgF (o)l + m (Wa(p, ) + Walp, 9)) ""DpqF(p)l]-
Thus, the proof is accomplished. [

Remark 4.2. In Theorem 4.1, we have

(i) If weset m = o =1, then we get new result for convex function in (p, q)-calculus.

(ii) If we set @ =m = 1and p = 1, then we get [33, Theorem 1].
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(iii) Ifweset a« =m =1, p = 1 and take limit as g — 17, then we find [34, Theorem 2.2].

Theorem 4.3. Under the assumption of Lemma 3.1, If "D, ,F(2)", v > 1 is (a, m)-convex function over [o, p],
then we find the following midpoint type inequality:

p-9p-1) (w+mw) 1 fm mp
T Gy —F F(30) "

po+m(1-p)p
2 1=
< q(mp - o)[[z"]a ] [(W1(q) " DF (@) + m Wa(g) " DyF(p)I')
pA
+(W3(q) I""DyF (o))" + m Wa(q) ""DeF(p))7 |- (14)

Proof. By taking modulus in (6), and using power mean inequality, we have

p-qp-1) po + map 1 "
—————F(0)-F >
p 2], p2(mp = 0) Jporma-pyp

F() ™ dy

< qmp-o) fO[ ] & "PDygF (&0 +m(1 = &)p)l dpqé + fp (5 - %) "PDypqgF (&0 +m(1 = &)p) dp,qél
L Rlpgq
(et e '

< q(mp - o) ( fo 5%5] [ fo " "D, F(Ea +m(1 - E)p)I dp,,,é]

2lp,q

1 = }
+[fV (% - é) dWE] [f” (% - 5) "Dy g (20 + m(1 = O)p)| dp'qé\] }
o -

By applying (a, m)-convexity of |"F D, oF (»)|", we have

‘—(P _ q;ip — 1)F((F) - F(p(7 i mqp) + ! fmp F()"Pdy,qn

[zlp,q pZ(mp - G) po+m(1-p)p
2\
< q(mp—o)
[m?w]

ﬁ a+1 ymp r ﬁ a+1ymp r '
; & | Dp,qF(G)l dp,qé"" ) m (E—&7) Dp,qF(p)| dp,qé

1 a 1 1 r %
+[fp (% - é“”) "P Dy gF ()" dpgé + fp m(a —5) (1= &%) ["DypaF (o) d,,,qé] ‘

X

12y, [an
2 1=
= qmp-o) [#] [(W1(p,9) 1" Dy F (@) + m Wa(g) "Dy F (o))
p4a

+(W3(p, 9) "Dy F(p)I" +m Walp,q) "Dy aF ()7 ]
Thus, the proof is accomplished. [

Remark 4.4. In Theorem 4.3,

(i) If weset p =1and a =m =1, then we obtain [33, Theorem 2].

(ii) Ifweset @ =m =1, p = 1 and take limit as ¢ — 17, then we find [11, Corollary 17].
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Theorem 4.5. Under the assumption of Lemma 3.1, if r > 1 is a real number, if ["?D,oF(»)|" is (a, m)-convex
function over [0, pl, then we find the following midpoint type inequality,
wherert +s71 =1,

p-9pp-1) po + mgp 1 P .
-——7ﬁ———FW)—F( o, )+p%mp_a)l: F() " d , %

o+m(1-p)p
< q(mp - o)
1 : .
X|| — D , mpD . F(o) + mC ’ mpp F r\7r
[( 215 s + 11,,,,,] (a(p, D" DpaF @ + mCa(p "Dy F (o))
+1(p,0)* (@20, D" DygF @ + mCalp, )" Dy F O |, (15
where
14
2lhg pa+1
O] ’ = f éad y 5 =
1(p, 9) . P [2]3’;1 [a+ 1]m
1 1 pa+1
q)Z(pr Q) = Ead y E = _ -
o 1 [a + 1]’],{1 [2]}7:1—1 [0( + l]p,q
»
m p pa+1
Gipg) = f 1-E%d, & = -
1(p,9) i ( ) dpg Ry 25 @+ 1,
1 a+1
q 1 p
Cpg = (1 - &%) dpyé = - - —
2T P2, a1, 215+ [a+1],,
1 1 s
n(p/ ‘7) = f” (5 - 5) dp,qé-
B

Proof. Taking absolute value of (6) and using the Holder’s inequality, we have

po + mqp) 1 fmp m
F(o) - F + F(%)"°d, %
( ) ( [zlp,q Pz(mp - 0) po+m(1-p)p ( ) "

ﬂMP—G)Lﬂ € "PDygF (&0 +m(1 = E)p)| dpgé

‘@—m@—n
p2

<
1 1
+ fﬂ ‘(é - 5) mPDp,qF(‘SO +m(l-¢&)p) dprqé}
2hq
< q(mp—o0) l(fmm 5Sdp,q€f] (fmw ["PDpqF (&0 + m(1 = E)p)l dmé]
0 0

AL e ([

s 1 %
[ "Dy (0 + m(1 = £)p)] dwé] ‘ |
2lp,q

[2lpq

By applying (a, m)- convexity of |"P Dy 4F (2)|", we have

po + mqp) 1 fmp m
F(o)-F + F(x)"Pd,
( ) ( [2]p,q Pz(mp - 0) po+m(1-p)p ( ) "

rp—w@—1>
p2

< g(mp—o)
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1

x ( | éf'dp,qé] ( [T e ey dae [ m - e, dp,qé]
0 0 0

1 1 s : 1 1 i

+ f (‘ - ) d,,,,é] [f & "Dy gF ()" dpq +f m (1= EN"DyqF(p)l dméJ

= g(mp —o)

s

(@1, DI Dy aF (@) + mCi(p, DI" Dy aF ()’

1
x ([2 s+1 [ + 1]
pa 151 Lpg

1
r

+(1(p, D) (P2p, D" Dy gF (@)1 + mCa(g)" Dy F()') ] : (16)
Thus, the proof is accomplished. [
Remark 4.6. In Theorem 4.5, we have

(i) If we set @ = m =1, then we obtain new result for convex function in (p, q)-calculus.
(ii) If we set p =1 and o« = m = 1, then we find quantum mid point type inequality for convex function.

(iii) If weset p =1, a = m = 1 and take the limit as ¢ — 17, then we find [34, Theorem 2.3].

5. Trapezoid type inequalities for (a, m)-convex functions
In this section, we will derive Trapezoid type inequalities for differentiable (a, m)-convex functions.

Theorem 5.1. Under the assumption of Lemma 3.3, if |"P D, 4F| is (o, m)-convex function over [o, p], then we have
the following trapezoid type inequality:

(1? + p? — 49)F (0) + pqF (mp) 1 e
_ F(x)"d
[2],4 (mp — o) fpﬁm(l—p)p G
2 _
< p q({:]p G) [|mpr,qF(O')’ (Kl (p, q) _ Kz(p’ q)) +m |mpr/qF(p)| (Ll (P, Q) - LZ(P, Q))] ’ (17)
pa

where

a+1
q

Ka(p, ) = fo (€ = (2], € )y =

[2];;1 [a+1],,[a+2],,
1 1 [2] qa+1
— a _ a+1 _ _ pa_
Kl = [ (€= 6= - 2155 T+ 1], la + 2],

2lp,q

m q qa+1
L= [ A= 12,00 - e = -
=, P P RE, R a1, la+ 2,
1
L) = [ (1= 2y 00— £
2lpq
qlalp, q 1 1

- + - .
[a+ 1] la+2],, 20, [a+1],,02150  [a+2],,[205"
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Proof. By taking modulus in (11), and using (a, m)-convexity of |""* D, 4F|, we have

(¢ +pg* = g0 +p*aF(mp) 1 f’“”
p

F()"Pdy gx

[z]p q (mP - 0)

o+m(l-p)p

p*q(mp — o) .
= TM f(l [2],, )"’ Dy gF(E0 + m(1 = &)p)dy &
B }MI |1~ 121, O [ DpaF (£0 + m(1L = E)p)| dgé

21,

W(f |(1_ 2]PW€)|£a |mPDMF ‘7)|di"75+f ‘(1 [2]M£))m(l %) )mPquF(p))dpqE)
)

- % (173 ()] (Ksp,4) = Ka(p, ) +11 "Dy ()] Lap, ) = Latp, )]

Thus, the proof is accomplished. [
Remark 5.2. In Theorem 5.1, we have
(i) If weset @ = m =1, then a new result for convex function is obtained in (p, q)-calculus.
(i) If weset p =1and a = m =1, then we get [33, Theorem 1].
(iii) Ifweset p =1, « = m = 1 and take the limit as ¢ — 17, then we find [35, Theorem 2.2].

Theorem 5.3. Under the assumption of Lemma 3.3, if ["?D,,F())[", v > 1 is (a, m)-convex function over [0, p],
then we have the following trapezoid type inequality:

F(0) +p*gFmp) 1 f’”ﬁ
[z]p,q (mp — o) p

F(0)"Pdy gn

o+m(1-p)p

q(mp — o)

1-1
2 ' r r 1
[—ZJ [["°Dy4F (@) (Ka(p, 9) = Ka(p, 9)) + m ["* Dy oF ()| (La(p, 9) - Lalp,9))| ", (18)
21, 215,

Proof. By taking modulus in (11) and using power mean inequality, we have
P)F(0) + pPqF(mp) 1 "
2]p q (mP - G) po+m(1-p)p

f (1= [21,, &) Dy F (0 + m(1 — E)p)dy 0

F(0)"Pd,qn

pPq(mp — o)
Z]Pq

~i=

3+
< W ( f (1= 121y, 9) dpqé) ( fo |1 = 1215, )| ["Dy gF (0 + m(1 = E)p) g
P
By applying (a, m)-convexity of |""* D, 4F (»)|", we have

P gF©) +pPgFtmp) 1 f’"ﬁ
2]y, (mp —0)

1}
< M([ |(1_ Z]pq5)|dpq5)
(21,4

1
x( fo (1= 121, )] &% "Dy oF ()| dp gl + fo (1 = 21, &) m@ = &) " Dy oF (p)| dpoé

F(0)"Pd,qu

po+m(1-p)p

1
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pzq(mp—o)[ 2 ]1_’
2], 217,

x[["DygF(@)] (Kap, 9) = Ka(p, 9)) + m ["* Dy oF ()| (La(p, 9) - La(p, )] -
Thus, the proof is accomplished. [

Remark 5.4. In Theorem 5.3, we have

(i) If we set @ = m =1, then a new result for convex function is obtained in (p, q)-calculus.
(ii) Ifwe set p =1and a = m =1, then we get [33, Theorem 2].

(iii) Ifweset p =1, o = m = 1 and take the limit as ¢ — 17, then we find [41, Theorem 1].

6. Application to special means
For any positive number o, p € R, we consider the following means:

(i) The Arithmetic mean

o+ p

Alo,p) = —

(i) The Harmonic mean

20p

H(o,p) = oxp

(iii) The Geometric mean

G(a,p) = op .
Proposition 6.1. Leto,p e R, 0 <p, a €[0,1], me€[0,1] and 0 < g <p < 1. Then we find
2 Alp.q) 1 q(mp — o)
———[A(p*,q) - A(pq,p)] - <—
G*(ap-p) v9)=Alpap) A(po,mgp) ~ GXp,p) P—q
(o'fmp)H(qg{»(l7;)mp,mp(p71)7po') (‘yl (P/ 07) + ‘113(p/ ‘1))
X
|G| (Y200 + Yalp, )
where
1 P 1 i Z—
Y = f = M= () Y .
LT mp=0) D P = wo+ml-)p

Proof. The inequality (13) for function F(x) = 1 leads to required result. []

Proposition 6.2. Ifwe takec =1,p=2,4=0.7,m=0.9,p = 0.8 and o = 0 in (19), we get

Apg) ~
—Gz(gp_p) [A(pz,q) - A(pq,p)] - AGmpa-Dp) + Gz(lp,p)Tl ~ 0.1815789774

4504

(19)

(20)
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2
(mp—0) (o-mp)H(go+(1-gq)mp,mp(p~1)-po) (P1p,9) + W(p, )
qunp=a) = 1.226707537.

p—q
2
tm | (p=mp)H(gp+(1=q)mp,mp(p=1)—pp) | (Wa(p,q) + Walp, )

Hence,
0.1815789774 < 1.226707537.

Proposition 6.3. Leto,p € R, 0 <p, a €[0,1], me[0,1] and 0 <q <p < 1. Then we find

‘A(Gz(pzl mp) + G*(pq, qmp), G*(p*, o9) — G*(q,qmp))
G?(mp,0)A(p, q)

_G*(q,p*)(mp — o)
2(p - 9A(p,9)

—Tl‘ﬁ

2
(0-mp)H(qo+(1~q)mp,mp(p=1)~po) Ki(p,9) — Kap, 9))

2
| ommpHGp+A=mpmp—1—pp) (L1(p, q) = La(p,9)

X

where

n

1 P 1 - o
Yl = —f - de r n = ( - ) T N
(mP - 0) po+m(l-p)p n P pa nZ:(; q—,,O’ + m(l - ;%)p

P
Proof. The inequality (17) for function F(x) = L leads to required result. []

Proposition 6.4. Ifwe takec =1,p=2,g=0.9,m =0.8,p = 0.95and a = 0.1 in (21), we get

A(GA (2 mp)+G(pg.qmp),G*(p*,00)~G*(q 4mp)) ~
G2(mp,0)A(p.9) - Yll ~ 0.0094180663,

2
G- mpG-—pa | (K1 @) = Ka(p, )

2
1| G a-gmpmpe-n-p | L1 (P, 9) ~ La(p. )

_ G@pH)mp—o)

2(p-q)¥ (p.9) = 2.425109248.

Hence,
0.0094180663 < 2.425109248.

7. Conclusion

4505

(21)

(22)

In this paper, we have presented two novel post quantum identities for midpoint and trapezoid type
inequalities. Utilizing these identities, we have developed some midpoint and trapezoid type integral
inequalities for (a, m) convexity. The major motivation for this research was to propose some novel right
post quantum Midpoint and Trapezoid type inequalities for (a, m) differentiable convex functions. The
determined results of reseach have been reduced to the outcomes of previously published articles, ensuring
the validity of the results. In future, similar inequalities can be developed for co-ordinated (a, 1) convex

functions or any other generalized convexity.
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