Filomat 37:14 (2023), 4549-4571

Published by Faculty of Sciences and Mathematics,
https://doi.org/10.2298/FIL2314549A

University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

A
Wy, @“‘
i axs

2,
%,
e,

¥
5
TIprpor®

Non homogeneous dual wavelet frames and oblique extension
principles in H*(KK)

Owais Ahmad?

?Department of Mathematics, National Institute of Technology, Srinagar-190006, Jammu and Kashmir, India.

Abstract. In this paper, we introduce the notion of nonhomogeneous dual wavelet frames in Sobolev
spaces over local fields. We provide the complete characterization of nonhomogeneous dual wavelet
frames on local fields. Furthermore, we obtain a mixed oblique extension principle for such frames.

1. Introduction

The wavelet transform is a simple mathematical tool that cuts up data or functions into different
frequency components, and then studies each components with a resolution matched to its scale. The
main feature of the wavelet transform is to hierarchically decompose general functions, as a signal or a
process, into a set of approximation functions with different scales. One of the important factor behind
the stable decomposition of a signal for analysis or transmission is related to the type of representation
used for its spanning set (representation system). A careful choice of the spanning set enables us to solve a
variety of analysis tasks. During the last two decades, many researchers have contributed in the designing
and time-frequency analysis of these representation systems for the various spaces, namely, finite and
infinite abelian groups, Euclidean spaces, locally compact abelian groups. Nonhomogeneous dual wavelet
frames admit fast wavelet transform as compared to homogeneous ones and possesses more designing
freedom than homogeneous ones. Han [18-20] studied nonhomogeneous dual wavelet frames in L*(IR?).

Nonhomogeneous dual wavelet frames in (HS (R%), H ‘s(]Rd)) were studied by various authors [13, 15-17].

During the last decade, there is a substantial body of work that has been concerned with the construc-
tion of wavelets and frames on local fields. For example, R. L. Benedetto and J. ]. Benedetto [12] developed
a wavelet theory for local fields and related groups. They did not develop the multiresolution analysis
(MRA) approach, their method is based on the theory of wavelet sets and only allows the construction
of wavelet functions whose Fourier transforms are characteristic functions of some sets. Jiang et al. [22]
pointed out a method for constructing orthogonal wavelets on local field K with a constant generating
sequence and derived necessary and sufficient conditions for a solution of the refinement equation to gen-
erate a multiresolution analysis of L>(K). Later on, Li and Jiang [23] have obtained a necessary condition

and a set of sufficient conditions for the wavelet system {¢ ik =t q/! 2¢(p‘fx - u(k)) i ke ]No} to be a tight
wavelet frame on local fields in the frequency domain. Ahmad and his collaborators in the series of papers
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investigated frame theory on local fields and obtained various interesting results [2-10, 24-27]. Continuing
our investigation of frames on local fields, our main goal in this paper is to develop the theory of nonhomo-
geneous dual wavelet frames in the settings of local fields and provide their complete characterization.We
also derive a mixed oblique extension principle (MOEP) for such frames.

The paper is structured as follows. In section 2, we discuss the preliminaries on local fields, definition
of Sobolov spaces and the notion of nonhomogeneous dual wavelet frames on these fields. In Section 3,
we provide the complete characterization of nonhomogeneous dual wavelet frames in Sobolev spaces over
local fields. Section 4 is devoted to the derivation of mixed oblique extension principle for nonhomogeneous
dual wavelet frames.

2. Preliminaries on Local Fields

2.1. Local Fields

In this paper, we use the symbols IN,INy and Z to denote the sets of natural, non-negative integers and
integers, respectively. A local field K is a locally compact, non-discrete and totally disconnected field. If
it is of characteristic zero, then it is a field of p-adic numbers Q, or its finite extension. If K is of positive
characteristic, then K is a field of formal Laurent series over a finite field GF(p°). If ¢ = 1, it is a p-series field,
while for ¢ # 1, it is an algebraic extension of degree c of a p-series field. Let K be a fixed local field with
the ring of integers D = {x € K: |x| < 1}. Since K" is a locally compact Abelian group, we choose a Haar
measure dx for K*. A local field K is endowed with non—-Archimedean norm |- | : K — R* satisfying

(@) |x| = 0if and only if x = 0;
(b) [xyl = Ixlly| for all x, y € K;
() Ix + y| < max{|x|, |yl} for all x, y € K.

Property (c) is called the ultrametric inequality. Let B = {x € K: [x| < 1} be the prime ideal of the ring of
integers D in K. Then, the residue space ©/B is isomorphic to a finite field GF(q), where g = p° for some prime
p and ¢ € N. Since K is totally disconnected and 3B is both prime and principal ideal, so there exist a prime
element p of K such that B = (p) = pD. Let ©* = D\ B = {x € K : |x| = 1}. Clearly, D" is a group of units in K*
and if x # 0, then can write x = p"y, y € D*. Moreover, if U = {a,, : m =0,1,...,g — 1} denotes the fixed full
set of coset representatives of B in D, then every element x € K can be expressed uniquely as x = Y ;2; ¢, p°
with ¢, € U. Recall that B is compact and open, so each fractional ideal B¥ = pkD = {x eK: x|l < q‘k} is also
compact and open and is a subgroup of K*. We use the notation in Taibleson’s book [28].

Let x be a fixed character on K* that is trivial on © but non-trivial on B~!. Therefore, y is constant
on cosets of D so if y € Bk then Xy(x) = x(x,y),x € K. Suppose that x, is any character on K%, then the
restriction x,|® is a character on ©. Moreover, as characters on D, x,, = x» if and only if u — v € D. Hence,
if {u(n) : n € Ny} is a complete list of distinct coset representative of © in IK*, then, as it was proved in [28],

the set { Xun) : 1 € ]No} of distinct characters on D is a complete orthonormal system on .

We now impose a natural order on the sequence {u(n)};’ ;. We have D/8 = GF(q) where GF(q) is a

c-dimensional vector space over the field GF(p). We choose a set {1 = (o, (1, Cp, .., (-1} € D such that
span{(:j};;; = GF(g). For n € N satisfying
0<n<gqg, n :a0+a1p+---+ac_1pc_1, 0<ar<p, andk=0,1,...,c—1,

we define
u(n) = (ap + a1y + -+ + ac1Ce1) P 2.1)
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Also, forn = by + big+ by + -+ bsg®, n€ Ny, 0< by <q,k=0,1,2,...,s, we set
u(n) = u(bo) + u(b)pt + - + ubs)p>. (2.2)
This defines u(n) for all # € INp. In general, it is not true that u(m + n) = u(m) +u(n). But, if r,k € Ny and 0 <

s < g~, then u(rg* + s) = u(r)p™ + u(s). Further, it is also easy to verify that u(n) = 0 if and only if n = 0 and
() + u(k) : k € No} = {u(k) : k € No} for a fixed £ € N

Leta and b be any two fixed elements in K. Then, for any prime p and m, n € INy, we define the unitary
operators on L*(K) by:

Tumaf(x) = f (x - u(n)a), (Translation)
Dof(x) = vaf ('), (Dilation).

2.2. Fourier Transforms on Local Fields

The Fourier transform of f € L'(K) is denoted by f(&) and defined by

rirw) = fo) = [ s 23)

It is noted that
&) = f F() Ko 0O = f FOx(~&x) dx. 2.4)
K K

The properties of Fourier transforms on local field K are much similar to those of on the classical field IR.
In fact, the Fourier transform on local fields of positive characteristic have the following properties:

e The map f — f is a bounded linear transformation of L'(K) into L*(K), and ” f”m < “ f ||1
o If f € L'(K), then f is uniformly continuous.

o If f € L'(K) N LX(K), then ||f], = ||f]L,-
The Fourier transform of a function f € L%(K) is defined by

fO)=lim (&) =lim | fx:)dx, (2.5)

 Jlx|<gk

where fi = f ®_; and Py is the characteristic function of Bk, Furthermore, if fe L?(D), then we define the
Fourier coefficients of f as

flutm) = L £ o ) . 26)

The series ). ,en, f (u(n)) Xu(n(¥) is called the Fourier series of f. From the standard L-theory for compact

Abelian groups, we conclude that the Fourier series of f converges to f in L*(D) and Parseval’s identity
holds:

I = [ refar= ¥ |fucn)] 07

nelNyp
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For j € Ny, let N; denote a full collection of coset representatives of No/ qf Ny, i.e.,

Ni={012,...,4-1}, jzo0

Then, No = Uep, (n + qleo) , and for any distinct 11, n, € Nj, we have (m + qf]No) n (nz + qf]No) = (. Thus,
every non-negative integer k can uniquely be written as k = rq/ + s, where r € Ny, s € N.

We denote the test function space on K by Q(K), i.e., each function f in Q(K) is a finite linear
combination of functions of the form ®(x — h),h € K, k € Z, where @y is the characteristic function of B
Then, it is clear that QQ(K) is dense in L7(K),1 < p < o0, and each function in Q(K) is of compact support
and so is its Fourier transform. The space Q' (KK) of continuous linear functional on €(K) is called the space
of distributions.

Definition 2.1. For s € R, we denote by H*(K) as the space of all f € ()'(K) such that
V() € IA(K), where 7£) = max(1, [€]).

The space H*(K) is a linear space equipped with the inner product

o D) = Lﬁé)@?(é) ¢, f,9 € H(K),

which induces the norm )
2 —_—
(12— fIK | 7@ ae.
The space QQ(K) is dense in H*(K). For each g € H™*(K),

{f,9) = fk A&FE) de,

is a linear continuous functional in H*(K). The spaces H*(K) and H™*(K) form pairs of dual spaces. For
functions f, g : K — C, define

[£,9).©) = Y, F(& +uk) g€+ ul)P(E +u(k), seR

kelNp

The spectrum o(f) is given by

ou(f) = {£ € B: [f, fl(&) > 0}
For a distribution f, j € Z,k € Ny, s € R, we write

fix = qPf(p7E = u(®) and fi, = g° f (p7I€ - u(®).

2.4. Nonhomogeneous Dual Wavelet Frames on Local Fields

— ~\L
For s € R, let {g, t,bg}lgzl € H*(K) and {(p, W}gzl € H~*(K),we define the following two nonhomogeneous

wavelet systems in H*(KK) and H™*(KK), respectively:
(Ws((P’ \P) =W ((P’ lph llJZ/ ey 1;ZJL)
={pox : ke No} U {5, : j € No ke Ny, 1< <L) 2.8)
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and
W=(@; ‘T’) =W (5, 1,;1, 152, e IEL)
={Pox ke NoJU {95, : j€ No,k e Np, 1< £ <LJ. (2.9)

We say that W*(p, V) is a nonhomogeneous wavelet frame in H*(K) if there exists two positive constants A, B
such that

L o

Ao < Y [ poac + XY Y [k 03 0| < BIARG (210)

keNg =1 j=0 keNp
where A,B are called frame bounds; it is called a nonhomogeneous wavelet Bessel sequence in H*(K) if
the right hand inequality in (2.10) holds, where B is called a Bessel bound. Furthermore, we say that

(Ws((p; W), W3(p; ‘T’)) is a pair of nonhomogeneous wavelet dual frames in (H*(K), H(K)) if W*(p; ¥) and
W (e; ‘T/) are Bessel sequences in H*(KK) and H™*(K) respectively, and

L o
L= Y o Pudoon )+ Y Y Y FUs W 00 (211)

keNp =1 j=0 keN,
holds for all f € H*(K) and g € H™*(K).

If (W (; W), W(@; qf)) is a pair of dual frames in (H*(IK), H(K)), then it follows from (2.11) that the

series .
F=Y S Poopor+ Y. YN K50
kek =1 j=0 kek
and .
7= (0 PonPox+ Y, Y. Y W0 U
kek =1 j=0 kek

converging unconditionally in H*(K) and H™*(KK) respectively.
Definition 2.2. Define a function «x : Ny — INg by
x(k) = sup {] eZ:vuk) e No:-
It immediately follows that x(0) = +oc0. By the definition, we have the following propositions:
Proposition 2.1. {p‘K(k)‘lu(k) ke IN} = Ukenio) No + (k) .
Proposition 2.2. For ¢ € H*(K) and ¢ € H*(K), we have
a(p) N T (a(p) —u(v))
= {5 eB: P&+ u(k))$(£ + u(v) + u(n)) # 0 for some k,n € Np,v € Nj} ,

where 7 is a mapping from K to D defined as 7(x) = x — u(k) for x € © + u(k) with k € IN.

Proposition 2.3. Let {ax}ren, and {Bilren, be two sequences and Z Z |(quk‘3k| < o0, then
j=0 keIN

x(K)

Y Y anbi= Y Y

=0 keN keN j=0
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3. Characterization of Nonhomogeneous Dual Wavelet Frames

In this section, we establish the characterization of nonhomogeneous dual wavelet frames on Sobolev spaces
over local fields of positive characteristic. In order to establish these results we need various results which
we will state as lemmas. Define

F(W) = {Yrjc:jeZkeNy1< <L) 3B.1)
and . .
F (W) ={rjx:jeZkeNy,1< <L), (3.2)

Bownik [11] obtained the following important characterization for dual wavelet frames.

Proposition 3.1. Let (W) and T(\I/) be Bessel sequences in L*(K). Then (7" (W), 7"(\?/)) is a pair of dual
frames in L?(K) if and only if, for every k € Ny,

L «x(k)

Y Y eI, (3I(E + u() = S ae. £ € K. (33)
{=1 j=—c0
By a standard argument, we have the following result.

Lemma 3.1. For s € R. Define # by
PFE) =72 Of(E)
for f € H*(K). then we have

(i) P is a unitary operator both from H*(KK) onto L*(K) and from L*(K) onto H~*(K);
(ii)
PFAE) = 4774 (©) xupPIOF(E)

— s/2
{255 e

for f € H*(K).

Lemma 3.2. [See [11]] For ¢ € L*(K), {Tu(k)lp ke ]No} is a Bessel sequence in L?(KK) with Bessel bound B if
and only if

[0, P1o(E) < Bae. &€ B.
By Lemma 3.1 (i) and 3.2, we have

Lemma 3.3. Let s € R and ¢ € H*(K), {Tu(k)llj tke ]No} is a Bessel sequence in H*(K) with Bessel bound B if
and only if

[{b\, J/\]s(é) <Ba.eé& e B.
The idea of the following lemma is borrowed from [29] and can be proved analogously.
Lemma 3.4. Let S be a bounded set in K. Then there exist finite sets F; € INy and F, € IN such that
SN (S+puk)) =0 for (jk) € (Ng x N) \ F; x Fa. (3.4)

Lemma 3.5.For a givens € IR, j € Z and 1 € H*(K), we have
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(1) {ybjk ke ]Ng} is a Bessel sequence in H°(K) with Bessel bound B; if
{Tu(k)lp ke ]No} is a Bessel sequence in H*(KK) with Bessel bound B, where

B. = g-2°B 7(&) }S.
1= ?SE{( ig)

(i) 1T,V : k € INp; is a Bessel sequence in H*(IKK) with Bessel bound
(k) q

. Y ITEN’
B; = ¢*"B {V(f }
e 2 N7

if {gbj./k tke ]NO} is a Bessel sequence in H*(K) with Bessel bound B,;.

Proof. (i) Since {Tu(k)lp 1k e ]No} is a Bessel sequence in H*(KK) with Bessel bound B, therefore by Lemma
3.1 (i), {PTuw : k € INp} is a Bessel sequence in L2(K) with Bessel bound B. It is easy to check that
PTuwy = Tug® for k € Ny. So {Tu@Py : k € No} is a Bessel sequence in L*(K) with Bessel bound B. It follows
that {(Plp)j : k € Np} is a Bessel sequence in L?(K) with Bessel bound g72B. By Lemma 3.1(ii), we have

—~ s/2
PR = {295} e

for each k € INy. Thus

IEZN'.O '<f’ P¢;/k>L2(]K)|2 - keZ]N‘o ’<f’ (@)>L2(K)

2

2
=Y <f(é){ y(_‘?é)} (PP, <5>>
keNp [2(K
< Bl
= Bilfi

for f € L*(K) by the Plancherel theorem. So {7’1/}7. .  k € No} is a Bessel sequence in L*(K) with Bessel bound
Bj, and the lemma therefore follows by Lemma 3.1 (i).

(ii) we have

= Sin—] s/2
(Dp/PTu(k)IP)(E) q]S(P¢sk)(é){y(p é)} )

7(&)

and thus

Z ‘ y (7 i ’

f,® ll)sk) =q" <f(5){ — } (P¢sk)(5)>

keNy R keNy )/(5) L2(KK)

for f € L*(K). Then, by the same procedure as in (i), we can prove that {D T, : k € INg} is a Bessel
— _j S
sequence in L?(KK) with Bessel bound B = ¢**B; sup, {)/(:}_6)5)} - This implies that {T, Y : k € No}isa
Y

Bessel sequence in L?(K) with Bessel bound B due to D, being unitary, and thus {T,,{ : k € Np} is a Bessel
sequence in H*(K) with Bessel bound B by Lemma 3.1 (i).
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Lemma 3.6. Let s € IR, and {e;};e; a sequence in H*(KK). Then {e;};cs is a Bessel sequence in H*(K) with Bessel
bound B if and only if

Y IF )l < BIIE ) for f € H(K). (35)

iel

Proof: By Lemma 3.1(i), {e;}ics is a Bessel sequence in H*(K) with Bessel bound B if and only if

Y Kf, e < Blf I for f € LA(K). (36)
iel
Also observe that
Y KfPedl =) (Pf e,
i€l i€l

and
AR o = 1P IR
by Lemma 3.1 (i). It follows that(3.6) is equivalent to

Y K, Ped < BIPSIR .0 for f € LAK).

i€l
This leads to the lemma since % is a unitary operator from L*(K) onto H*(K) by Lemma 3.1(i).
As an immediate consequence of Lemma 3.7, we have the following lemma:

Lemma3.7. Lets; € R, and {e;};c a Bessel sequence in H*' (K). Then {e;}c; is a Bessel sequence in H*(K) for s, <
S1.

Recently, Ahmad and Sheikh [10] studied dual wavelet frames on local fields of positive characteristic
and obtained various results similar to some of the results in this paper but the norm of the Sobolev space
which is used in [10] is not a non-Archimedean norm which is not consistent in the domain of local fields
where as in this paper we have used a non-Archimedean norm of the Sobolev spaces.

Lemma3.8. Lets € R, € H(K). Then for f € H*(K), k € k, the k-th Fourier coefficient of [qf/Zf(pfg) , @(g)]o
is < f 1,b}.yk>. Furthermore, if {1/)}./,{ ke ]No} is a Bessel Sequence in H™*(K), then we have

[qf/zj?‘(pfg),@(g)]o = Z (f.1,0) Xu @) (37)

kENo

Proof. Since f € H*(K) and i € H™*(K), we have ]?(pf é) lj;(é) € L1(K), and by Plancherel theorem we have
L [472F(€), 9(&)] xunn(©)de
=g/ L Y F(P(E + 100) (& + 1) xuge (©)dE

kelNp

=g/ f]K FPE) PO e
_ -2 - ., . .
77 [ Rep eyt (ve) de

- fk Ao, 0T @
=(f, Hbf,k)' (3.8)
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If {‘/’,;k tke ]No} is a Bessel sequence in H™*(K), then {(f, Y MkeN, € {*(Np), and hence (3.7) follows by (3.8).
This completes the proof of the lemma.

It is well known that the condition Y ;2; Y, jez |1;’)\g(p]' &P € L*(K) is necessary for ¥ (¥) to be a Bessel

sequence in L?(K). To establish a similar necessary condition for W*(p; W) to be a Bessel sequence in H*(K),
we need the following lemma:

Lemma 3.9. Given s € R, let {T,,y¢ : k € No} U {T,,y¢pe : k € No, 1 < £ < L} be a Bessel sequence in H*(K),
then

L o
Y kg ool + YY" Y g v 0P

keNy =1 j=0 keNy

L o
= f]K @taﬁ{m(aﬁ ZEqZﬂ@(piénz}da

j=0

x(k

R

1
L
v [ TOY 7+ {qa(s)(p(é cu)+ Y

keN =1

TP (pIE)Pe(pi(E + u(k)))} d& (3.8)

i=0

.

for g € OQ(K).

Proof. By Lemma 3.8, we have

L o
Y Kg, o+ Y. )Y Ka v 0P

keNp =1 j=0 keNy

2 L oo 2
= f Y G+ uk)PE + uk)| de+ )Y g1 f Y GE + ulO)Pe(E + ul)| de
B ke =1 j=0 keNo
- {Z @ + ul)TE + 1 k))} { Y fE + w0y + u(k»} ac
keNg kelNg
+ Z Z g1 f {Z Pe(& + u(k)FpI(E + u(k»)}{z TE + u)fe(& + u(k))} (3.9)
£=1 j=0 keNo keNo
Write
Fo@) = ) & + u(k)P(E + u(k))
kelNp
and
Frj(€) = ) GWI(E + u)de(& + u(k)).
keNg
Then

IFo(&)l < [7,61"7 &) [7, 81 (&)

Fe 01 < [700), 7000 ©)le, 91 (2),

and thus Fy, Fr; € L®(D) by Lemma 3.3 since {T,yg : k € No} and {T,yg1 : k € No} with §;(&) = gj(pfé) are
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Bassel sequences in H*(K) if g € Q. It follows that

| X e+ e + utnracerds

kelNp

< |IFoll=() f% [7, 7112, PLA(E)dE < oo,

and thus

L {2 (P& + u()FE + u(k))} {2 FE + u(k)P(E + u(k»} de

kelNp kelNp

- [ @& Y T + e + utpe

kE]No
by the Fubini-Tonelli Theorem.
Similarly, we also have

L {2 PeE + u(k)FPI(E + u(k»)}{z T (E + ulk))Pe(E + u(k»}

kelNp kelNp

= fk PAETWIE) Y, TWIE + ukN)Pe(E + u)de.

kENO

By (3.9)-(3.11), we have

= fk PETE) Y T+ u(0)P(E + uk)de

kENo

L > _ . -
DN fk PUETIIE) Y TWIE + u®N) (& + u(k)de.

=1 ]:O keNo

Let us check every part in (3.12). Observe that

| memel Y e + npte + e

kelNg
2
< [9(E + ulk)e(E + u(k))l} dé
fS“PP@ {k;fo I
< [ Eaomaede
supp(g)
and that [7, 7]-s(&)[@, ¢ls(&) € L¥(K) by Lemma (3.3). It follows that

[ eTEN Y e + unpte + uide <,

kelNp

4558

(3.10)

(3.11)

(3.12)
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and thus

[FRE Y, e + u)ie + e

kelNg

- [ @R + [ FETE Y Te + upie + e,

0#keNp

4559

(3.13)

Now, we turn to the second part. Take S in Lemma 3.4 as a compact set in K such that supp(g) C S. Then

there exist finite sets F; € INg and F, C IN such that
SN (S + pu(k)) = ¢ for (j,k) € (Ng x N) \ F; X F,.
It follows that
L o ) . - ‘ ‘ -
Y ) a0 Guawie) Y FWE + pu) (& + u(k)de
=1 j=0 keNg

L
=

K
- a2 |, ' i k) k))de.
Y Y [ GUeTE) Y€ +uo)Pile + ulpe

1 jeF; keF,

Write G = Uker,ui0) (Ujepl pIS + u(k)) . Then we have

fk DHETIEOTE + 1R Pe(E + u(k)lde

< 7R f P+ o

< 17 i { f . @(5)%}2 { f s u(k))chs}z

<171 fK Pe(E)Pde

For each (j, k) € F1 x F,. Also observe that 1 < {maxzec (&)} 77 (&) for & € G. It follows that

fk DHETIETPIE + u®)DeE + u(R)E

S{max5e675(5)}||ﬂ|iw(K)L|@(5)I2?(5)d5

< {maxsecy (TR 10

< 0.

So, collecting (3.14) - (3.16), we have

L [ ) =
Y Y0 [ SR Y, Tole + v + utic

=1 j=0 keNp

-

L o

(3.14)

(3.15)

(3.16)

L o
= [ Y Y guermairas + [ 33 00 H R0 YT + el + uo)de

=1 j=0 =1 j=0 keN
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I~

]

Y ¢ PREPAE + f 2. 2 T ITEP(wIE) Y TE + ut)pe(pIE + u(k)de
=0

Il
=

L
; j I=1 j=0 keN
L L x(k) - @@
= f Y T PIE) e + f 7O Y Fe+ut) Y, Y e wiE +u)ds,  (317)
K%=1 =0 keN (=1 j=0

where Proposition 1.3 is used in the last equality. Equation (3.8) therefore follows by (3.12), (3.13) and(3.17).

Lemma3.10 Lets € R, {¢, 1,[1(} -1 € H*(K). Then the system W*(¢p; V) given by (3.1) is a Bessel sequence in
H?(K) with Bessel bound B, then

L o
PR+ Y a7

=1 j=0

ve(pe)| <87, (3.18)

holds a.e on K.

Proof. Since ‘W*(¢@; W) be a Bessel sequence in H*(K) with Bessel bound B, we have

L oo
Y Kool + Y. ) Y Ka i 0P < Bl for g € H(K) (319)

keNp =1 j=0 ke,

by Lemma 3.6. Next, we prove the lemma by contradiction. Suppose (3.18) does not hold, i.e. there exists
E c K with |E| > 0 such that

L o
PEE+ Y WP > By (&) on E.

=1 j=0
It follows that

L
PP+ Y a7 (&P > By(€)

=1 j=0

on some E’ = E N (B + u(ko)) with |E’| > 0 and ko € INy. Define g by g(&) = 7°/2(&)@r (). Then g € Q(K) and
thus g € H*(K), and

191, = ) (3.20)
Applying Lemma 3.9 to such g, we have
L o
Y Kg o+ Y)Y Ka v 0P
keNo =1 j=0 keNo
GRESS Y Y 4 iz
=1 j=0
> B|E|,

and thus

L o
Y kg pool+ YY" N Ka, v 0F > Bligli

keNy =1 j=0 keNy

by (3.20). It contradicts (3.19). The proof is completed.
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Lemma 3.11. Given s € R, let W*(p; ¥) and W(¢; W) be Bessel sequences in H*(K) and H™*(K), respec-
tively. Then

L o
D PE — (& —u), )+ Y N Y W )

kelNy =1 j=0 kelNyp
— = & & =
= fk f(é)ﬁé){@(é)@(éHZZw ’é)wz(pfé)}dé
1 j=0
f 7E) Y, F&+u) {@(E)(P(E + u(k)
keN
L K(k)A =
+ZZ¢g(p-fs)w<p—f<fz+u<k>)>}dé (3:21)
£=1 j=0

for f, g € Q(K).

Proof: Since W*(p; ¥) and ‘W(¢; ‘i’) are Bessel sequences in H*(K) and H™*(KK), respectively, the left hand
side of (3.21) is well-defined. By the same procedure as in Lemma 3.9, we can prove that

L o
Y PE —ul)pE —u@), ) + Y Y Y LW 0 9)

keNy =1 j=0 kelNy

f Y FE + ul)PE + u)FEFE)E

kelNg

L o -
+ Z Z q fk Z FOE+ u(k)))w(é + u()P(E)FPIE)E. (3.22)
]:

=1 keNp

Observe that

Y IF(E + B + uIFETEN < I, FI2 1P, P17, 91,15, L. (©),

kelNp
which belongs to L*(IK) by Lemma 3.3. It follows that

| X ite s utongie + ute el

kENo

= [ Y e utnpe + uFORENE <

upp(@) feN,

and thus

fk Y 7+ ulkNpte + )T

kENU

f FemOp@pEdE + f 7E) Y F(& + utDPEP(E + u(k)). (3.23)

keN
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By the Cauchy-Schwarz inequality and Lemma 3.10, we have

g

=1

1

L o : L o - 2
{Z -2f5|@(p-fé>|2} {ZEcﬂW(p 9l }

=1 j=0

Ye(p ]é)#’f(v )| <

where By and B, are Bessel bounds of W*(¢; W) and ‘W™(¢; ) respectively. It follows that

fk |ﬂé)ﬁ|Zi

=1 j=0

dé

@(n‘fé)@(n*fé)

< B1B, [supp(f) 1 supp@)| 1 Fllao [0 < oo. (3.24)

Take S as a compact set in K such that supp(ﬁ U supp(g) C S. By Lemma 3.4, there exist finite sets F; ¢ Ny
and F, c IN such that '
SU (S + vu(k)) = @ for (j k) € (INg x IN) \ F1 X Fs. (3.25)

Write G = Uger,ujo) (U jeFy /S + u(k)) . By the same procedure as in Lemma 3.9, we have

i

TOEFWE + Put)Pr(E)de(E + u(h)| d

< Ilale(k)IlfﬂLw(K) {f o |1’P\£(5)|2d€}2 {f o @(3(5 + M(k))lzdff}z
p P

< Tl i { fG I@(é)lzdé}z { fG @(é)ﬁd&}z

< 11gll=oll flloao {rgle%x ?‘5/2(5)} {I?axy /2(5)} el oo el
< oo, (3.26)

for (j, k) € F1 X F». By (3.25) and (3.26) , we have

L o -
> [ X Foite + utmpete + upgueimoens
=1 j=0

K jeN
L

f FOP1E) Y Fe + wul)e(e-Te + u(o)de

keN

- ?Ma

Y FOvue) Y F& + wulo)be(oié + ug)de

Il
5%

=1 j=0 keN
—_— L -
= fk 9(&) Z f(&+u(k)) Z Z Pe(p7/&) w(p i(E + u(k)))dE. (3.27)
=1 j=0

Collecting (3.22)-(3.24) and (3.27), we obtain (3.21). The proof is completed.

Theorem 3.1. Suppose that the system W?*(¢p; V) given by (3.1) is a Bessel sequence in H*(K) and the system
W(p; W) given by (3.2) is a Bessel sequence in H*(K). Then the necessary and sufficient condition for
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(‘Ws((p; W), W=3(p; ‘T’)) to be a pair of dual frames in (H*(K), H*(K)) is
L

FOPE+u) Y Y T (v72) G (377 + u(k) = Sox e & € K. (3.28)

=1 j=0

~.

Proof. Since by the definition, (W*(p; V), W=(¢; ‘T’) is a pair of dual frames in (H*(K), H(K)) if and
y % ¢ p

only if
L 00
Y G por g+ Y Y, )
keNp £=1 j=0 ke]NO

=(f,9), for f,g € Q. (3.29)

By Lemma 3.11, (3.29) can be rewritten as

f FE7E) qo(é)(p(é>+zzw TE) g (p- ]5)}015

=1 j=0

v [ TOY e+ un{erte +uo)
keN
L

£ 30N P (e § (i + i) e

=1 j=0

= fIK FEFEE. (3.30)

Clearly, (3.28) implies (3.30). Next, we prove the converse implication. Suppose (3.30) holds. By the
Cauchy-Schwarz inequality, we have

x(k)

= L - =
\aaa«s - u(k))\ + YN e + u(k»)‘

=1 j=0

L 1/2
< {I(F(é)lz +3), q_zjsI@(v‘fé)lz}

(=1 j=0

1/2
e L o = . 2
x {!5(5 su®) + Y Y P e + ut) }
=1 j=0

< BiB2y (&) 7°(& + u(k))

< BiBysup ¥ (&) (& + u(k))
£eK

=Ck<OO.

for each k € Ny by Lemma 3.10, where B; and B; are Bessel bounds of W*(¢p; W) and ‘W™ (¢p; ‘I/) respectively.

Thus the series
x(k)

_ L —_
FOPE+uk) + Y Y FulrTERPeo (s + u(k))

=1 j=0
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converges absolutely to a function in L*(K) a.e. on K for each k € INy. It follows that almost every point in
K is a Lebesgue point of all

- L x(k) =
FOPE+u) + Y Y G OB (I(E + uk))
=1 j=0

with k € Ny. Let & € K be such a point. For 0 < € < 1, take f and g such that

- € ()
(&) =718 = T
& =08 = s

in (3.30), where B(&g,€) = {£ € K : || — &ll2 < &} Then

1 = L
] =
1B(£0, €) Jpey ) {(P(E)(P@”;;l#(v 5)1Pg(p ig)rds =1,

and letting € — 0 we obtain

L .
Peopc + Y Y B piric) = 1.

=1 j=0
For ky € N, take f and g such that

XB(éo,e)(CS)

(& + ulko)) = g(&) = —=2
fle ) =9 ="

in (3.30), where 0 < € < . Then

1 — L x(k)
BGo )l Jueoe {(P(é)fp ¢ + u(ko)) + ; . Yep™ ]5)%(9 1(& +u(ko))) ¢ d& =0,
and letting € — 0 we obtain
_— Lk =
POPE +ulko)) + Y Y PepTEPe(nI(E + ulko)) = 0.
=1 j=0

By the arbitrariness of £y and ko € IN, we obtain (3.28). The proof is completed.

4. 4. Mixed Oblique Extension Principle for Nonhomogeneous Dual wavelet Frames

In this section, using Theorem 3.1 we derive an MOEP for nonhomogeneous dual wavelet frames in
(H*(K), H*(K)) under the following assumptions:

Assumption4.1: ¢ € H’(K)and ¢ € H™(K) are p-refinable with symbols in L*(3B), i.e there exist'd\,/a:e L*(B)
such that — - =
P(pE) =a(&)(&) and p(p) = a()(E) ae.on K. (41)

Assumption 4.2: lim;_,, (F(p‘fé)g(p*fé) =1 aeonkK
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Given a positive integer L, let ¢, 7] satisfy Assumption 4.1 and bg,Zg € L®(B) with 1 <1< L, and define ¢
and ¢, by

P(2) = BEIPLE) and Pu(pE) = BE(E) “2)
We begin with some lemmas.

Lemma 4.1. For a given s € R and ¢ € H*(K), let ¢ satisfy Assumption 4.1, and ¢; with 1 < ¢ < L defined
as in (4.2). Assume that

@) [@, @l € L*(K) for some t > s;

(ii) there exist a nonnegative number a with @ > —s and a positive constant C such that

L
Z Il/J;(é)I2 < C min (1,|E|§“> a.e. on K. (4.3)
=1

Then W?*(p; P) is a Bessel sequence in H*(K).

Proof: For the case s = 0, take 0 < sy < min{t, a}. Then the conditions (i) and (ii) hold for s = s9. By Lemma
3.7, the lemma holds for s=0 if it holds for s = s¢. So, to finish the proof, we only need to prove the lemma
for s = 0. By Lemma 3.6, it is enough to prove that there exists a positive constant C such that

L oo
Y kg ool + YY" N g, v 0P < Cllglf e (4.4)
keNy 1=1 j=0 kelNg
Using Lemma 3.8, we have
2 L&
Y (g pE—uton[ + Y. Y Y Kg v 0P
keNy =1 j=0 keNy

L oo
= L @ o0 @f e+ )Y g0 L Gwie), el @) de.

=1 j=0

Also observe that
7, P1o(©)F < [7,9)-s(O[@, Ps(&) < [P, P1HE)[F, 1-5(E).

It follows that
L 0
Y K e —ulonP+ Y Y Y Kg i 0P
keNp (=1 j=0 keNy
L e
<@, Plellgollglee + Z Z g/ L 70/ &), Pelo(E)IPE. (4.5)
(=1 j=0

To finish the proof, next we prove that there exists a positive constant C such that

L =)
Y'Y g0 L FE), Pelo(©PdE < CllglE-xy for g€ H(K). (46)

=1 j=0
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Now, we have
12

f G, Felo@) d = f ZW(é+u(k»)b?(wl(é+u<k)>)a<p—1<é+u<k»)‘ d
B B

kelNp

2

dé

= [ X Bt - D Pl + )

veN;

<q) f be(p™E + u()) [0, P0)]| | (p71E + u(v))P dé

veN;

= [ [oo 7o) e o
<q L b [70*1), 7)) (©) [, ], () dé
< PPy [, R [To0%0, 7009] )

= 7 P [ PR P

= 0@, P11 o f}K lbe(p I )PIFLEFY (07T E) . (4.7)
This leads to
L& . 2
Y Y [ [@e dance de
=1 j=0 B
<P | TOPT @i
where

() = Zq-m(é)z Ibe (ORI (p7 ) 48)
j=0

So (4.6) holds if Ay € L*(K). Clearly, A € L*(K) when s < 0. When s > 0, we have

o)

A < Y g+ ZleP )SZwl(pf15)|2(1+q‘2’“|5|2)t<CBs,t<5>

j=0
and thus A,; € L*(K). The proof is completed.
Based on Theorem 3.1, the following theorem gives an MOEP for such dual frames.
Eworem 4.1. For a given s € R, let ¢ € H*(K) and ¢ € H*(K) satisfy Assumption 4.1 and 4.2, and ¢, and
Y with 1 < € < L defined as in (4.2). Assume that
(i) [P, @] € L*(K) for some ¢ > 5,[§, pl € L*(K) for some ¢’ > —s;

(ii) there exist two non-negative numbers o and a with a > —s and a > s, and positive constant C such that

Z 1be(&) < Cmin (1, €2 Z bR < Cmin (1, 1£57) ae. on K. (4.9)
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And assume that 0 € L™(%) and 1 is defined by (&) = 0(&)P(&) a.e. on K. Then (Ws(n; W), W(q; W) is
a pair of dual frames in (H*(K), H™*(K)) if and only if
lim O(p/&) =1aeé e K; (4.10)
Jo

= &t - =
O(PENTENA(E +u(v)) + ) | be(E)be(E + u(v)

=1
= 0(&)do,y ae. on a(p) N1(a(p) — u(v)) withv € Nj. (4.11)

Proof. By Lemma 4.1, W*(p; V) and ‘W™ (¢; \T’) are Bessel sequences in H*(K) and H™*(K), respectively. In

particular, {ll)g/j/k rjeZy,keNy, 1< L} and {Tu(k)(p ke ]No} are Bessel sequences in H*(K). By Lemma
3.3 and the definition of i, {T,,y7n : k € INo} is a Bessel sequence in H*(KK). It follows that W*(n; V) is a Bessel
sequence in H*(K). So (”Ws(n; W), W= (p; \TJ)) is a pair of dual frames in (H*(K), H*(K)) if and only if, for
every n € Ny,

L k()

OEFOPE +um) + Y. Y G EPrI(E + un) = b0, for ae. & € K. (412)

=1 j=0
by Theorem 3.1. Next, we show that (4.12) is equivalent to (4.10) and (4.11).
First, we suppose that (4.10) and (4.11) hold. For n € Ny, we calculate

e — L «x(n) —_
OEPEFE +um) + Y Y Do TEG(nI(E + ()

=1 j=0

in this way: using Assumption 4.1 to (?7\(5)1(;(5 + u(n)), and (4.2) to the j = 0 term of

L «(n) -_
Y Y eI IE + u(m)),
=1 j=0
we have
_— L «(n) —_
OEPEFE +um) + Y Y Dl &V ulrI(E + ()
=1 j=0
= = L — =
= P OPEE +m) {G(é)ﬁvlé)ﬁ(p‘lé) + Z bf<p15>bf<p—la>}
L x(n) —_
YUY G eI E + um),
=1 j=1
and thus
P——— L x(n) -_
OEPOPE +u() + Y Y Gelr TEelrI(E + u(r))
=1 j=0

L «x(n)

= 0 OPE P E +ut) + Y Y GETODI(E + um)

=1 j=1
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by (4.11). Then applying the same procedure to (/ﬁ(p‘lé)fp?(p‘l(é + u(n))) and j = 1 term of
L «(n) . ———

Z Z Ye(p™ ]E)W(D (& + u(n))), we obtain that

=1 j=0

L x(n)

OEPEPE +utm)+ ) ) Pulv2) Wl + ()

=1 j=0
R (/) _
= 02 OP P AE +u() + Y Y GUrTE(mIE + u(m)).
=1 j=2
Applying the same procedure «(n) + 1 times, we finally obtain that

L «x(n)

OEPOPE +uer) + Y Y PorT &Vl + u(r))

=1 j=0

= PP 1E + u(n)) {9(13_"(” LAY Ea(p R 1(E + u(m)))

L x(n)-1

£Y Y B b 1<5+u<n»>}

=1 j=2

Also observe that p~™*"~1y(n) € Ny + u(v) for some v € N; by Proposition 1.1. It follows that

L «(n)

EPOPE +ue) + Y Y P& eI + u(r))

=1 j=0

= P OTEP(PII(E + 1)) {6<v"‘<">-1aﬁ(p-“<”>-1alf(pK<">15 T u))

o)

=1 j=2

k(n)—-1

@@*W*SQW”W*E+MW%

=0

Similarly, for n = 0, we have

JE—— L oo
0EOPOPE + Y Y Pelr & u(rTE)
=1 j=0
—_ L ad =
= 0PN 0p ) + Y, Y D Ovi(©) (413)

(=1 j=N

for all N € N. By Lemma 3.10 and the Cauchy-Schwarz inequality, the series Y’ Yiin

@(p‘j é)ﬁ(p‘f (&)) converges absolutely for a.e. £ € K. So we have

L oo -
1\1;1_1?[}0221# (p~ ]5)%’(9 i(&)) =0forae & e K

=1 j=N



O. Ahmad / Filomat 37:14 (2023), 4549-4571 4569

Letting N — oo in (4.13), we have

L —
9(5)(P(5 P(&) + Z Z @(P_jé)%(p‘fé) =1 forae £ €K

=1 j=0
by (4.10) and Assumption 4.2.

Next, we turn to the converse implication, i.e. (4.12) implies (4.10) and (4.11). Suppose (4.12) holds. First
we fix v € Nj\ {0} and & € o(¢@) N T(o(p) — u(v)). Then there exist 7,5 € INg such that

PE + u()P(E + u(v) +u(s)) £ 0 (4.15)

by Proposition 1.2. Taking n = p(s — ) + pv (this yields x(n) = 0), replacing & by p(& + u(r)) in (4.12), and
using the Ny periodicity of 6,?1\,:7\, l;; and l;;, we have

= L — Pt
0 = O(PE)P(P(E + u(M))P(P(E + u(s)) + pv) + Z Ye(P(E +u(r)Pe(p(E + u(s)) + pu(v))
=1

= = L =
= P&+ u(n)P(E + uv) + u(s)) {G(PE)WE)E(E +u(v)) Z be(E)be(E + u(v))} : (4.16)
=1
It follows (4.15) that
- 1L =
O(PETEAE + u(¥)) + Y Be(E)be(E +u(v)) = 0.
=1

Let us check the case v = 0. Fix & € a(p) N o(@). Then there exist 7, s € Ny such that

FLE+ UMNP(E +uE) # 0. @17)
If r # s, then replacing & by & + u(r) and taking n = s — r in (4.12), we have
= & ¥ =
O(EP(E +uNP(E +u(s) + ) | Z LI + u) DI (E + 1) = (4.18)
=1 j=0

Replacing & by p(E + u(r)) and n by p(s — ) in (4.12), we have

L x(p(s=7))

0 = OPEFRE + uNPOE +ueN)+ Y, Y Pulo (& + uEDPe(r (& + ()
=1 j 0

= PLE + UMPE +u(s {ewmaa(é) * Z bAs)bf(é)}

K(s—r)

L -
YN G + ur)PIE + ). (4.19)

=1 j=0

Collecting (4.17) - (4.19), we obtain that

= L — =
0(8) = O(RSMEAE) + Y b©)be(&).
=1
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If s = r = k, taking n = 0 and replacing & by & + u(k) in (4.12), we have

[ L o =
O()P(E + u(O)P(E + () + Y | Y Pulp7I(E + ut)Pe(ri(E +u(k)) = 1. (420)

=1 j=0

Replacing & by p(& + u(k)) and n by 0 in (4.12), we have

Y B E + ul)) P + uk))

1 j=0

Mh

1= 0(EPRE + uk)PR(E + u(k) +

Y
Il

= —— L =
= P& + u(R)P(E + u(k) {e(péﬂé)a(a Y. bz(é)bf(é)}
=1

e _
+ Y Y G + uk)DeoIE + (k). (4.21)

=1 j=0

Collecting (4.17), (4.20) and (4.21), we obtain

= L __ =
0(&) = O(péyalé)a(é) + Z be(E)be(E)
=1

Now, we prove (4.10). Taking n = 0 in (4.12), we have

— L R =
0OFOFE + Y Y Dl IEPu(riE) = 1. (422)

=1 j=0

Observe that although (4.13) and (4.14) are in the part of the proof where (4.10) and (4.11) are assumed to
hold, that they don’t follow from (4.10). Combining (4.22) with (4.13) and (4.14), we conclude that

lim 06 NOFENOPNE =1 forae. EeK,

and, by the Assumption 4.2, we obtain (4.10). The proof is completed.
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