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Abstract. We construct invertible modules (as invertible linear spaces of matrices with an additional
structure) and find a bijective correspondence between nondegenerate generalized bilinear forms and the
invertible modules.

1. Introduction

This paper is motivated by the problem of finding the diameter of the commuting graph of the algebra
of prime-squared sized matrices over a finite field. Recall that the commuting graph of a general magma A
(i.e., a nonempty set equipped with a possibly non-associative binary operation) is a simple graph whose
vertices are all noncentral elements of ‘A and where two distinct vertices 4, b are connected if they commute
in A, i.e., if ab = ba. It was first introduced in [2] in an early attempt towards classification of simple finite
groups.

Recently, the (diameters of) commuting graphs of the matrix algebra M, (IF) of n-by-n matrices over a
field IF have been studied extensively, see for example [6, 7, 10]. One of the first results in this vein was that
when F is algebraically closed and #n > 3, the diameter of the commuting graph I'(M,(IF)) is equal to four,
[1]. In general, the diameter of a connected graph is at most six, and it has been proved that there exists a
field such that the diameter of the commuting graph I'(M,,(IF)) is equal to six, [11]. If FF is a finite field, then
the diameter of I'(M,,(IF)) is equal to four when n > 4 is even, I'(M,,(IF)) is disconnected when 7 is a prime,
and if n is neither a prime nor a square of a prime, the diameter is at most five, [5] (see also concluding
remarks in [4]). So, the only open problem in the case of finite fields remains the diameter of the commuting
graph of p>-by-p? matrices for a prime p. It is known that the diameter in this case is at least five for
sufficiently large fields, [4], and at most six, [1]. Similar arguments as in the proof of [5, Theorem 3.3] would
imply that the diameter is equal to five if one could show that every generalized bilinear form induced by
an invertible matrix (defined by (2)) is degenerate. We show that this is not the case (see Corollary 4.3).
We do this by constructing a maximal linear space of invertible matrices of special kind (see Theorem 3.3
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and Remark 3.5). So, this approach does not solve the diameter problem, however we strongly believe that
it might be of an independent interest (see also Section 5). The problem will be solved in our subsequent
paper, based on different techniques.

The paper is structured as follows. In Section 2, we define the notion of invertible modules (as invertible
linear spaces of matrices with an additional structure) and define (nondegenerate) generalized bilinear
forms. In Section 3, we construct the invertible modules under some mild assumptions (see Theorem 3.3).
In Section 4, we show that the nondegenerate bilinear forms are in a bijective correspondence with the
invertible modules (see Theorem 4.2). We illustrate these constructions with some examples. The final
section gives additional remarks with a view towards possible applications.

2. Preliminaries

2.1. Matrix modules

Throughout, let d > 2 be an integer, let n = d?, let IF be a field, and let C = C(m) € M,(FF) be a companion
matrix of an irreducible polynomial m € FF[x] of degree d. Recall that

K :=F[C],

the unital [F-algebra generated by C, is a d-dimensional [F-linear subspace of M, (IF) which, besides 0, consists
of invertible matrices only. In fact, it is a subspace of maximal possible dimension with such property (see,
e.g., [13, p. 44]). As such, K = F[C] is also a field extension of F, and V := My(F) is a natural left
K-module, with the action given by matrix multiplication p(C) - X — p(C)X where p(C) € F[C] = K and
X € My(F). Clearly, dimg (V) = d. Observe that this action, when restricted to a subfield F ~ [FI € K,
is the multiplication with scalar matrices with coefficients from [, so it coincides with the usual scalar
multiplication on M;(IF). In particular, each left IK-submodule of V is simultaneously an [F-linear subspace.
Consequently, (again by [13, p. 44]) the only invertible left K-submodules of V, i.e., K-submodules which,
besides 0, consist of invertible d-by-d matrices only are KA = F[C]A for some invertible A € My([F).

To get more interesting examples of invertible K-submodules, a natural way is to extend the scalars
and, instead of M;(TF), consider a left K-module M,;(K) whose K-dimension equals d>. The action of the
field K on M,;(K) remains the same as before, i.e., left multiplication with the matrices from KK = IF[C]. For
example, if F = IR, the field of real numbers, and C = (! ') € M»(R), then K = FF[C] is isomorphic to the
field C of complex numbers, with matrix C identified as an imaginary unit v/—1. However, contrary to the
usual scalar multiplication on M, (IK) = M, (C), the action of Ce Kon X = (}¥) e Mp(C)isCX = (' 7’)

which differs from the usual v/—1X = ( ‘Eﬁ gg ) )

More precisely, under the identification M;(K) = K ®r M;(FF) = F[C] ® M,4(F) the K-action on F[C] ®
M,(F) is a left multiplication by the elements from IQF[C] ~ K. We remark that this contrasts with the usual
module structure obtained by extending the scalars, that is, a left multiplication on M,;(K) = F[C] ® M,(TF)
by the elements from K ~ F[C] ® L.

The following question is immediate:

Question 2.1. If K = F[C], does My(K) contain an invertible left submodule of dimension d over K (that is, a
submodule, which besides 0 consists solely of invertible d-by-d matrices)?

Remark 2.2. Note that M;(K) does not contain invertible IK-submodules of dimension d + 1. Namely, let B :=
KA; + - + KA1 € My(K) be an invertible K-submodule with dimg 8 = d + 1. Clearly, B is also an F-vector
space with dimp 8 = dimg B - dimg K = (d + 1)d. However, due to K = F[C] we can regard M;(K) = M;(F[C])
as d-by-d block matrices whose blocks belong to F[C| € My(IF). That is, as a matrix IF-algebra, we have an embedding
My(K) € Mp(F) and it is well-known that in the latter algebra the maximum possible dimension for invertible
F-subspace is d* < (d + 1)d, a contradiction.
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2.2. Bilinear forms

Invertible K-modules have an equivalent reformulation which is interesting in its own. To place itinto a
proper perspective, let us first introduce an operation of transforming column vectors with entries in M;(IF)
Vi

into row vectors, and vice versa, as follows: If V = ( :

: ) is a block matrix from My, ;(IF) with blocks
Va

Vi € My([F), then we let

vi\T
V* .= ( ) = (Vq,...,Vy). 1)
Vi

In particular, if each V; € K = F[C] € M;(IF) then also each (block) entry in V* belongs to F[C].

Now, recall that each matrix A € M;(K) induces a bilinear form on K“, defined by (x,y) — yTAx € K;
here, yT denotes the transposition of a column vector y € K. Its zeros are pairs of vectors (x,y) € K¢ x K4
such that y"Ax = 0 € K. We call zeros of the form (0, y) and (x,0) trivial zeros of bilinear form. However,
the bilinear form also has nontrivial zeros because for each x there exists a nonzero vector y which is
perpendicular to Ax relative to pairing (x,y) — y'x.

Recall that K = [F[C] < M,(FF), so instead of A € M;(K) € Mz (IF) we can consider any matrix S € M (IF)
and induce a generalized bilinear form Bs on K¢ = F[C]? € M,,»4(F) given by

Bs: (X,Y) — Y*SX, 2)

where Y* was defined with (1). This clearly no longer lies in K = F[C] in general but in M;([F). In fact, we
may partition X, Y, S into blocks of size d-by-d, so that X = (Xy,...,Xs)*, Y = (Y1,...,Ys)*, and S = (S;))
with X;, Y; € F[C] € M;(FF) and with S;; € M;(IF). Wherefrom the generalized bilinear form equals

ij’

d
Bs(X,Y) = Y*SX = ) YiS;X; € My(F). 3)
ij=1

A generalized bilinear form B;s is called nondegenerate if B5(X,Y) = 0 implies X = 0 or Y = 0. One should
remark that generalized bilinear forms do not always satisfy 8s(XA,Y) = Bs(X,YA), A € K, so they may
not be K-bilinear.

Question 2.3. Does there exist a matrix S € My (F) so that the generalized bilinear form Bg, defined in (3), is
nondegenerate?

3. Invertible submodules

In the present section we give a partial answer to the Question 2.1. Namely, we show that the answer
is positive in the case d = 2 and also in the case when [F = GF(p") is a finite field (see Proposition 3.1 and
Corollary 3.6 below).

Proposition 3.1. Let IF be a field and C(m) € My (FF) a companion matrix of an irreducible polynomial m € IF[x] of
degree 2. Then, there exists a matrix A € M,(K), where K = F[C] such that K + KA < M(K) is an invertible
K-module.

Proof. It will be helpful to view K as a field and also as a subspace of 2-by-2 matrices over IF; to avoid
misinterpretations, we will denote elements in K by Greek letters when considering K as a field and with
capital letters when considering it as a subset in M, ([F).

By Cayley-Hamilton, C is a zero of its minimal polynomial m(x) and as such K = F[C] is a splitting
field for m, i.e., m(x) = (x — a)(x — ) for some «, f € K. Hence, the matrix C is triangularizable in M, (K)
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(diagonalizable if m is separable). After a suitable conjugation we may assume C is in Jordan form. Define
the matrix

Am (2 g‘) e My(K)

which is clearly invertible. We need to prove that py(C) + p1(C)A € My(K), po,p1 € F[x], is invertible
whenever at least one of matrices py(C) and p1(C) is nonzero.

It clearly suffices to assume that po(C) is nonzero. There exists p € [F[x] such that p(C) = po(C) 'p1(C) €
M, (K). Now, if C € M (FF) € M,(K) is diagonal then

I+p(C)A = (p(lﬁ) P (‘i‘)“>

whose determinant equals 1 — p(a)p(B)a. Since minimal polynomial of C has degree two we may clearly
assume that p is linear. Write it as p(x) = ag + a1x € IF[x], then p(a)p(B) = a5 + aoa1(a + p) + aiap which, by
Vieta’s rules, belongs to IF. In view of the fact that « is algebraic of order two, this implies that determinant
is always nonzero.

It remains to consider the case when C is triangular, that is, when its minimal polynomial m is nonsep-
arable. This can happen only if char F = 2. Then C = (& 1) and so

I+p(C)A = (1;(;;;1 apl(a)>

whose determinant is 1 + a1 + ap(a)?. Since now m(x) = (x — a)?> € F[x], we have a? € F so also

p(a)* = al + aja® € F. Again, it suffices to consider p linear so p(a) # 0, hence p(a)® € IF\{0} and therefore
1+4a; + ap(a)? # 0, that is, determinant of I + p(C)A is always nonzero. [

Example 3.2. We may apply the preceding proposition to C := C(x*> + 1) € M(R); here K = R[C] ~ C.
Consequently, there exists a matrix A € M,(C) such that the space

R[C] + R[C]A (4)

is invertible. Observe that R[C] ~ C, so (4) is a two-dimensional invertible C-module in M,(C). Note in contrast
that, with the usual scalar multiplication, there exists no two-dimensional complex vector subspace in M(C) which
would, besides zero matrix, consist of invertible matrices only (this is an easy consequence of the fact that every
complex matrix has an eigenvalue; see also [3, Proof of Statement IV p. 486]).

Proposition 3.1 can be generalized to d-by-d matrices over suitable fields. This will be proven in our first
main result.

Theorem 3.3. Let [F be a field, d > 2 an integer and C = C(m) € My(FF) a companion matrix of an irreducible
polynomial m € F[x]. Suppose that the field extension K = F[C] is Galois over [F with the corresponding Galois
group cyclic. Then, there exist matrices Ay = 1, A1, Aa, ..., Aa—1 € Mu(K) such that K+ KA; + - - - + KA;_; isan
invertible IK-module.

Proof. Recall that since K is Galois over F, the polynomial m is separable, so it has d distinct roots in K.

Moreover, if ¢ is a generator of Galois group Gal(K|F), then ¢ has degree d and cyclically permutes zeros
of m. As such, if m(a) = 0 then a, (), ..., »? (@) € K are all the zeros of m so that

m(x) = (x — a)(x — p(a)) (x — p*(@) -~ (x — " '(a)) € K]x].

It follows that C = C(m) is diagonalizable over K and we may clearly assume it is already diagonal. Thus,

p(C) = diag(p(a), p(P(a)),...,p(¢" '(a)));  peFlx]. 6



D. Dolzan et al. / Filomat 37:14 (2023), 45734586 4577

Define
0 « a
1 0 o a
A= ). (Eji+aEy) = :
1<i<j<d 1 1 0 a
1 1 0
and fork =2,3,...,(d — 1) define
d—k k .
Av=Ar+a Y (@7 H@) = 1) Eigay + 2, (97 (@) = 1) Bty
i=1 i=1

that is, Ay is obtained from A; by replacing k-th superdiagonal with

ala,@(a), ¢*(@),...,¢" " (a)
and replacing (d — k)-th subdiagonal with

(" M), ¢" (@), ..., ¢ (@)

For example, with d = 5 we have

0 a o« a a
(1) 6‘ g Z g 1 0 aap(a) a
Ai=[110aa |, Ay= 1 1 0 a ap*(a)
% % % (1) %‘ @) 1 1 0 a
1 ¢4 1 1 0
0 a a o a 0 a a a a?
1 0 a a ap{a) ¢a) 0 a a o«
Az = | ¢*@ 1 0 a a , Ay = 1 ¢*(a) O a a
1 ¢*a) 1 0 a 1 1 ¢*a) 0 a
1 1 ¢ 1 0 1 1 1 ¢*a)o

Observe that, with nonzero py(C) € F[C], we have that the matrix po(C) + p1(C)A1 + - - + pa—1(C)As—1
is invertible if and only if I + p1(C)A; + - - - + pa_1(C)A4_1 is invertible, where p;(C) = po(C) 'p:(C) € F[C)].
Hence, to prove that K-module F[C] + F[C]A; + - - - + [F[C]A4_1 is invertible, it suffices to show that, with
e€{0,1}and py,...,ps—1 € F[x], we have

det(el + p1(C)A1 + -+ + pa—1(C)Aq—1)
is zero if and only if ¢ = 0 and p1(C) = - - - = ps_1(C) = 0. After a straightforward calculation,
T, :=¢l+ P1(C)A1 + -+ pdfl(C)Adfl
=el+ Z a¢' ™ (bj—i) Eij + Z & (ba_(j—i)) Eij

i<j i>]
0 acb1 v Débd,Z (Xb,;pl
P(ba-1) 0 ap(br) o ad(ba-2)
=el + : :
@2 (b2) s ¢ (by—1) 0 a¢’(b)
"N (1) ¢ (b2) ¢"" (ba-1) 0

where

d-1
b1 = Z p,‘(O(), bz = (0( — 1)P2((X) + b1, ceey bd,1 = (0( — l)pdfl(()() + bl.
i=1
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Now, let again x be an indeterminate over K and consider two matrix polynomials, obtained by formally
replacing each explicit occurrence of a by x in the matrix T,:

0 xby xby_1
o) O xp(by) o xp(ba)

F.(x) = el + : : ; €€{0,1}.
T2 (by) e PP (ba) 0 xp?2(by)
b)) - .. ¢ (ba1) 0

In particular, T, = F,(a). Let us further introduce two polynomials
fe(x) := det F¢(x); ee{0,1}. (6)

Clearly, f. are polynomials of degree at most d — 1 because indeterminate x is present in F, only above the
main diagonal and the entries of F, are linear in x. We claim that

P(fe(y)) = detp(Fe(y)) = fe(0()); v e K\{0}. 7)

The first equality in (7) is evident. To prove the second one, note that whatever the value of ¢ € {0,1}, it
is fixed by ¢. Hence,

0 P(r)9(b1) O(7)p(bi-1)

*(ba—1) 0 ()¢ (b1) e ()¢ (ba-2)

P(Fe(y)) = el + : :
" 1(ba) o ¢ (ba—1) 0 o(y)p* 1 (b)

P (by) o a ?(ba—1) 0

Recall that ¢ is the identity map. Thus, if we cyclically permute the rows and then the columns of ¢(F.(y))
by permutation (1,2,...,d) then we end up with the matrix

0 by ... . by
b)) 0 6t o 0)d(ba)

Bo=el+ : P*(ba) 0 e u-a)
SNk by e 0 P (b)
SN B e (b 0

which has the same determinant as ¢ (F.(y)). Observe that it is also the same matrix as F.(¢(y)) except

that the first row of F.(¢(y)) is divided by F. will not change if we divide its first column by ¢(y) and
afterwards multiply its first row by ¢(y). This procedure produces the matrix

0 d(y)br - e d(y)ba
$(ba-1) 0 $(y)p(br) e o(y)p(ba—2)
el + : :
¢ (b)) e TP (D) 0 P(y)p=2(br)
qbd‘l(bl) - e ¢d—1(bd_1) 0

which clearly equals F,(¢(y)). Hence, det$(F.(y)) = detF.(¢(y)), as claimed by the second equality in
@).

Now, assume
detT. =0
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and recall that
detT, = f.(a).

By (7) then also ¢ (det T..) = f,(¢(a)) = 0. Proceeding inductively we derive
fel@) = fo(@(@) = - = fe(@* H(a)) =0.

Thus, a, p(a),..., ¢ (a) are d distinct zeros of f. (distinct because they are exactly all the zeros of poly-
nomial m). Since the degree of f; is smaller than d, we have f, = 0. In particular, the leading coefficient of
monomial /! of f, vanishes:

bip(br) -~ " (b1) = 0
hence b; = 0. Also, the coefficient of monomial x?~2, which equals to by (by) - - - gbd*l (bp), vanishes and so
b, = 0. Proceeding inductively, we see that if b; = b, = -+ = b; = 0 then the coefficient of monomial of
x?=i=1 equals

biy1¢(big1) - -+ ¢ (bi1) = 0.
Thus, by induction,

bi=by=-=b_1=0 (8)

As such, T, = ¢l and since its determinant vanishes, ¢ = 0. Moreover, it follows by definition of by, ..., bs_1
that p;(«) are all zero. As such, also p;(C) = 0. Hence, T, € F[C] + F[C]A; + --- + F[C]A;_; is singular if
and only if it is a zero matrix. [

Remark 3.4. Observe that Proposition 3.1 follows directly from Theorem 3.3 in the case K is a separable extension
of F because a separable extension of degree two is always normal, hence Galois with a cyclic Galois group.

Remark 3.5. Note that we may view M;(IK) as block matrices with d-by-d blocks from the field K = F[C]. Then,
each invertible K-module (with K-dimension equal to t) is an IF-linear subspace of M (IF) (whose IF-dimension equals
td), where every nonzero matrix is invertible.

We can now give a positive answer to Question 2.1 in the case of finite fields.

Corollary 3.6. Let F = GF(p") be a finite field, d > 2 an integer, C € My(IF) a companion matrix of some irreducible
polynomial m € F[x] and K = F[C]. Then, there exist matrices Ag = I,A1,Az,...,As-1 € My(K) such that
K+ KA; + --- + KA _q is an invertible K-module.

Proof. Clearly, K is a finite field. By [8, Corollary p. 96] it is a Galois extension of IF. It is well known (see
e.g. [8, Theorem 3.11]) that within finite fields, the Galois group of field extension is always cyclic, and
hence also Gal(K|F) is cyclic. O

If the IK-module is generated by the d-by-d matrices with entries from the original field IF instead of its
field extension K = F[C], the result is completely different — we had already mentioned in Section 2 that
the only invertible K-submodules of M;(IF) are IKA with A € M;([F) invertible. We strengthen this in our
next lemma.

Recall that My(TF) is a left K = F[C]-module under the standard multiplication of matrices. Each its
K-submodule takes the form F[C]B; + - - - + F[C]B for suitably chosen matrices By, ..., By € My([F).

Lemma 3.7. Let k < d be an integer and let B < M;(IF) be a left K-submodule of dimension dimx B = k. Then
there exists a submodule By < B of dimension dimg By = k — 1 such that 0 # [\, Ker A.

Proof. Observe thatif 0 # X; € K = F[C] then X;E;; is nonzero only in i-th column (it equals the i-th column
of invertible X;). This shows that the matrices E1, ..., Eqs € M;([F) are K-linearly independent.

Now, if k = d then B = Md(]F) = IF[C]EH + -+ ]F[C]Edd. Then, & := ]F[C]En +---+ IF[C]E(,;]_U (d—1) is
a (d — 1)-dimensional left K submodule of M;(IF) with a common kernel spanned by e, the last vector of
the standard basis in IF%.

Assume 2 < k < d—1. Then, due to codimg Bn & < codimg B+ codimg & = (d—k)+1,50Bp:= Bn&E
satisfies the claim. [
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Remark 3.8. Lemma does not hold if dimyg By = k — 1 is replaced by dimg By = k. Namely, if B contains an
invertible matrix, By cannot be equal to B.

4. Generalized bilinear forms

In this section, we show that Question 2.3 is closely related to Question 2.1 (see Theorem 4.2 below). We
start with a lemma which proves that a nondegenerate generalized bilinear form is induced by an invertible
matrix.

Lemma 4.1. Let F be a field, d > 2 an integer and C = C(m) € My(IF) a companion matrix of an irreducible
polynomial m € F[x]. Denote by K = F[C] and n = d?. Assume that a generalized bilinear form Bs: K? x K? —
M, (F) induced by a matrix S € M, (IF) is nondegenerate. Then, S is invertible.

Proof. To prove the claim, we argue by contradiction. So, suppose that S is singular and let x € F”" be a
nonzero column vector annihilated by S. Then, the n-by-d matrix &, defined by d column vectors as

E:= (x|Cx|C%] ... |C" ),

where C := Ei—)'f C, belongs to K? € M, 4(TF). Indeed, vectors in K" are of the form (p1(C),...,pa(C))* for
some polynomials p;. Observe that C is in its rational form and so Ce; = e;j11 for i < n and Ce, = };; cine;.
Now, decompose x = x; @ --- @ x4 and note that the algebra K = F[C] acts transitively on My(F), so
there exists polynomials p,...,ps over F with p;(C)e; = x;. Thus, the first column of the n-by-d matrix
X = (pi(C),...,pa(C))* equals (p1(C)D---®pa(C))(e1@---De1) =x1@D--- @ x4 = x, which coincides with
the first column of E. The second column of X equals (p1(C) @ --- ®pa(C)) (2@ - D er) = (1(C)D--- @
pd(C))é(el @ --Dep) = é(pl O ®-- -@pd(C))é(el @---Pey) = Cx. Similarly, we show for all other columns
of X, so X = E as claimed.

Hence, rank(SE) < d — 1 because the first column of SE is zero. By [12] there exists an invertible
(symmetric) matrix Z € My(TF) such that

C=z'C"Z

Define Z := @ Z and denote by

V:={ZSCx,..., 28C" x}+ 9)
the vector subspace in F* of codimension codim V < d — 1; the orthogonal complement in (9) is relative to
the standard nondegenerate bilinear form (x, y) — xTy € F on F” x [F". By bijectivity of C, we have that
codim CV' = codim V for everyi=1,2,...,d — 1. Let

W:=VACVan--nCly,

We have codim W < d(d — 1) < d?, and thus ‘W is nonempty. Choose nonzero w € ‘W. Since w € Ci-1ep,
there exists v € V so that w = C?~ 7. Similarly, since w € CiV for each i = 0,...,d—2, there exists v; € V so
that w = C'v;. Since C is invertible, we get that Civ = Vi—1—j € Vioreveryj=1,...,d—1.
Let us form an n-by-d matrix X := (v|Co| ... |C? 'v). The equation (9) then implies that XTZSE = 0,
so also R
zXTZ.SE = 0.

Clearly, X is nonzero and belongs to IK?. As such, its transpose takes the form
X' = (p(O),...,pa(C)")
for some polynomials p; € IF[A]. Observe that
Z7X'Z = (Z7'p1(O)'Z,..., 27 pa(O)'Z) = (1 (Z271C"'2),...,pa(Z271CT Z))
= (1(Q),---,pa(0))
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that is, A = (Z71XTZ)* belongs to K? and satisfies A*SE = 0, and so (A, E) is a nontrivial zero of
generalized bilinear form induced by S, a contradiction. [

Recall from [3] that classical d-dimensional invertible vector subspaces in M;(IF) are in one-to-one, onto
correspondence with (possibly non-associative) division algebras on IF*: given such an invertible subspace

with basis V73, ..., Vy, it induces the bilinear product on F ~ Ling{Vy,..., V4} by letting Vix V; := > v,Ej.) Vi

where V; = (vg.)

V = ¥, a;V; and assume that V % (3;8;V;) = 0. If we denote V = (vk]-)kj, this gives us 3 ;vy; = 0 for
B1

everyk =1,...,d,s0V < : ) = 0, and thus ;1 = ... = B4 = 0 since V is invertible. Conversely, given
Ba

a (non-associative) division algebra of F? with basis {aj,...,a4}, we get an invertible vector subspace in

M,(TF) by constructing its basis {V,..., V4}, where for each j = 1,...,d, V; is the matrix corresponding to

the left multiplication with a;. It can be easily checked that this is indeed an invertible vector subspace, and

also that the above two mappings are mutually inverse.

Similarly, we show that the generalized bilinear forms are in one-to-one, onto correspondence with
invertible K-modules.

) K Observe firstly that this product indeed yields a division algebra: choose any non-zero

Theorem 4.2. Let FF be a field, d > 2, and let C = C(m) € My(FF) be a companion matrix of some irreducible
polynomial m € F[x]; define K = F[C]. There exists a bijective correspondence between bases for invertible
K-sobmudules in My (IF) and generalized bilinear forms (3) which are nondegenerate.

Proof. Let F[C]A1 + - - + F[C]A,4 be an invertible K-module spanned by Ay, ..., A; € M(K). It will be
essential to regard A; as a d-by-d block matrix with entries from the field K = F[C] € My(F). To avoid
misinterpretations, we will denote elements from K as well as matrices from M;(K) and their entries in
boldface:

Api=Ac= () @) e FIC] < My(F).
Recall that M,(FF) is a left K-module of dimension d (this follows from d?> = dimp My(F) = (dimg K) -
(dimg M, (F))). Let By, ..., Bs € M4(FF) be its basis. Hence, by the action of K = F[C] on M,(F),

Md(]P) = P[C]Bl + -+ IF[C]Bd.

Now, a matrix C € F[C] € M;(FF) induces a K-linear mapping on M,(FF) by X + XC. Relative to the basis
By, ..., By, this mapping is represented by a matrix Tc € M;(K). Since the transformation p(C) — Ty ) is a
linear antiisomorphism of F[C] into M,(KK), the minimal polynomial for T¢ is the same as for C. It follows
that the rational form of T¢ is the same as for C, so there exists a change of basis in the left K-module M;([F),
relative to which

Tyc) = p(C); p € F[x]. (10)

We can clearly assume that By, ...,B; were already chosen in such a way (c.f. Example 4.4 below for a
specific construction).
Let us define d-by-d matrices S;; € M,(IF) by

d
Si=> B, (11)
k=1

so that S;; equals the scalar product of i-th column of the matrix A; with the left K-basis By, ... By of My(TF).
Let
S = (Sif)ij € Mp (IF)
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p1(C) 71(C)
Given vectors X = ( : ) eKland Y = ( : ) € K%, we then have
pa(C) q4(C)

d
Y*SX = > 4i(C)Sijpj(C) € My(F).
ij=1
Denote A; := 4;(C) € K. Hence, with j kept fixed, the summands can be rewritten as >, 4;(C)S;jp;(C) =
D ASipi(C) = 2 A Z,'le algl].)kaj(C). Recall that, relative to K-basis By, .. ., By, one has Byp;(C) = T, c ek

where e; € K? is a column vector with 1 at k-th entry and zeros elsewhere (ey represents By). By (10), the
matrix Ty, (c) coincides with the matrix p;(C) € Ma(FF) = Mq4(K), so

i .
3 4:i(OSipi(C) = YA Y e pi(Cer = pi(C) DA Y. a ey
i k=1 k=1

i i

A
=Pj(C)Af( : )
Ay
and so

d d Ay
Y*SX = )7 qi(C)Sijpj(C) = (Z pj<C>Aj> ( : > : (12)
j=1

ij=1 Ay

Now, by the assumptions, p1(C)A; + - - - + ps(C)Ays € My(K) is nonsingular whenever at least one among
pi(C) € F[C] is nonzero. Consequently, the generalized bilinear form (12) is nondegenerate.

Observe that, in the definition (11) of S, two different A; will yield two different j-th columns of S. Hence
the correspondence is one-to-one. Let us show it is also onto. If S induces a nondegenerate bilinear form,
then the members of its j-th block column are linearly independent in the left K-module M;(IF), hence form
its IK-basis. We define A; to be the transition matrix between this basis and the basis (By, ..., B;) so that

By

A;.“ ( : ) equals j-th block column of S. So we can repeat the previous arguments to derive (12) by which
B,

the transition matrices Ay, ..., A, generate invertible IK-module (since S is nondegenerate). [

Corollary 4.3. Let IF = GF(p") be a finite field, d > 2 an integer, C € M (F) a companion matrix of some irreducible
polynomial m € F[x] and K = F[C]. Then there exists a matrix S € My (IF) so that the generalized bilinear form Bg
is nondegenerate.

Proof. The claim follows directly from Corollary 3.6 and Theorem 4.2. [

Example 4.4. To compute a matrix S inside Theorem 4.2 one needs to choose a K-basis By, ..., Bs € My(FF) with
respect to which the linear map X — XC is again represented by the matrix C. One possibility is to define

B; .= Enci_l.

Since C is already in its rational form and its minimal polynomial has a nonzero constant term Ay, we see that By = Eq;
and B; = —AoE(24a—iy1 + Dkoord—1 *Ex, (i = 2,...,d) for appropriate scalars = € IF. Clearly then, By,...,Byisa
desired basis for left K-module M;(IF). Namely, assume

D IT®B =0 e My(K) (13)
k

for some T eK=TF [C] < My(FF). Note that the matrix TBy = TE1 can be nonzero only in the‘ first column, while
TB; vanishes in the first column for i > 2. In view of (13) this implies that TV By = 0 and as T\ e K is either zero
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or invertible, we get TM = 0. Next, all TB; vanishes in the second column unless i = d. Thus, comparing the second
column in (13) we see that the second column of T B,, which equals —AoT@Dey, vanishes. As before, TW e K is
either invertible or zero, and therefore, T = Q.

Assume we have already shown that T = TW@=D = ... = T@*+1) = 0 for some k > 1. Note that (k + 2)-
nd columns of TBy_(k41), ..., TB1 all vanish. Thus, comparing the (k + 2)-nd column inside (13), we get that
AT e, =0, and as above TWF = Q. By induction, T all vanish, as claimed.

Example 4.5. Let us further illustrate the above calculations with the construction of S in a concrete case. Suppose
. . . . . 001
F = Z,, d = 3. Notice that m(x) = x> + x + 1 € F[x] is an irreducible polynomial, therefore C = ((1) 0 [1)) Denote

K = F[C] and let ¢(x) = x* be the generator of Galois group Gal(K|IF). We choose the K-basis By, By, B; € M3(FF)
as in Example 4.4, so By = Ey1,By = E11C = E13 and By = E;1C? = Eq. Theorem 3.3 yields the existence of a
3-dimensional invertible K-module, generated by the matrices

Oaa 0 a a?
Ay =145 = (104) and 4} = <alz [ g) e M3(K),

where a is a zero of polynomial m. Now, following the proof of Theorem 3.3, we have to firstly diagonalize the matrix

6 5 13
C. This can be done, e.g., with the help of the modal matrix P = <0; 32 ;4 ) Since we need to have A’l,A'2 and A’3 in
111

the same basis, we conjugate them with P to obtain
Ay = PAIP = I, Ay = PALPT! = (“

o

aw
1a
1

6
3
51«

5 R 0 o ab
; , and Az = PA3P = S aa® | € M3(]K)
0

o
a® 0 a

We can now define matrices S;; € My(IF) as in Equation (11) by S;j = P aelg) By where alg) denotes the (k, i)-entry
of matrix A;. This finally yields by inserting C in place of a that

9]

Il
OO+
[elel delololelol)
OO0 OO—ROOO
R OROR O
RPOOOOR =
RPOOOORROR =
RHORRROO0OO
OO0 OO—OF
OO O—ROR

and by Theorem 4.2, S generates a nondegenerate generalized bilinear form on K> = F[C]>.

Example 4.6. Another possibility for a K-basis of a K-module My(IF), in the case when the field extension K|F is
Galois with a cyclic Galois group, can be obtained with the help of Noether-Skolem theorem. Then, there exists an
invertible matrix U € My(F) such that

M;(F) = K@KU®KU*®- - @ KU™!

and X — UXU 1 is the generator of the cyclic group Gal (K|F), see [4, Lemma 2.2]; relative to this basis, the map
X +— XC is given by diagonal matrix. Note that this is applicable to finite fields IF when d is a prime integer, since
every finite field extension has a cyclic Galois group (see [8, Corollary p. 96 and Theorem 3.11]). We acknowledge
that the idea to use Noether-Skolem is based on [9, Lemima 3.2].

Remark 4.7. Suppose S1 and S, are two matrices in M (IF). We say that bilinear forms Bs, and Bg, are equivalent
(Bs, ~ Bs,) if there exist invertible matrices G,H € My(K) such that S, = G*SiH. Note that ~ is indeed
an equivalence relation on the set of all generalized bilinear forms Bs: K? x K? — My(F) induced by matrices
S € Mp(F). Also, observe that S, = G*S1H implies that Bs,(X,Y) = Bs,(HX, GY) forall X,Y € K*. In order
for the calculations with the bilinear forms to be as manageable as possible, we can always replace a bilinear form
with another equivalent bilinear form with a specified first block row and column. Assume therefore that Bs, is
nondegenerate and let {Fy,F»,...,F4} be a basis for the left K-module My(IF) and {F} = F1,F,.. .,F;} be a basis
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for the right K-module My(IF). Then we prove that Bs, ~ Bs, where in d-by-d block decomposition of Sy, the first
F

column equals ( : ) and the first row equals (F,F}, ..., F)).
Fq

To see this, denote by Sgl) the first d-by-d block column vector of S1 and observe that the blocks in Sgl) form

a basis for the left K-module My(F). Indeed, otherwise there exists a nonzero Y € K such that Y*Sgl) = 0 and
thus Y*$1X = 0 for X = (I,0,0,...,0)* which is a contradiction since Bs, is nondegenerate. This implies that
there exists an invertible matrix G € My(K) such that the first column of G*S; equals (F1,F,...,Fq)*. Since
Bexs, (X, Y) = Bs, (X, GY), the bilinear form Bgxg, is nondegenerate and we can prove with a similar reasoning as
above that the blocks in the first d-by-d block row of G*Sy form a basis for the right IK-module M, (IF). Therefore,
there exists an invertible matrix H € My(KK) such that the first row of G*S1H equals (F{,F;, ..., F}). But since
F| = Fy, the first block column of H equals (I,0,0, ..., 0), therefore the first block column of G*S1H remains equal to
(F1,Fa, ..., Fy)*, as claimed.

In particular, if the field extension K|IF is Galois with a cyclic Galois group then every nondegenerate generalized
ue

bilinear form is equivalent to Bs, where the first block column of S equals | - > and the first block row of S equals
o, ..., u"), with U € My(F) from Example 4.6. -
Example 4.8. Assume S € My (F) induces a nondegenerate bilinear form and the field extension ]K|£F is Galois
with a cyclic Galois group. By Remark 4.7, we can assume that the first block column of S equals U ), where
U € My(F) is from Example 4.6. Since all block columns of S also form a basis for left K-module Md(llgg,_lthere exist
transition matrices P; € My(K) such that the i-th block column of S satisfies
S; = P;5;.

Then, with X = (X1,...,X;)* € K, we have

SX=851X1 4 -+ 5:Xy = 51 X1 + P251Xp + - -- + PyS1 Xy

Now, note that X; = p;(C) € F[C] and note that

I-pi(C) pi(C)-1 pi(C)
Upi(C) SO )
51X; = ) = ) = ) S
u=1p(C) ¢~ (i (C) ! ()

50,

T ;
019:6 u
SX =P . ( : )
i=1 : #11(X) udl1

with Py the identity matrix in My(K). Then S induces a nondegenerate generalized bilinear form if and only if the
matrix

X.

1 X
H(Xi)

1 Xa
H(X1) O(Xa)

. _ + P, .
g1 () 1) L ¢10%)

X
P(Xa)

d
2P
i=1

+

-+ Py ..
N (Xa)



D. Dolzan et al. / Filomat 37:14 (2023), 4573-4586 4585

is always nonsingular whenever (X1,...,Xz)* € K% is nonzero. We can multiply this matrix on the right with
U-':=diag(L,U,..., U1~ € Mp(F) to see that

I PUX;

is nonsingular for every nonzero vector (X1,...,Xa) € K9, that is, the transition matrices P1,...,Py € My(K) C
M (F) are such that PrU, ..., PsU € Mp(FF) span an invertible right K-module. This construction reverses the
construction of Example 4.6 using Theorem 4.2.

5. Concluding remarks

Let us finish with some possible applications.

(i) Let IF be a field and let K = F[C], where C € M;(F) is a companion matrix of some irreducible
polynomial x! + cy_1x1 4+ ... 4+ c1x + ¢o. Then, each invertible K-module in M,;(K) induces a left-unital
division [F-algebra with dimension d?> which contains K as a subfield. To see that, choose an ordered basis

(Vi,...,Ve) = (LAy,...,Ai_1,C,CA,...,CA;_1,C?,C2A,,...,C0 1A, ),

where
0 - .- —col
. I o0 --- —cq1
0o - I —cy_q1

consider these matrices inside M (IF), and apply the procedure which returns a division algebra.
Observe that, relative to the lexicographically ordered basis

er®ey,...,eq®e;, e1Q®e,...,64Qe , e1®es, ..., 60 Qe

one has V1 = C* = I®g C*. So its (bd + 1)-th column equals Clepgiq = (I®CHY(e1®epr1) = I®C)(e1 ®
(Cler)) = e1 ® (C*ler) = e1 @ X Arer = Y Axer @ ex = > Axeray1. This shows that

Vair1 % Vigy1 = Z MVia1 = Z MI®CH =1 (Z MCH =1 C*?
k k k

where at the end we used the fact, which follows from C'e; = ¢;1 for t < d — 1, that if Cle; = Y}, Akey =
Y AkCk ey, then Ct = 3, A,C*~1. This shows that we have

_— .
Va1 % Vg1 = C0 = Vogy1 Viaga; 0<ab<d-1

Hence, the obtained left-unital division algebra A contains a field K € A with dimg K = +/dimg A.

(ii) Let F = GF(g) be a finite field and p > 3 a prime. Suppose S € M,z(IF) is an invertible matrix
and the generalized bilinear forms induced by S and by S~! are both degenerate. Choose any nonscalar
matrix A € M2 (FF) and let B = 5~'AS be its conjugate. Then, there exists a chain of six nonscalar matrices
A=Xo~Xi ~Xp ~Xz ~ X4 ~ X5 = B such that X; commutes with X;;1 (equivalently, the distance
between A and B in a commuting graph is at most five, see [5]).

To see this, we only need to consider the case when IF[A] is a field (otherwise we can apply the proof of [5,
Theorem 3.3]). Observe that IF[A] = GF(4""), so it contains GF(g”) as a proper intermediate subfield and
in particular there exists a polynomial f such that f(A) is its generator. Up to conjugation, f(A) equals its
rational form (—B’j C, where C € M,(F) is a companion matrix of some irreducible polynomial. Let K = [F[C]
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and choose nonzero matrices X, V, Y, U € K such that B5(X, V) = V*SX = 0and B¢ (U, Y) = Y*S~'U = 0.
Since f(A) = @’; C, it commutes with every block matrix of the form (p;;(C));; and in particular with XY*.
This gives us a desired chain

A~ f(A) ~XY* ~ STHUV*)S ~ ST' f(A)S ~ B = ST'AS.

(iii) The generalized bilinear form can be seen as a bunch of suitably dependent d* ordinary bilinear
forms on F"* (n = d?) stacked together into a d-by-d matrix. Namely, each vector x = (xy,... ,xi)T e P
induces an element p,(C) := x4 + x,C + - -+ + x4C*1 € K such that px(C)er = x; observe that x — p,(C) is
F-linear and bijective. In this way, each x € ", partitioned into blocks of size d, induces a vector V, € K“
and x — V, is an F-linear and bijective map from IF" to K. Then, B(x, y) := VISV, = B5(Vy, V) isalso an
F-bilinear map from F" x F" into IF¥.
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