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aFaculty of Mathematics and Physics, University of Ljubljana, Slovenia
bSchool of Economics and Business, University of Ljubljana, Slovenia

cFaculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Slovenia
dInstitute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

Abstract. We construct invertible modules (as invertible linear spaces of matrices with an additional
structure) and find a bijective correspondence between nondegenerate generalized bilinear forms and the
invertible modules.

1. Introduction

This paper is motivated by the problem of finding the diameter of the commuting graph of the algebra
of prime-squared sized matrices over a finite field. Recall that the commuting graph of a general magmaA
(i.e., a nonempty set equipped with a possibly non-associative binary operation) is a simple graph whose
vertices are all noncentral elements ofA and where two distinct vertices a, b are connected if they commute
inA, i.e., if ab � ba. It was first introduced in [2] in an early attempt towards classification of simple finite
groups.

Recently, the (diameters of) commuting graphs of the matrix algebra MnpFq of n-by-n matrices over a
field F have been studied extensively, see for example [6, 7, 10]. One of the first results in this vein was that
when F is algebraically closed and n ¥ 3, the diameter of the commuting graph ΓpMnpFqq is equal to four,
[1]. In general, the diameter of a connected graph is at most six, and it has been proved that there exists a
field such that the diameter of the commuting graph ΓpMnpFqq is equal to six, [11]. If F is a finite field, then
the diameter of ΓpMnpFqq is equal to four when n ¥ 4 is even, ΓpMnpFqq is disconnected when n is a prime,
and if n is neither a prime nor a square of a prime, the diameter is at most five, [5] (see also concluding
remarks in [4]). So, the only open problem in the case of finite fields remains the diameter of the commuting
graph of p2-by-p2 matrices for a prime p. It is known that the diameter in this case is at least five for
sufficiently large fields, [4], and at most six, [1]. Similar arguments as in the proof of [5, Theorem 3.3] would
imply that the diameter is equal to five if one could show that every generalized bilinear form induced by
an invertible matrix (defined by (2)) is degenerate. We show that this is not the case (see Corollary 4.3).
We do this by constructing a maximal linear space of invertible matrices of special kind (see Theorem 3.3
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and Remark 3.5). So, this approach does not solve the diameter problem, however we strongly believe that
it might be of an independent interest (see also Section 5). The problem will be solved in our subsequent
paper, based on different techniques.

The paper is structured as follows. In Section 2, we define the notion of invertible modules (as invertible
linear spaces of matrices with an additional structure) and define (nondegenerate) generalized bilinear
forms. In Section 3, we construct the invertible modules under some mild assumptions (see Theorem 3.3).
In Section 4, we show that the nondegenerate bilinear forms are in a bijective correspondence with the
invertible modules (see Theorem 4.2). We illustrate these constructions with some examples. The final
section gives additional remarks with a view towards possible applications.

2. Preliminaries

2.1. Matrix modules

Throughout, let d ¥ 2 be an integer, let n � d2, let F be a field, and let C � Cpmq P MdpFq be a companion
matrix of an irreducible polynomial m P Frxs of degree d. Recall that

K :� FrCs,

the unitalF-algebra generated by C, is a d-dimensionalF-linear subspace of MdpFqwhich, besides 0, consists
of invertible matrices only. In fact, it is a subspace of maximal possible dimension with such property (see,
e.g., [13, p. 44]). As such, K � FrCs is also a field extension of F, and V :� MdpFq is a natural left
K-module, with the action given by matrix multiplication ppCq � X ÞÑ ppCqX where ppCq P FrCs � K and
X P MdpFq. Clearly, dimKpVq � d. Observe that this action, when restricted to a subfield F � FI � K,
is the multiplication with scalar matrices with coefficients from F, so it coincides with the usual scalar
multiplication on MdpFq. In particular, each leftK-submodule ofV is simultaneously an F-linear subspace.
Consequently, (again by [13, p. 44]) the only invertible leftK-submodules ofV, i.e.,K-submodules which,
besides 0, consist of invertible d-by-d matrices only areKA � FrCsA for some invertible A P MdpFq.

To get more interesting examples of invertible K-submodules, a natural way is to extend the scalars
and, instead of MdpFq, consider a left K-module MdpKq whose K-dimension equals d2. The action of the
fieldK on MdpKq remains the same as before, i.e., left multiplication with the matrices fromK � FrCs. For
example, if F � R, the field of real numbers, and C � � 0 �1

1 0

� P M2pRq, then K � FrCs is isomorphic to the
field C of complex numbers, with matrix C identified as an imaginary unit

?�1. However, contrary to the
usual scalar multiplication on M2pKq � M2pCq, the action of C P K on X � p x y

u v q P M2pCq is CX � ��u �v
x y

�
which differs from the usual

?�1X �
� ?�1x

?�1y?�1u
?�1v

	
.

More precisely, under the identification MdpKq � KbF MdpFq � FrCs b MdpFq the K-action on FrCs b
MdpFq is a left multiplication by the elements from IbFrCs � K. We remark that this contrasts with the usual
module structure obtained by extending the scalars, that is, a left multiplication on MdpKq � FrCs bMdpFq
by the elements fromK � FrCs b I.

The following question is immediate:

Question 2.1. If K � FrCs, does MdpKq contain an invertible left submodule of dimension d over K (that is, a
submodule, which besides 0 consists solely of invertible d-by-d matrices)?

Remark 2.2. Note that MdpKq does not contain invertible K-submodules of dimension d � 1. Namely, let B :�
KA1 � � � � �KAd�1 � MdpKq be an invertible K-submodule with dimKB � d � 1. Clearly, B is also an F-vector
space with dimFB � dimKB �dimFK � pd� 1qd. However, due toK � FrCs we can regard MdpKq � MdpFrCsq
as d-by-d block matrices whose blocks belong to FrCs � MdpFq. That is, as a matrix F-algebra, we have an embedding
MdpKq � Md2pFq and it is well-known that in the latter algebra the maximum possible dimension for invertible
F-subspace is d2   pd � 1qd, a contradiction.
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2.2. Bilinear forms

InvertibleK-modules have an equivalent reformulation which is interesting in its own. To place it into a
proper perspective, let us first introduce an operation of transforming column vectors with entries in MdpFq

into row vectors, and vice versa, as follows: If V �
�

V1
...

Vd

�
is a block matrix from Md2�dpFq with blocks

Vi P MdpFq, then we let

V� :�
�� VT

1

...
VT

d

�
T

� pV1, . . . ,Vdq. (1)

In particular, if each Vi P K � FrCs � MdpFq then also each (block) entry in V� belongs to FrCs.
Now, recall that each matrix A P MdpKq induces a bilinear form on Kd, defined by px, yq ÞÑ yTAx P K;

here, yT denotes the transposition of a column vector y P Kd. Its zeros are pairs of vectors px, yq P Kd �Kd

such that yTAx � 0 P K. We call zeros of the form p0, yq and px, 0q trivial zeros of bilinear form. However,
the bilinear form also has nontrivial zeros because for each x there exists a nonzero vector y which is
perpendicular to Ax relative to pairing px, yq ÞÑ yTx.

Recall thatK � FrCs � MdpFq, so instead of A P MdpKq � Md2pFqwe can consider any matrix S P Md2pFq
and induce a generalized bilinear form BS onKd � FrCsd � Mn�dpFq given by

BS : pX,Yq ÞÑ Y�SX, (2)

where Y� was defined with (1). This clearly no longer lies inK � FrCs in general but in MdpFq. In fact, we
may partition X,Y,S into blocks of size d-by-d, so that X � pX1, . . . ,Xdq�, Y � pY1, . . . ,Ydq�, and S � �Si j

�
i j,

with Xi,Y j P FrCs � MdpFq and with Si j P MdpFq. Wherefrom the generalized bilinear form equals

BSpX,Yq � Y�SX �
ḑ

i, j�1

YiSi jX j P MdpFq. (3)

A generalized bilinear form BS is called nondegenerate if BSpX,Yq � 0 implies X � 0 or Y � 0. One should
remark that generalized bilinear forms do not always satisfy BSpX∆,Yq � BSpX,Y∆q, ∆ P K, so they may
not beK-bilinear.

Question 2.3. Does there exist a matrix S P Md2pFq so that the generalized bilinear form BS, defined in (3), is
nondegenerate?

3. Invertible submodules

In the present section we give a partial answer to the Question 2.1. Namely, we show that the answer
is positive in the case d � 2 and also in the case when F � GFpprq is a finite field (see Proposition 3.1 and
Corollary 3.6 below).

Proposition 3.1. Let F be a field and Cpmq P M2pFq a companion matrix of an irreducible polynomial m P Frxs of
degree 2. Then, there exists a matrix A P M2pKq, where K � FrCs such that K �KA � M2pKq is an invertible
K-module.

Proof. It will be helpful to view K as a field and also as a subspace of 2-by-2 matrices over F; to avoid
misinterpretations, we will denote elements in K by Greek letters when considering K as a field and with
capital letters when considering it as a subset in M2pFq.

By Cayley-Hamilton, C is a zero of its minimal polynomial mpxq and as such K � FrCs is a splitting
field for m, i.e., mpxq � px � αqpx � βq for some α, β P K. Hence, the matrix C is triangularizable in M2pKq
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(diagonalizable if m is separable). After a suitable conjugation we may assume C is in Jordan form. Define
the matrix

A :�
�

0 α
1 0



P M2pKq

which is clearly invertible. We need to prove that p0pCq � p1pCqA P M2pKq, p0, p1 P Frxs, is invertible
whenever at least one of matrices p0pCq and p1pCq is nonzero.

It clearly suffices to assume that p0pCq is nonzero. There exists p P Frxs such that ppCq � p0pCq�1p1pCq P
M2pKq. Now, if C P M2pFq � M2pKq is diagonal then

I � ppCqA �
�

1 ppαqα
ppβq 1



whose determinant equals 1 � ppαqppβqα. Since minimal polynomial of C has degree two we may clearly
assume that p is linear. Write it as ppxq � a0 � a1x P Frxs, then ppαqppβq � a2

0 � a0a1pα� βq � a2
1αβwhich, by

Vieta’s rules, belongs to F. In view of the fact that α is algebraic of order two, this implies that determinant
is always nonzero.

It remains to consider the case when C is triangular, that is, when its minimal polynomial m is nonsep-
arable. This can happen only if charF � 2. Then C � � α 1

0 α

�
and so

I � ppCqA �
�

1 � a1 αppαq
ppαq 1



whose determinant is 1 � a1 � αppαq2. Since now mpxq � px � αq2 P Frxs, we have α2 P F so also
ppαq2 � a2

0 � a2
1α

2 P F. Again, it suffices to consider p linear so ppαq � 0, hence ppαq2 P Fzt0u and therefore
1 � a1 � αppαq2 � 0, that is, determinant of I � ppCqA is always nonzero.

Example 3.2. We may apply the preceding proposition to C :� Cpx2 � 1q P M2pRq; here K � RrCs � C.
Consequently, there exists a matrix A P M2pCq such that the space

RrCs �RrCsA (4)

is invertible. Observe that RrCs � C, so (4) is a two-dimensional invertible C-module in M2pCq. Note in contrast
that, with the usual scalar multiplication, there exists no two-dimensional complex vector subspace in M2pCq which
would, besides zero matrix, consist of invertible matrices only (this is an easy consequence of the fact that every
complex matrix has an eigenvalue; see also [3, Proof of Statement IV p. 486]).

Proposition 3.1 can be generalized to d-by-d matrices over suitable fields. This will be proven in our first
main result.

Theorem 3.3. Let F be a field, d ¥ 2 an integer and C � Cpmq P MdpFq a companion matrix of an irreducible
polynomial m P Frxs. Suppose that the field extension K � FrCs is Galois over F with the corresponding Galois
group cyclic. Then, there exist matrices A0 � I,A1,A2, . . . ,Ad�1 P MdpKq such thatK�KA1 � � � � �KAd�1 is an
invertibleK-module.

Proof. Recall that since K is Galois over F, the polynomial m is separable, so it has d distinct roots in K.
Moreover, if ϕ is a generator of Galois group GalpK|Fq, then ϕ has degree d and cyclically permutes zeros
of m. As such, if mpαq � 0 then α, ϕpαq, . . . , ϕd�1pαq P K are all the zeros of m so that

mpxq � px � αqpx � ϕpαqqpx � ϕ2pαqq � � � px � ϕd�1pαqq P Krxs.

It follows that C � Cpmq is diagonalizable overK and we may clearly assume it is already diagonal. Thus,

ppCq � diagpppαq, ppϕpαqq, . . . , ppϕd�1pαqqq; p P Frxs. (5)
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Define

A1 :�
¸

1¤i  j¤d

pE ji � αEi jq �

�������
0 α � � � � � � α
1 0 α � � � α
...
. . .

. . .
. . .

...
1 � � � 1 0 α
1 � � � � � � 1 0

������

and for k � 2, 3, . . . , pd � 1q define

Ak � A1 � α
d�ķ

i�1

�
ϕi�1pαq � 1

�
Ei pi�kq �

ķ

i�1

�
ϕd�k�1�ipαq � 1

�
Epd�k�iq i

that is, Ak is obtained from A1 by replacing k-th superdiagonal with

α
�
α, ϕpαq, ϕ2pαq, . . . , ϕd�k�1pαq�

and replacing pd � kq-th subdiagonal with�
ϕd�kpαq, ϕd�k�1pαq, . . . , ϕd�1pαq�.

For example, with d � 5 we have

A1 �
� 0 α α α α

1 0 α α α
1 1 0 α α
1 1 1 0 α
1 1 1 1 0

�
, A2 �

���
0 α α2 α α
1 0 α αϕpαq α
1 1 0 α αϕ2pαq

ϕ3pαq 1 1 0 α

1 ϕ4pαq 1 1 0

��
,

A3 �

���
0 α α α2 α
1 0 α α αϕpαq

ϕ2pαq 1 0 α α
1 ϕ3pαq 1 0 α

1 1 ϕ4pαq 1 0

��
, A4 �

���
0 α α α α2

ϕpαq 0 α α α
1 ϕ2pαq 0 α α
1 1 ϕ3pαq 0 α

1 1 1 ϕ4pαq 0

��

Observe that, with nonzero p0pCq P FrCs, we have that the matrix p0pCq � p1pCqA1 � � � � � pd�1pCqAd�1

is invertible if and only if I � pp1pCqA1 � � � � � ppd�1pCqAd�1 is invertible, where ppipCq � p0pCq�1pipCq P FrCs.
Hence, to prove that K-module FrCs � FrCsA1 � � � � � FrCsAd�1 is invertible, it suffices to show that, with
ε P t0, 1u and p1, . . . , pd�1 P Frxs, we have

det
�
εI � p1pCqA1 � � � � � pd�1pCqAd�1

�
is zero if and only if ε � 0 and p1pCq � � � � � pd�1pCq � 0. After a straightforward calculation,

Tε : � εI � p1pCqA1 � � � � � pd�1pCqAd�1

� εI �
¸
i  j

αϕi�1pb j�iqEi j �
¸
i¡ j

ϕ j�1pbd�p j�iqqEi j

� εI �

�������
0 αb1 � � � αbd�2 αbd�1

ϕpbd�1q 0 αϕpb1q � � � αϕpbd�2q
...

. . .
...

ϕd�2pb2q � � � ϕd�2pbd�1q 0 αϕd�2pb1q
ϕd�1pb1q ϕd�1pb2q � � � ϕd�1pbd�1q 0

������

where

b1 �
d�1̧

i�1

pipαq, b2 � pα� 1qp2pαq � b1, . . . , bd�1 � pα� 1qpd�1pαq � b1.
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Now, let again x be an indeterminate over K and consider two matrix polynomials, obtained by formally
replacing each explicit occurrence of α by x in the matrix Tε:

Fεpxq � εI �

�������
0 xb1 � � � � � � xbd�1

ϕpbd�1q 0 xϕpb1q � � � xϕpbd�2q
...

. . .
...

ϕd�2pb2q � � � ϕd�2pbd�1q 0 xϕd�2pb1q
ϕd�1pb1q � � � � � � ϕd�1pbd�1q 0

������
; ε P t0, 1u.

In particular, Tε � Fεpαq. Let us further introduce two polynomials

fεpxq :� det Fεpxq; ε P t0, 1u. (6)

Clearly, fε are polynomials of degree at most d � 1 because indeterminate x is present in Fε only above the
main diagonal and the entries of Fε are linear in x. We claim that

ϕ
�

fεpγq
� � detϕpFεpγqq � fε

�
ϕpγq�; γ P Kzt0u. (7)

The first equality in (7) is evident. To prove the second one, note that whatever the value of ε P t0, 1u, it
is fixed by ϕ. Hence,

ϕpFεpγqq � εI �

�������
0 ϕpγqϕpb1q � � � � � � ϕpγqϕpbd�1q

ϕ2pbd�1q 0 ϕpγqϕ2pb1q � � � ϕpγqϕ2pbd�2q
...

. . .
...

ϕd�1pb2q � � � ϕd�1pbd�1q 0 ϕpγqϕd�1pb1q
ϕdpb1q � � � � � � ϕdpbd�1q 0

������

Recall that ϕd is the identity map. Thus, if we cyclically permute the rows and then the columns of ϕpFεpγqq
by permutation p1, 2, . . . , dq then we end up with the matrix

pFε � εI �
����������

0 b1 � � � � � � bd�1
ϕpγqϕpbd�1q 0 ϕpγqϕpb1q � � � ϕpγqϕpbd�2q

... ϕ2pbd�1q 0 � � � ϕpγqϕ2pbd�3q

...
...

...
ϕpγqϕd�2pb2q ϕd�2pb3q � � � 0 ϕpγqϕd�2pb1q
ϕpγqϕd�1pb1q ϕd�1pb2q � � � ϕd�1pbd�1q 0

���������

which has the same determinant as ϕ

�
Fεpγq

�
. Observe that it is also the same matrix as Fεpϕpγqq except

that the first row of Fεpϕpγqq is divided by pFε will not change if we divide its first column by ϕpγq and
afterwards multiply its first row by ϕpγq. This procedure produces the matrix

εI �

�������
0 ϕpγqb1 � � � � � � ϕpγqbd�1

ϕpbd�1q 0 ϕpγqϕpb1q � � � ϕpγqϕpbd�2q
...

. . .
...

ϕd�2pb2q � � � ϕd�2pbd�1q 0 ϕpγqϕd�2pb1q
ϕd�1pb1q � � � � � � ϕd�1pbd�1q 0

������

which clearly equals Fε

�
ϕpγq�. Hence, detϕ

�
Fεpγq

� � det Fε
�
ϕpγq�, as claimed by the second equality in

(7).
Now, assume

det Tε � 0
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and recall that
det Tε � fεpαq.

By (7) then also ϕ
�
det Tε

� � fε
�
ϕpαq� � 0. Proceeding inductively we derive

fεpαq � fεpϕpαqq � � � � � fεpϕd�1pαqq � 0.

Thus, α, ϕpαq, . . . , ϕd�1pαq are d distinct zeros of fε (distinct because they are exactly all the zeros of poly-
nomial m). Since the degree of fε is smaller than d, we have fε � 0. In particular, the leading coefficient of
monomial xd�1 of fε vanishes:

b1ϕpb1q � � �ϕd�1pb1q � 0

hence b1 � 0. Also, the coefficient of monomial xd�2, which equals to b2ϕpb2q � � �ϕd�1pb2q, vanishes and so
b2 � 0. Proceeding inductively, we see that if b1 � b2 � � � � � bi � 0 then the coefficient of monomial of
xd�i�1 equals

bi�1ϕpbi�1q � � �ϕd�1pbi�1q � 0.

Thus, by induction,

b1 � b2 � � � � � bd�1 � 0 (8)

As such, Tε � εI and since its determinant vanishes, ε � 0. Moreover, it follows by definition of b1, . . . , bd�1
that pipαq are all zero. As such, also pipCq � 0. Hence, Tε P FrCs � FrCsA1 � � � � � FrCsAd�1 is singular if
and only if it is a zero matrix.

Remark 3.4. Observe that Proposition 3.1 follows directly from Theorem 3.3 in the case K is a separable extension
of F because a separable extension of degree two is always normal, hence Galois with a cyclic Galois group.

Remark 3.5. Note that we may view MdpKq as block matrices with d-by-d blocks from the field K � FrCs. Then,
each invertibleK-module (withK-dimension equal to t) is anF-linear subspace of Md2pFq (whoseF-dimension equals
td), where every nonzero matrix is invertible.

We can now give a positive answer to Question 2.1 in the case of finite fields.

Corollary 3.6. Let F � GFpprq be a finite field, d ¥ 2 an integer, C P MdpFq a companion matrix of some irreducible
polynomial m P Frxs and K � FrCs. Then, there exist matrices A0 � I,A1,A2, . . . ,Ad�1 P MdpKq such that
K�KA1 � � � � �KAd�1 is an invertibleK-module.

Proof. Clearly, K is a finite field. By [8, Corollary p. 96] it is a Galois extension of F. It is well known (see
e.g. [8, Theorem 3.11]) that within finite fields, the Galois group of field extension is always cyclic, and
hence also GalpK|Fq is cyclic.

If the K-module is generated by the d-by-d matrices with entries from the original field F instead of its
field extension K � FrCs, the result is completely different – we had already mentioned in Section 2 that
the only invertible K-submodules of MdpFq are KA with A P MdpFq invertible. We strengthen this in our
next lemma.

Recall that MdpFq is a left K � FrCs-module under the standard multiplication of matrices. Each its
K-submodule takes the form FrCsB1 � � � � � FrCsBk for suitably chosen matrices B1, . . . ,Bk P MdpFq.
Lemma 3.7. Let k ¤ d be an integer and let B � MdpFq be a left K-submodule of dimension dimKB � k. Then
there exists a submodule B0 ¤ B of dimension dimKB0 � k � 1 such that 0 � �APB0

Ker A.

Proof. Observe that if 0 � Xi P K � FrCs then XiEii is nonzero only in i-th column (it equals the i-th column
of invertible Xi). This shows that the matrices E11, . . . ,Edd P MdpFq areK-linearly independent.

Now, if k � d then B � MdpFq � FrCsE11 � � � � � FrCsEdd. Then, E :� FrCsE11 � � � � � FrCsEpd�1q pd�1q is
a pd � 1q-dimensional left K submodule of MdpFq with a common kernel spanned by ed, the last vector of
the standard basis in Fd.

Assume 2 ¤ k ¤ d�1. Then, due to codimKBXE ¤ codimKB� codimK E � pd� kq�1, soB0 :� BXE
satisfies the claim.
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Remark 3.8. Lemma does not hold if dimKB0 � k � 1 is replaced by dimKB0 � k. Namely, if B contains an
invertible matrix, B0 cannot be equal to B.

4. Generalized bilinear forms

In this section, we show that Question 2.3 is closely related to Question 2.1 (see Theorem 4.2 below). We
start with a lemma which proves that a nondegenerate generalized bilinear form is induced by an invertible
matrix.

Lemma 4.1. Let F be a field, d ¥ 2 an integer and C � Cpmq P MdpFq a companion matrix of an irreducible
polynomial m P Frxs. Denote by K � FrCs and n � d2. Assume that a generalized bilinear form BS : Kd �Kd Ñ
MdpFq induced by a matrix S P MnpFq is nondegenerate. Then, S is invertible.

Proof. To prove the claim, we argue by contradiction. So, suppose that S is singular and let x P Fn be a
nonzero column vector annihilated by S. Then, the n-by-d matrix Ξ, defined by d column vectors as

Ξ :� �x | pCx | pC2x | . . . | pCd�1x
�
,

where pC :�Àd
1 C, belongs to Kd � Mn�dpFq. Indeed, vectors in Kn are of the form pp1pCq, . . . , pdpCqq� for

some polynomials pi. Observe that C is in its rational form and so Cei � ei�1 for i   n and Cen �
°

i cinei.
Now, decompose x � x1 ` � � � ` xd and note that the algebra K � FrCs acts transitively on MdpFq, so
there exists polynomials p1, . . . , pd over F with pipCqe1 � xi. Thus, the first column of the n-by-d matrix
X � pp1pCq, . . . , pdpCqq� equals pp1pCq ` � � � ` pdpCqqpe1 ` � � � ` e1q � x1 ` � � � ` xd � x, which coincides with
the first column of Ξ. The second column of X equals pp1pCq ` � � � ` pdpCqqpe2 ` � � � ` e2q � pp1pCq ` � � � `
pdpCqqpCpe1`� � �` e1q � pCpp1pCq` � � �`pdpCqqpCpe1`� � �` e1q � pCx. Similarly, we show for all other columns
of X, so X � Ξ as claimed.

Hence, rankpSΞq ¤ d � 1 because the first column of SΞ is zero. By [12] there exists an invertible
(symmetric) matrix Z P MdpFq such that

C � Z�1CTZ.

Define pZ :�Àd
1 Z and denote by

V :� tpZSpCx, . . . , pZSpCd�1xuK (9)

the vector subspace in Fn of codimension codimV ¤ d� 1; the orthogonal complement in (9) is relative to
the standard nondegenerate bilinear form px, yq ÞÑ xT y P F on Fn � Fn. By bijectivity of pC, we have that
codim pCi

V � codimV for every i � 1, 2, . . . , d � 1. Let

W :�V X pCV X � � � X pCd�1
V.

We have codimW ¤ dpd � 1q   d2, and thusW is nonempty. Choose nonzero w PW. Since w P pCd�1
V,

there exists v PV so that w � pCd�1v. Similarly, since w P pCi
V for each i � 0, . . . , d� 2, there exists vi PV so

that w � pCivi. Since pC is invertible, we get that pC jv � vd�1� j PV for every j � 1, . . . , d � 1.
Let us form an n-by-d matrix X :� �v | pCv | . . . | pCd�1v

�
. The equation (9) then implies that XTpZSΞ � 0,

so also
Z�1XTpZ � SΞ � 0.

Clearly, X is nonzero and belongs toKd. As such, its transpose takes the form

XT � �p1pCqT, . . . , pdpCqT�
for some polynomials pi P Frλs. Observe that

Z�1XTpZ � �Z�1p1pCqTZ, . . . ,Z�1pdpCqTZ
� � �p1pZ�1CTZq, . . . , pdpZ�1CTZq�

� �p1pCq, . . . , pdpCq
�
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that is, Λ :� pZ�1XTpZq� belongs to Kd and satisfies Λ�SΞ � 0, and so pΛ,Ξq is a nontrivial zero of
generalized bilinear form induced by S, a contradiction.

Recall from [3] that classical d-dimensional invertible vector subspaces in MdpFq are in one-to-one, onto
correspondence with (possibly non-associative) division algebras on Fd: given such an invertible subspace
with basis V1, . . . ,Vd, it induces the bilinear product on Fd � LinFtV1, . . . ,Vdu by letting Vi�V j :� °k vpiqkj Vk

where Vi �
�
vpiqkj

�
kj. Observe firstly that this product indeed yields a division algebra: choose any non-zero

V � °
i αiVi and assume that V � p° j β jV jq � 0. If we denote V � �

vkj
�

kj, this gives us
°

j β jvkj � 0 for

every k � 1, . . . , d, so V

� β1

...
βd

�
� 0, and thus β1 � . . . � βd � 0 since V is invertible. Conversely, given

a (non-associative) division algebra of Fd with basis ta1, . . . , adu, we get an invertible vector subspace in
MdpFq by constructing its basis tV1, . . . ,Vdu, where for each j � 1, . . . , d, V j is the matrix corresponding to
the left multiplication with a j. It can be easily checked that this is indeed an invertible vector subspace, and
also that the above two mappings are mutually inverse.

Similarly, we show that the generalized bilinear forms are in one-to-one, onto correspondence with
invertibleK-modules.

Theorem 4.2. Let F be a field, d ¥ 2, and let C � Cpmq P MdpFq be a companion matrix of some irreducible
polynomial m P Frxs; define K � FrCs. There exists a bijective correspondence between bases for invertible
K-sobmudules in MdpFq and generalized bilinear forms (3) which are nondegenerate.

Proof. Let FrCsA1 � � � � � FrCsAd be an invertible K-module spanned by A1, . . . ,Ad P MdpKq. It will be
essential to regard Ai as a d-by-d block matrix with entries from the field K � FrCs � MdpFq. To avoid
misinterpretations, we will denote elements from K as well as matrices from MdpKq and their entries in
boldface:

Ak :� Ak � pαpkqi j qi j; αpkqi j P FrCs � MdpFq.

Recall that MdpFq is a left K-module of dimension d (this follows from d2 � dimFMdpFq � pdimFKq �
pdimKMnpFqq). Let B1, . . . ,Bd P MdpFq be its basis. Hence, by the action ofK � FrCs on MdpFq,

MdpFq � FrCsB1 � � � � � FrCsBd.

Now, a matrix C P FrCs � MdpFq induces a K-linear mapping on MdpFq by X ÞÑ XC. Relative to the basis
B1, . . . ,Bd, this mapping is represented by a matrix TC P MdpKq. Since the transformation ppCq ÞÑ TppCq is a
linear antiisomorphism of FrCs into MdpKq, the minimal polynomial for TC is the same as for C. It follows
that the rational form of TC is the same as for C, so there exists a change of basis in the leftK-module MdpFq,
relative to which

TppCq � ppCq; p P Frxs. (10)

We can clearly assume that B1, . . . ,Bd were already chosen in such a way (c.f. Example 4.4 below for a
specific construction).

Let us define d-by-d matrices Si j P MdpFq by

Si j �
ḑ

k�1

αp jq
ki Bk, (11)

so that Si j equals the scalar product of i-th column of the matrix A j with the leftK-basis B1, . . .Bd of MdpFq.
Let

S � �Si j
�

i j P Md2pFq.
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Given vectors X �
� p1pCq
...

pdpCq

�
P Kd and Y �

� q1pCq
...

qdpCq

�
P Kd, we then have

Y�SX �
ḑ

i, j�1

qipCqSi jp jpCq P MdpFq.

Denote λi :� qipCq P K. Hence, with j kept fixed, the summands can be rewritten as
°

i qipCqSi jp jpCq �°
i λiSi jp jpCq �

°
i λi
°d

k�1 α
p jq
ki Bkp jpCq. Recall that, relative to K-basis B1, . . . ,Bk, one has Bkp jpCq � Tp jpCqek,

where ek P Kd is a column vector with 1 at k-th entry and zeros elsewhere (ek represents Bk). By (10), the
matrix Tp jpCq coincides with the matrix p jpCq P MdpFq � MdpKq, so

¸
i

qipCqSi jp jpCq �
¸

i

λi

ḑ

k�1

αp jq
ki p jpCqek � p jpCq

¸
i

λi

ḑ

k�1

αp jq
ki ek

� p jpCqA j

�
λ1

...
λd

�

and so

Y�SX �
ḑ

i, j�1

qipCqSi jp jpCq �
�� ḑ

j�1

p jpCqA j

�
� λ1

...
λd

�
. (12)

Now, by the assumptions, p1pCqA1 � � � � � pdpCqAd P MdpKq is nonsingular whenever at least one among
pipCq P FrCs is nonzero. Consequently, the generalized bilinear form (12) is nondegenerate.

Observe that, in the definition (11) of S, two different A j will yield two different j-th columns of S. Hence
the correspondence is one-to-one. Let us show it is also onto. If S induces a nondegenerate bilinear form,
then the members of its j-th block column are linearly independent in the leftK-module MdpFq, hence form
its K-basis. We define A j to be the transition matrix between this basis and the basis pB1, . . . ,Bdq so that

A�
j

�
B1

...
Bd

�
equals j-th block column of S. So we can repeat the previous arguments to derive (12) by which

the transition matrices A1, . . . ,Ad generate invertibleK-module (since S is nondegenerate).

Corollary 4.3. Let F � GFpprq be a finite field, d ¥ 2 an integer, C P MdpFq a companion matrix of some irreducible
polynomial m P Frxs andK � FrCs. Then there exists a matrix S P Md2pFq so that the generalized bilinear form BS
is nondegenerate.

Proof. The claim follows directly from Corollary 3.6 and Theorem 4.2.

Example 4.4. To compute a matrix S inside Theorem 4.2 one needs to choose a K-basis B1, . . . ,Bd P MdpFq with
respect to which the linear map X ÞÑ XC is again represented by the matrix C. One possibility is to define

Bi :� E11Ci�1.

Since C is already in its rational form and its minimal polynomial has a nonzero constant termλ0, we see that B1 � E11
and Bi � �λ0Ep2�d�iq 1 �

°
k¡2�d�1 �Ek1, pi � 2, . . . , dq for appropriate scalars � P F. Clearly then, B1, . . . ,Bd is a

desired basis for leftK-module MdpFq. Namely, assume¸
k

TpkqBk � 0 P MdpKq (13)

for some Tpkq P K � FrCs � MdpFq. Note that the matrix TB1 � TE11 can be nonzero only in the first column, while
TBi vanishes in the first column for i ¥ 2. In view of (13) this implies that Tp1qB1 � 0 and as Tpiq P K is either zero
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or invertible, we get Tp1q � 0. Next, all TBi vanishes in the second column unless i � d. Thus, comparing the second
column in (13) we see that the second column of TpdqBd, which equals �λ0Tpdqe1, vanishes. As before, Tpdq P K is
either invertible or zero, and therefore, Tpdq � 0.

Assume we have already shown that Tpdq � Tpd�1q � � � � � Tpd�k�1q � 0 for some k ¥ 1. Note that pk � 2q-
nd columns of TBd�pk�1q, . . . ,TB1 all vanish. Thus, comparing the pk � 2q-nd column inside (13), we get that
�λ0Tpd�kqe1 � 0, and as above Tpd�kq � 0. By induction, Tpiq all vanish, as claimed.

Example 4.5. Let us further illustrate the above calculations with the construction of S in a concrete case. Suppose
F � Z2, d � 3. Notice that mpxq � x3 � x � 1 P Frxs is an irreducible polynomial, therefore C �

�
0 0 1
1 0 1
0 1 0

	
. Denote

K � FrCs and let ϕpxq � x2 be the generator of Galois group GalpK|Fq. We choose the K-basis B1,B2,B3 P M3pFq
as in Example 4.4, so B1 � E11,B2 � E11C � E13 and B3 � E11C2 � E12. Theorem 3.3 yields the existence of a
3-dimensional invertibleK-module, generated by the matrices

A1
1 � I,A1

2 �
�

0 α α
1 0 α
1 1 0

	
and A1

3 �
�

0 α α2

α2 0 α
1 α4 0



P M3pKq,

where α is a zero of polynomial m. Now, following the proof of Theorem 3.3, we have to firstly diagonalize the matrix

C. This can be done, e.g., with the help of the modal matrix P �
�
α6 α5 α3

α α2 α4

1 1 1



. Since we need to have A1

1,A
1
2 and A1

3 in

the same basis, we conjugate them with P to obtain

A1 � PA1
1P�1 � I, A2 � PA1

2P�1 �
�
α6 α α5

α3 1 α2

α5 1 α2



, and A3 � PA1

3P�1 �
�

0 α4 α6

α6 α α3

α6 0 α



P M3pKq.

We can now define matrices Si j P MdpFq as in Equation (11) by Si j �
°3

k�1 α
p jq
ki Bk where αp jq

ki denotes the pk, iq-entry
of matrix A j. This finally yields by inserting C in place of α that

S �

�����
1 0 0 1 1 1 0 1 1
0 0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 1 1
0 0 1 0 1 1 0 0 0
0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 0
0 1 0 1 0 0 1 0 1
0 0 0 1 0 0 0 1 1
0 0 0 1 1 1 1 0 0

����

and by Theorem 4.2, S generates a nondegenerate generalized bilinear form onK3 � FrCs3.

Example 4.6. Another possibility for a K-basis of a K-module MdpFq, in the case when the field extension K|F is
Galois with a cyclic Galois group, can be obtained with the help of Noether-Skolem theorem. Then, there exists an
invertible matrix U P MdpFq such that

MdpFq � K`KU `KU2 ` � � � `KUd�1

and X ÞÑ UXU�1 is the generator of the cyclic group Gal pK|Fq, see [4, Lemma 2.2]; relative to this basis, the map
X ÞÑ XC is given by diagonal matrix. Note that this is applicable to finite fields F when d is a prime integer, since
every finite field extension has a cyclic Galois group (see [8, Corollary p. 96 and Theorem 3.11]). We acknowledge
that the idea to use Noether-Skolem is based on [9, Lemma 3.2].

Remark 4.7. Suppose S1 and S2 are two matrices in Md2pFq. We say that bilinear forms BS1 and BS2 are equivalent
(BS1 � BS2q if there exist invertible matrices G,H P MdpKq such that S2 � G�S1H. Note that � is indeed
an equivalence relation on the set of all generalized bilinear forms BS : Kd � Kd Ñ MdpFq induced by matrices
S P Md2pFq. Also, observe that S2 � G�S1H implies that BS2pX,Yq � BS1pHX,GYq for all X,Y P Kd. In order
for the calculations with the bilinear forms to be as manageable as possible, we can always replace a bilinear form
with another equivalent bilinear form with a specified first block row and column. Assume therefore that BS1 is
nondegenerate and let tF1,F2, . . . ,Fdu be a basis for the left K-module MdpFq and tF11 � F1,F12, . . . ,F

1
du be a basis
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for the right K-module MdpFq. Then we prove that BS1 � BS2 where in d-by-d block decomposition of S2, the first

column equals

�
F1

...
Fd

�
and the first row equals pF11,F12, . . . ,F1dq.

To see this, denote by Sp1q1 the first d-by-d block column vector of S1 and observe that the blocks in Sp1q1 form
a basis for the left K-module MdpFq. Indeed, otherwise there exists a nonzero Y P Kd such that Y�Sp1q1 � 0 and
thus Y�S1X � 0 for X � pI, 0, 0, . . . , 0q� which is a contradiction since BS1 is nondegenerate. This implies that
there exists an invertible matrix G P MdpKq such that the first column of G�S1 equals pF1,F2, . . . ,Fdq�. Since
BG�S1pX,Yq � BS1pX,GYq, the bilinear form BG�S1 is nondegenerate and we can prove with a similar reasoning as
above that the blocks in the first d-by-d block row of G�S1 form a basis for the right K-module MdpFq. Therefore,
there exists an invertible matrix H P MdpKq such that the first row of G�S1H equals pF11,F12, . . . ,F1dq. But since
F11 � F1, the first block column of H equals pI, 0, 0, . . . , 0q, therefore the first block column of G�S1H remains equal to
pF1,F2, . . . ,Fdq�, as claimed.

In particular, if the field extensionK|F is Galois with a cyclic Galois group then every nondegenerate generalized

bilinear form is equivalent to BS, where the first block column of S equals

�
U0

...
Ud�1

�
and the first block row of S equals

pU0, . . . ,Ud�1q, with U P MdpFq from Example 4.6.

Example 4.8. Assume S P Md2pFq induces a nondegenerate bilinear form and the field extension K|F is Galois

with a cyclic Galois group. By Remark 4.7, we can assume that the first block column of S equals

�
U0

...
Ud�1

�
, where

U P MdpFq is from Example 4.6. Since all block columns of S also form a basis for left K-module MdpFq, there exist
transition matrices Pi P MdpKq such that the i-th block column of S satisfies

Si � PiS1.

Then, with X � pX1, . . . ,Xdq� P Kd, we have

SX � S1X1 � � � � � SdXd � S1X1 � P2S1X2 � � � � � PdS1Xd.

Now, note that Xi � pipCq P FrCs and note that

S1Xi �

���
I�pipCq
UpipCq
...

Ud�1pipCq

��
�
���

pipCq�I
ϕppipCqU
...

ϕd�1ppipCqqUd�1

��
�
���

pipCq
ϕppipCqq

. . .
ϕd�1ppipCqq

��
S1

so,

SX �
ḑ

i�1

Pi

���
Xi
ϕpXiq

. . .
ϕd�1pXiq

��

�� I

U
...

Ud�1

�

with P1 the identity matrix in MdpKq. Then S induces a nondegenerate generalized bilinear form if and only if the
matrix

ḑ

i�1

Pi

���
Xi
ϕpXiq

. . .
ϕd�1pXiq

��
�
���

X1
ϕpX1q

. . .
ϕd�1pX1q

��
� P2

���
X2
ϕpX2q

. . .
ϕd�1pX2q

��

� � � � � Pd

���
Xd
ϕpXdq

. . .
ϕd�1pXdq

��
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is always nonsingular whenever pX1, . . . ,Xdq� P Kd is nonzero. We can multiply this matrix on the right withpU�1 :� diagpI,U, . . . ,Ud�1q�1 P Md2pFq to see that¸
i

Pi pUXi

is nonsingular for every nonzero vector pX1, . . . ,Xdq P Kd, that is, the transition matrices P1, . . . ,Pd P MdpKq �
Md2pFq are such that P1 pU, . . . ,Pd pU � Md2pFq span an invertible right K-module. This construction reverses the
construction of Example 4.6 using Theorem 4.2.

5. Concluding remarks

Let us finish with some possible applications.

(i) Let F be a field and let K � FrCs, where C P MdpFq is a companion matrix of some irreducible
polynomial xd � cd�1xd�1 � � � � � c1x � c0. Then, each invertible K-module in MdpKq induces a left-unital
division F-algebra with dimension d2 which containsK as a subfield. To see that, choose an ordered basis

pV1, . . . ,Vd2q � pI,A1, . . . ,Ad�1, Č, ČA1, . . . , ČAd�1, Č2, Č2A1, . . . , Čd�1Ad�1q,
where

Č � I b C �

�����
0 � � � � � � �c0I
I 0 � � � �c1I
. . .

...
0 � � � I �cd�1I

����
,
consider these matrices inside Md2pFq, and apply the procedure which returns a division algebra.

Observe that, relative to the lexicographically ordered basis

e1 b e1, . . . , ed b e1 , e1 b e2, . . . , ed b e2 , e1 b e3, . . . , ed b ed

one has Vad�1 � Ča � I bF Ca. So its pbd� 1q-th column equals Čaebd�1 � pI b Caqpe1 b eb�1q � pI b Caqpe1 b
pCbe1qq � e1 b pCa�be1q � e1 b

°
k λkek �

°
k λke1 b ek �

°
k λkekd�1. This shows that

Vad�1 � Vbd�1 �
¸

k

λkVkd�1 �
¸

k

λkpI b Ckq � I b p
¸

k

λkCkq � I b Ca�b

where at the end we used the fact, which follows from Cte1 � et�1 for t ¤ d � 1, that if Cte1 �
°

k λkek �°
k λkCk�1e1, then Ct � °k λkCk�1. This shows that we have

Vad�1 � Vbd�1 � Ča�b � Vad�1Vbd�1; 0 ¤ a, b ¤ d � 1.

Hence, the obtained left-unital division algebraA contains a fieldK � Awith dimFK �
a

dimFA.

(ii) Let F � GFpqq be a finite field and p ¥ 3 a prime. Suppose S P Mp2pFq is an invertible matrix
and the generalized bilinear forms induced by S and by S�1 are both degenerate. Choose any nonscalar
matrix A P Mp2pFq and let B � S�1AS be its conjugate. Then, there exists a chain of six nonscalar matrices
A � X0 � X1 � X2 � X3 � X4 � X5 � B such that Xi commutes with Xi�1 (equivalently, the distance
between A and B in a commuting graph is at most five, see [5]).

To see this, we only need to consider the case whenFrAs is a field (otherwise we can apply the proof of [5,
Theorem 3.3]). Observe that FrAs � GFpqp2q, so it contains GFpqpq as a proper intermediate subfield and
in particular there exists a polynomial f such that f pAq is its generator. Up to conjugation, f pAq equals its
rational form

Àp
1 C, where C P MppFq is a companion matrix of some irreducible polynomial. LetK � FrCs
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and choose nonzero matrices X,V, Y,U P Kp such thatBSpX,Vq � V�SX � 0 andBS�1pU,Yq � Y�S�1U � 0.
Since f pAq �Àp

1 C, it commutes with every block matrix of the form ppi jpCqqi j and in particular with XY�.
This gives us a desired chain

A � f pAq � XY� � S�1pUV�qS � S�1 f pAqS � B � S�1AS.

(iii) The generalized bilinear form can be seen as a bunch of suitably dependent d2 ordinary bilinear
forms on Fn (n � d2) stacked together into a d-by-d matrix. Namely, each vector x � px1, . . . , xdqT P Fd

induces an element pxpCq :� x1I � x2C � � � � � xdCd�1 P K such that pxpCqe1 � x; observe that x ÞÑ pxpCq is
F-linear and bijective. In this way, each x P Fn, partitioned into blocks of size d, induces a vector Vx P Kd

and x ÞÑ Vx is an F-linear and bijective map from Fn toKd. Then, Bpx, yq :� V�
y SVx � BSpVx,Vyq is also an

F-bilinear map from Fn � Fn into Fd.
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