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Abstract. Recently, some randomized iterative methods are proposed to solve large-scale factorised
linear systems. In this paper, we present two randomized average block iterative methods which still
take advantage of the factored form and need not perform the entire matrix. The new methods are
pseudoinverse-free and can be implemented for parallel computation. Furthermore, we analyze their
convergence behaviors and obtain the exponential convergence rate. Finally, some numerical examples are
carried out to show the effectiveness of our new methods.

1. Introduction

Some science and engineering applications, such as recommender systems in machine learning [1-5],

topic modeling of text data and linear regression from statistics [6], require the solution of the large-scale
factorised linear system

uvg=vy, (1)

where U € €™,V € C*", e C"and y € C". If weset X = UV € C"™", then we obtain the full linear system
XpB = y. We know that a system is consistent if it has at least one solution (and inconsistent otherwise), and
for more theoretical analysis and practical applications, we refer to [7] and the references therein. Recently,

instead of solving the full linear system Xp = y, randomized iterative methods for solving the individual
subsystems

Ux=y ()

VB=x (3)
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in an alternating fashion have been established.

Recently, the randomized Kaczmarz (RK) method [8] which converges in expectation to the solution of
the consistent linear systems has been successfully applied in many practical applications and reignited
many researches. The RK method was generalized to solve inconsistent, underdetermined or rank-deficient
linear systems [9-11], and some acceleration strategies, such as greedy techniques and matrix sketching [12—
16], were studied. The randomized coordinate descent (RCD) method presented by Leventhal and Lewis
[17] is another basic randomized iterative method for solving overdetermined linear systems. However,
RCD does not converge to the least norm solution of the underdetermined linear systems. To overcome these
drawbacks, Zouzias, Freris and Ma et al. proposed the randomized extended Kaczmarz (REK) method [18]
and the randomized extended Gauss-Seidel (REGS) method [10], respectively. The convergence properties
of RK, RGS, REK and REGS for linear system Xf = y with full rank is summarized in the following Table
1[7,10]. In Table 1, we let B,iy, By and Brs denote the optimal unique solution, the least Euclidean norm
solution and the ordinary least squares solution, respectively.

Table 1: (Table 1 in [7, 10])Summary of convergence properties of RK, RGS, REK and REGS for linear system X = y with full rank

Method Overdetermined, Overdetermined,
consistent: inconsistent: Underdetermined:
convergence to ;7  convergence to ;s?  convergence to fin?
RK Yes|[8] No[9] Yes[10]
REK Yes[18] Yes[18] Yes[10]
RGS Yes[17] Yes[17] No[10]
REGS Yes[10] Yes[10] Yes[10]

The projection-based block variants of basic Kaczmarz method, such as the block Kaczmarz (BK) [19]
method, the randomized block Kaczmarz (RBK) method [20] and the randomized double BK (RDBK)
method [21], have been developed to solve consistent or inconsistent linear systems and numerical results
demonstrate that the convergence rate can be significantly accelerated if appropriate blocks of the coefficient
matrix are provided. However, these projection-based block methods are difficult to parallelize and are
required to compute the Pseudoinverse or solve the least-square problems. In [22], Necoara developed a
randomized average block Kaczmarz (RaBK) method and the kth iteration x; is computed by

— Al X
xk - xk 1 +ak Zwl 2 (AI,Z)T 7 k Z O/
&AL

where the weights w; € (0,1] such that ), w; = 1 and the stepsize ay > 0. RaBK is a pseudoinverse-
lel;

free method and very effective if a good sampling of the rows introduced into well-conditioned blocks.

Motivated by RaBK, Du et al. [23] presented a simple randomized extended average block Kaczmarz

(REABK) method which works for all types of linear systems and demonstrates remarkable convergence

properties in terms of computing time. Other pseudoinverse-free block methods, we refer to [24-26] and

the references therein.

In [7, 27], Ma et al. proposed RK-RK and REK-RK to solve the factorised systems with consistent or
inconsistent full linear system. Recently, inspired by the effectiveness of RGS, Zhao, Wang and Zhang
[28] established RGS-RK which interlaces the RGS iterates to solve subsystem (2) and the RK iterates
to solve subsystem (3). Recently, the relaxed GRK-GRK and GRGS-GRK methods [29] based on the
greedy randomized Kaczmarz (GRK) method and the greedy randomized Gauss-Seidel (GRGS) method
are developed. Du introduce regularized randomized iterative algorithms [30] for factorised linear systems.
In this paper, inspired by the works in [23], we also propose pseudoinverse-free block extension of RK-RK
(BRK-RK) and REK-RK (BREK-RK), respectively. In addition, we establish their convergence theories and
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provide some numerical examples to illustrate that BRK-RK and BREK-RK outperform the corresponding
RK-RK and REK-RK in terms of computing time, respectively.
Here and throughout the paper, we adopt the same notations introduced in [7]. For example for a

m n
matrix X = (x;j) € €™, X5, X? and ||IX|lr = ,|L X |x;;* denote its jth column, ith row and Frobenius
i=1 j=1
norm, respectively. We use 0max(-) and omin() to denote the largest and the smallest nonzero singular value
of matrix and Amin(-) to denote the smallest nonzero eigenvalue of matrix. Forindexset I C [m]and J C [k],
we use Ar. and A. g to denote the row submatrix indexed by J and the column submatrix indexed by 7,
respectively. In addition, we use (x;)r to denote the subvector indexed by I at tth iteration. Similar to [7],
for simplicity, we also refer to the matrix X of a linear system as consistent or inconsistent when the system
itself is consistent or inconsistent.
We denote by E;_; the expected value conditional on the first t — 1 iterations, that is,

Eial1=E[- | ji, i1, fee1,ir1l,

where jj is the Ith column chosen and i is the I[th row chosen. Then, based on the law of iterated expectations,
we obtain

E[E;[]] = E[].

For more details, see [23, 28].

The paper is organized as follows. In Section 2, we introduce some necessary preliminaries and review
RK-RK and REK-RK, respectively. In Section 3, we propose the randomized average block Kaczmarz
(REBK) method and give its convergence theory. In section 4, we present BRK-RK and BREK-RK and study
their convergence property. In Section 5, we test some numerical examples. Finally, we give some brief
concluding remarks in Section 6.

2. Preliminaries and the REK-RK method

In this paper, we set X be rank deficient and assume that U and V are of full rank. For simplicity in
notation, Table 2 in [7] summarizes the optimal solution of (1), (2) and (3). For overdetermined consistent,
underdetermined and overdetermined inconsistent linear systems, the optimal solution for (2) and (3)
denotes the unique, least norm, or the least squares solution, respectively.

Table 2: (Table 2 in [7])Summary of notation for linear systems discussed and their solutions

Linear system Optimal solution
Xp=y(@1) B-
Ux=y(2) b
Vb =x(3) b.

In [7], Ma et al. showed that when U is overdetermined and consistent or X is inconsistent and V is
underdetermined, solving subsystems (2) and (3) will converge to the optimal solution of the full system.
Other scenarios are fully explained in Table 3 of [7]. In this paper, we only focus on the case in which
k<m,n.

For the consistent or inconsistent setting, Ma et al. proposed RK-RK and REK-RK [7] for solving the
factorised linear systems, respectively. RK-RK and REK-RK are outlined in Algorithm 1 and Algorithm 2,
respectively.
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Algorithm 1 RK-RK

1:

2
3
4
5

6:

7:

10:

: Choose row U® with probability

Input: U, V, y, xo, bo;

: Output: the last b;.
: Sett=1;
: While stopping criteria not reached do

o3 .
P g/
(y(l)—u(l)x“_l) (ll(l)),f

7

Update x; = x;_q +

luoy
o e VO
Choose row V) with probability VE
®) _y/p)
Update by = by_; + w(w))*;

Ve
Updatet =t +1;
End

Algorithm 2 REK-RK

1:

2
3
4
5

6:

7:

10:

11:
12:

Input: U, V, y, zo, xo, bo;

: Output: the last b;.
: Sett=1;
: While stopping criteria not reached do

. Choose row U® with probability Hlllil“l’lgi;
Choose column U(;) with probability % ;
Update z; = z;_1 — %U(D?

Update x; = x;_1 + %(u@)*;
Choose row V¥ with probability HI‘I/\(/VI)IJ%@ ;
Update b; = by_1 + M(V(p))*;

Ve
Updatet =t +1;
End
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For the convergence property of RK-RK and REK-RK, Ma et al. gave the following theorem.

Theorem 2.1. (Theorem 1 in [27]) Let X = UV, where U € C"™* and V € C™" are of full rank, and the systems
XB =y, Ux = y, and Vb = x have the optimal solutions ., x. and b., respectively. Set by = 0 and assume that
k<m,n.

(@) If XB = vy is consistent, then b, = . and RK-RK converges with expected error

2
2 1 [l .
ayllb.li* + (1 = i‘“‘XllVHZ’ if au#ay
2 F
Ellb: - B.IP < o 4)
t 2 t *
ay|IbI” + ta else
Y BT
mm(u) — rzmn( ) au ay
where ay =1 - S, av =1 - J7e=, dmax = max{ay, ay}and y, = min{gn, 20

(b) If XB = y is inconsistent, then b, = B. and REK-RK converges with expected error

(1 + 213 llx. 2

, if Aau#ay

ay bl + (1= y2) ™ das

2
Ellb; — Bl < Vi (5)
s g 2P
avllb [|© + ta maxW’ else
F
h =1- T (L) 1- V) ~ — — _av_ d _ Tmax(UD)
where ayg T ,ay = iz , Omax = max{+ay, av}, y2 = rnm{ r}an K WO

Omin

3. The RABK method

In this section, adopting the same techniques introduced in [23], we propose the randomized average
block Kaczmarz (RABK) method for solving consistent linear system Ax = b, where A € C"™" and b € C".
RABK is outlined in Algorithm 3.

Algorithm 3 The randomized average block Kaczmarz (RABK) method
1: Let{I4,1,,..., 1} be partitions of [m];
2: Let @ > 0 and initialize xy € R"
3: Fork=1,2,...,do
4

. ) . oo IAZIR
: Choose index i € [s] V\ilth probability = VI
5. Update x = xx-1 — m(AI,-,:)*(AL,:xk—l - br);

6: Endfor

We note that RABK can be obtained from the DSBGS method proposed in [26] by setting  =1,2,--- ,n
AL

A, F/ We can also obtain RABK from RaBK presented by Necoara [22]. Similar
to Theorem 2.7 in [23], for the convergence property of RABK, we can establish the following theorem.

In addition, if we set w; =

Theorem 3.1. Assume that the matrix A€ C™", be C"and 0 < a < Z/Eiax. Then, the iteration sequence {xi}}" ,
generated by RABK starting from any initial Quess xo € range(A*) exists and converges to the unique least-norm
solution x, = A'b of the consistent linear system Ax = b. Moreover, it holds that

E[llx - x.l13] < p¥llxo — x.l3, (6)

~_ =27 2 Ar..
s L Ty Omax(Ar,,)

wherep =1 — ] 24
P TAIE ey AL R
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Proof. From Algorithm 3, we have

a
Xk =% = X =X~ ||2( 1,) (A, Xe1 — br).

By direct computations, we obtain

2a

2 2, P

Itk = 2l = ey = a3 — AL ——— A7, (k-1 — x5 + a”ll(
I

Ar,
)(

”AI ||2 AL, |I2

Using Lemma 2.5 in [23], it holds that

2
=l < i — e — (2 — Comax(Azs) WA ks — Xl
*2 = - *112
IArE ' AR

1Az, (xe1 = x5
1AL, I

<oy — %3 — (2@ — a2BL )

)1 = )l

4608

)

©)

From (9) and the definition of conditional expectation conditioned on the first k — 1 iterations, we have

IAGG-1 — )13
IIAIZ
0% in Al (et = x)13
IAIIZ

2 2 ~ =27
Er-alllxe = xdl5] < llxeer — 2015 = 2o — aBray)

< ||Xk_1 - x*”% - (252— a max) (0 < 0( < Z/ﬁmax)
= plier — xll3-
Then, we obtain

E[llx — /3] < PE[llxe - xl5] < pMllxg — x.]3.0

O

4. The BRK-RK and BREK-RK method

(10)

Algorithm 4 The BRK-RK method

1: Let{Iy,15,..., 15} and {1, T2, ..., o} be partitions of [m] and [k], respectively;

2: Input: U, V, y, zo, xo, bo;
3: Output: the last b;.
4: Sett=1and a > 0;
5: While stopping criteria not reached do
2
6: Choose index i € [s] with probability HLHIZI"“:Z”F ;
F
7. Update x; = X1 + 2 (Ur,,)" (7, — Uz,%-1);
1V, 113
8: Choose index j € [v] with probability ﬁ ;

9: Update by = byq + m(vjj,:)*((xt)\ﬂ - ij,tbtfl);

10: Updatet =t +1;
11: End

Inspired by the works in [23], we propose simple average block RK-RK (BRK-RK) method and block
REK-RK (BREK-RK) method which interlace the RABK or REABK iterates to solve subsystem (2) and the
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Algorithm 5 The BREK-RK method
1: Let{Z1,1>,..., 15} and {J1, T2, ..., o} be partitions of [m] and [k], respectively;
2: Input: U, V, y, 2o, xo, bo;
3: Output: the last b;.
4: Sett=1and a > 0;
5
6

: While stopping criteria not reached do
iz, J2
iz
. . . s ”U:J]'H? .
7. Choose index j € [v] with probability BT

8: Update z; = z;-1 — M(U;ﬂ'j)(uz,ﬂ,‘)*zm;
7,

: Choose index i € [s] with probability

9: Update x; = x;—1 + mwf,-,:)"(yz —(z0)1, — Uz, :x1-1);
' WV, IR
IVIE
11: Update by =b;1 + HV Vs B (VJ] ) ((xt)j,. - le.,;btfl),‘
12: Updatet =t +1;

13: End

10: Choose column j € [v] with probability

RABK iterates to solve subsystem (3). We note that BRK-RK and BREK-RK are pseudoinverse-free block
randomized iterative methods and can be implemented for parallel computation. The BRK-RK method
and the BREK-RK method are outlined in Algorithm 4 and Algorithm 5, respectively.

Next, we give our convergence results of BRK-RK and BREK-RK.

Theorem 4.1. Let X = UV, where U € C™* and V € C™" are of full rank, and the full system XB = vy, the
subsystem Ux = y and the subsystem Vb = x have optimal solutions f., x. and b., respectively. Set xo and by be two
zero vectors and k < m, n.

(a) Assume that 0 < a < 2/ max(ﬁmax, Bmax)- If XB = y is consistent, then we have b, = B, and BRK-RK converges
with the average error

t—-1
27 _
Ellb; - B.IB < (1+ )HQEX*ﬁ§]¢lu+ve+a+ewﬂmﬁ
1=0
(1 + &)a?Bhaxlx.| 2
<1 +e&)p|lIb.? + , (11)
2 2| V|2
here o = 1 — QTR W Q@R W)y bl V) a5

wnere p = HUIIZ 7 n - ||V||2 7 Fmax — rlrEl[aS]X ”uI ”2 7 ﬁmax - 'E[v] ”Vf/];“% a
max{p, n}.

(b) Assume that 0 < a < 2/ max(ﬁmax,ﬁmax, max). If XB = y is inconsistent, then we have b, = B. and BREK-RK
converges with the average error

+&)aPBhallxlE (1 + e)a?p] (u
E|lb: = B.I < (1 +&)p' | IIb.I + 1+ O ) (12)
? 2|IVIR e2[luliz

~_ o QoBen, ) ~ Ca-0Faw)n ) BT _ oRan(Ur,) Tax(Uy;) =
wherep =1- =1 Ul max = Teny Tz, (B = max T P = max{p, )
and p = max{(1 + €)p, n}.
Proof. We define b, by

by = by + Wmmww Vi, bi-a), (13)

Vg,
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which is the one-step RABK update for the exact linear system Vb = x, from b;_;. From (13), we have

by =b. = by = b = (Vi)' (Vig, bt = (x.)5). (14)
IIV A7
From step 9) of BRK-RK or step 11) of BREK-RK, we obtain
by =byq + Vs HZ(V{I] ) ((xD)g;, — Vg, b-1). (15)
From (13) and (15) it holds that
b —bi = iz ”2<vg—] ) ()7, = (x)7)- (16)

From (14) and by d1rect computations, we have

= 018 = s = 01 = 2V, (s = IR + Iy Ly — R
2- 2 Vo, ||2 " 2 ”V:L || ||V:7] II 2
202 (V. IVyg,.(b b2
< b —b*llﬁ—(Za— (Vg,) IVg,,:(br-1 = bIl;
IV, 1 Vg, I
(20 - @?BialIVig, (b1 — b Opax(V,)
< Moy = bl - ; %, (Binax = max — =), (17)
2 jebel IV, 12

From (17) and the definition of conditional expectation conditioned on the first t — 1 iterations, we have
— BV (bt = b1
VI

(20( azﬁmax)amm(v)”bt—l - b*”%
VIR

Ey 1 [lIbr — boJB] < [lbr_y — bl —

< lbe-1 = b.1 -

(2a — aB)0% (V)
IVIE

= qllbi = bl (0 <a<2/Bla,n=1- ) (18)

Therefore, from (18) we have
E[|[b; — b.I2] < 7E[|Ib_1 — b.J2]. (19)

From (16), by direct computations we can get

2

_”4||( V) (g, = (x)g)ll3

by — b2 = v

< a? max( jj,:)
Vg AR Vg2

ﬁmax
IIV A

Similar to (18), we have
Er-1[lIb: - bol2] = Eea [[E]_ 1B — byl 2]

ﬁmax
v, ||2||( D, = @) l51]

,Bmax
IVIE

l1Gee)g; = (x)7,113

—— ()7, = () 115 (20)

<E[[E_

= e = x5l (21)
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Then, we also have

E[llbe — bel2] = EI[E,1[lIb: — bilA1]

ﬁmax
IIVII2

Efllx; — x.3].

For any ¢ > 0, we obtain the following mean inequality
1 TR ™ 2 PRI
Sl10e = billy + elibe = bully = 201br = billallbe = bl2-

From (23), by direct computations we obtain

1B — b2 = 11b; — by + b; — b.|2
< (16 = Billz + 11b: = bull2)?
< by = Bel2 + 1B — BuIIZ + 211b; — billolIb; — bl
< (1+1/e)llb; = byl + (1 + &)llb; — bul2-

Then, we can get
E[|[b; — b1 < (1 + 1/)Ellby — byll3 + (1 + )Ellb; — b2

From (19) and (22), it holds that

ﬁmax

Hm—m@sa+ua“w2

Ellx; = %3 + (1 + &)nEllb— — bl

(a) For Algorithm 4, plugging Theorem 3.1 into (26), we immediately get

Hm—m@su+ua”ﬁ?pwm +(L+ e)Ellbes b3
2L e ., .
<(1+1/e )W[p +p (L + el + (1 + &) n°Ellbi—p — bl

-1

<<+ 1 azﬁmaxz ZZ T+ o)+ (1+e) b3
WViE 4=

(2a—a’pl )02

wherep=1- e 2™ 1f e set p = max{p, n}, then by direct computations we have
Brtax:11
Elllo - bJB] < (1 + Q—Wﬂ—3“2ﬁ+d+a+me@
F

2 2
< (1 + g)t’p‘t (“b*“g ( )0( ﬁmax”x*uz) '

2| VIi

4611

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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(b) For Algorithm 5, plugging Theorem 2.7 in [23] into (26), we have

,Bmax

Bl = b1 < (1+ Yllb-s = bl + (1 +1/0)7 5%

[+ )T llo - x.I3

t—

azﬁﬁaxnzo -y ”2 ;
+(1+1/¢) =Y P+ 7@ =)
1=0

iz
< (1+Elby — bR + (1+1/¢) Hé‘l]“é‘x 1+ &) [l + 0 Emifﬁ‘f,jgzo —2]
< (1+ OBl — bR + (1 +1/) “f,fl‘l‘jx e [ 8)“25;37;5??(”)“%“%]
< (1+ &)nElb1 — bl + (1 +1/¢ )T;—]W(l s [L+ 1+ g)aznn&alxl% max(U)]
2Bl

< (1+ &) PEllb — BB + (1 +1/e) [(@+ &) + (@ +0p) (1 +e)n]

VIR

[1 + (1 + ‘(') max max(u)]

«SZIIUIIF

maX”x*” 1 + 8)0( max max(u)

S---§(1+— (30)
VI [ Ul ]

-1 _

Y (@ +ep)y A+ o) + (A + o) IbuIB.

1=0

Let p = max{n, (1 + e)?):}, and then we have
(L+)aBlalxl} (1 +e)a?BL 0%, (1)
Ellby = P < (1+ )P | Ibul; + —— 2(1+ > )| (31)
2|IVIE 2|IUli;

Then, we complete the proof of Theorem 4.1. O O

Remark 4.2. For BRK-RK, if s = m, v = k and a = 1, then we have Bl = Poax = 1. In addition, we obtain

2 2
n=1- "ng(lzv) =ayandp=1- Gﬁ‘l}‘l(llzl) = ay. Similar to the works in [23], we have
F F
l1b: = bull5 = N1br = bill3 + Nlb — b3 (32)

Therefore, by direct computations we have

-1
Elllb: - b.I3] < o 10,1 + “V“ Z (33)
=0

which is the same as the conclusion proposed in [7, 27].

Remark 4.3. For BREK-RK, if s = m, v = k and o = 1, then we have ﬁmax ﬁmax = 1. In addition, we obtain

mln( )
i

u
n=1- rl‘l‘i‘}l(lz):auandpzl—

= ay, respectively. Similar to the works in Remark 4.2, we obtain

t-1
ot + 2V 3 gt ] (34
e ||uu2

=0

1

E[llb; - b.15] < avEllb: - b.l5] + —
IVl
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Using the fact that ||zo — y |13 < 0%, (U)||x.|[2, we obtain

E[llb; - b.I3] < avE[llb: — b.I2] + — [adllx.I3 + “““(u)”x*”gia (35)
Co s v ||V||2 N TV
By direct computations, we obtain
LT P C)
E[llb; - b.IB] < avE[|lb; — b.I3] +
B Co ||V||2[ CANTTV ]
Il s 11721 T (L)
< avE[llby - bJR] + —2at/2[1 + 277270l 1122 max
R et | R "l |
<aV1E[||bt—b*||§1+—*Hiahf/” ‘“”(Z)Z ay ]
||V|| [
vl — b1+ A2 gy %1
? ||V||2 “u ||uu2 1—au
”2 alt/2]
= avIE[|b; - b.I3] + ||V||2 al?[1+2:2, (36)

where k7, = % Therefore, from (36) and Theorem 1 in [7, 27], we observe that BREK-RK converges faster than

REK-RK. Numerical results in Section 5 will assert this conclusion.

5. Numerical examples

In this section, some numerical examples are tested to compare the effectiveness of RK-RK, REK-RK,
BRK-RK and BREK-RK for solving different types of factorised linear systems. We note that IT and CPU
denote the medians of the required iterations steps and the elapsed computing time (in seconds) averaged
over 50 runs. Note that all experiments are performed in MATLAB (version R2019a) on a computer with an
Intel Core i7-7700 processor at 3.60 GHz and 32 GB RAM. In our implementations, solving subsystem (2)
and subsystem (3) is started from the initial guess xy = zeros(k, 1) and by = zeros(, 1), respectively. We note
that the MATLAB function randn creates a random matrix with coefficients subject to the standard normal
distribution N(0,1). When X is overdetermined and consistent, we consider different parameter values k
and set y = XB, where § is generated by using the MATLAB function randn. On the other hand, when X
is overdetermined and inconsistent, we consider different parameter values k, set y = X + ro and zp = v,
where 7y € null(X*) (computed in MATLAB using the null function ) and g is also generated by using the
MATLAB function randn. We test two types of coefficient matrices. For type I, we set U = randn(m, k) and
V = randn(k, n). For type II, we consider U = U; X Dand V = VT, where the matrices D, U; and V; are
generated as follows:

[Ull ~] = qr(randn(ml 7’), 0)/ [Vlr ~] = qr(randn(n/ 7"), 0)
and
D = diag(1l + (x — 1). * rand(r, 1)),

see [23] for more details. We adopt the same row partition and column partition introduced in [23]. For

row partition {Z;}7_,, we let

Ii={i-Dr+1,(-1r+2,...it}i=12,...,5s 1,
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and

I, ={(s-Dt+1,s-11t+2,...,m},| L] <
For column partition {7 j};.’:l, we let

Ji={G-Dr+1,(G-Dr+2,...,j1},j=1,2,...,0-1,
and

Jo={w-Dt+1,@0-Dt+2,...,k},|T| < T
llb—B.112

lIB.112

RSE denotes the relative solution error. The speed-up of BRK-RK against RK-RK and the speed-upl of
BREK-RK against REK-RK are defined by

We set the stopping criterion be RSE = < 107, or the maximum iteration steps be 100000, where

CPU of RK-RK

speed-Uup = = p i F BRK-RK
and
coeedouny — CPU of REK-RK
Peed-UPL = CPU of BREK-RK’
respectively.
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Figure 1: log;,(RSE) versus IT for BRK-RK when X = randn(500, 250), k = 100 (left) and X = UDVT,m = 500,n = 250, = 150, % = 2
(right)

In Figure 1, we plot the RSE of BRK-RK with a fixed block size (t = 10) and different stepsizes (« from
0.75/Bmax to 2.25/Bmax) for two consistent linear systems with coefficient matrices of Type I (m = 500,n =
250,k = 100) and Type II (m = 500,n = 250, r = 150, x = 2). In Figure 2, we also plot the RSE of BREK-RK
with a fixed block size (tr = 10) and different stepsizes (@ from 0.75/Bmax t0 2.0/Bmax Or 2.25/fmax) for two
inconsistent linear systems with coefficient matrices of Type I (m = 500,n = 250,k = 100) and Type II
(m = 2000,n = 200, = 100,x = 2). From Figure 1 on the left and Figure 2 on the left, we see that the
convergence rate of BRK-RK or BREK-RK becomes faster with an increase in stepsize. From Figure 1 on the
right and Figure 2 on the right, we see that the convergence rate of BRK-RK or BREK-RK becomes faster
with an increase in stepsize and then slows down after reaching the fastest rate.

In Figure 3, we plot the computing time of BRK-RK with different block sizes T = 5,10, 15, 20, 25, 30, 35, 40,
45,50 and fixed stepsize @ = 1.75/Bmax for two consistent linear systems with coefficient matrices of Type I
(A = randn(20000, 1000), k = 300) and Type I (A = UDVTwith m = 2000,n = 1000, = 500, % = 2). From
Figure 3, we see that the CPU value reaches the minimum value at 7 = 10. In Tables 3-5, we give the
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Figure 2: log;,(RSE) versus IT for BREK-RK when X = randn(500, 250), k = 100 (left) and X = UDVT,m = 2000, n = 200, 7 = 100, x = 2
(right)

Table 3: IT and CPU of RK-RK and BRK-RK for consistent X, where U = randn(m, k) and V = randn(k, n) with different k

mxn Method k 100 200 300 400 500 600
20000 x 1000 RK-RK IT 1712.0 4157.6 7743.3 14274.0 25624.0 52396.0
CPU 1.387 3362 6371 11920 22.193 44.945
BRK-RK IT 1772 3999 7233 1226.0 2147.8 4184.8

CPU 0.088 0.121 0.178 0279 0536  1.039

speed-up 1576 2779 3579 4272 4140  43.26
20000 x 2000 RK-RK IT 1598.0 3460.5 5601.0 8225.0 11582.0 16053.0
CPU 1349 3.042 5081 7673 10.869 15.481
BRK-RK IT 1649 3389 5351 7852 10859 1397.7

CPU 0.168 0.405 0.787 1.367 2069 2978

speed-up 8.03 751 646 5.61 5.25 5.20
20000 x 3000 RK-RK IT 1595.0 3338.6 5239.5 7319.6 96249 12460.0
CPU 2122 4827 7.891 11.293 14.845 19.572
BRK-RK IT 1641 3321 5387 7295 9485 1215.8

CPU 0230 0.653 1.239 1.861 2613  3.478

speed-up 923 739  6.37 6.07 5.68 5.63

Table 4: IT and CPU of RK-RK and BRK-RK for consistent X, where U = randn(m, k) and V = randn(k, n) with k = 500

mxn RK-RK BRK-RK speed-up
IT CPU IT CPU
2000 x 1000 1712.0 1.387 177.2 0.088 15.76
3000 x 1000 26444.0 29.309 2188.7 0.587 49.93
4000 x 1000 28351.0 38.434 2340.5 2.200 17.47
5000 x 1000 25225.0 41.223 21115 2.183 18.88
6000 x 1000 25650.0 48.302 2145.8 2.303 20.93
7000 x 1000 25251.0 54.644 2172.9 2.445 22.35
8000 x 1000 26793.0 63.815 2246.6 2.724 23.43

9000 x 1000 23938.0 60.781 2091.6 2.641 23.01
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Table 5: IT and CPU of RK-RK and BRK-RK for consistent X, where U = U; X Dand V = VI

mxn Rank « RK-RK BRK-RK speed-up
IT CPU IT CPU

2 9119.0 0.817 9744 0.263 3.11

6 357510 3.332 29409  0.693 4.81

2 9058.6 3.948 940.9 0.276 14.30

6  33823.0 12.757 29619  0.713 17.89

2 9181.6 4.164 930.3 0.266 15.65

6 35490.0 17.654 3075.2  0.753 23.44

2 9118.0 5.105 944.3 0.245 20.84

6 33246.0 15.831 27989  0.587 26.97
10000 x 1000 500 2 9251.1 5.449 916.2 0.242 22.52

6

2

6

2

6

2

6

2000 x 1000 500

4000 x 1000 500

6000 x 1000 500

8000 x 1000 500

34539.0 20.207 29753  0.706 28.62
9171.5 5.945 928.3 0.249 23.88
33871.0 21.198  2966.8  0.643 32.99
9047.8 6.139 912.1 0.245 25.06
31385.0 20958 27340 0.621 33.75
9057.3 6.543 942.1 0.265 24.69
30715.0 21.879  2708.8  0.624 35.06

12000 x 1000 500

14000 x 1000 500

16000 x 1000 500

numerical results of RK-RK and BRK-RK with two different types of coefficient matrices. Here, we use a
fixed block size 7 = 10 and stepsize @ = 1.75/Bmax. From Tables 3-5, we can conclude several observations.
First, RK-RK and BRK-RK are effective to solve the factorised linear systems. Second, BRK-RK outperforms
RK-RK in terms of both iteration steps and computing time. Third, for Type I, the minimum of speed-ups
is 5.20 and the maximum is 49.93. For type II, the minimum of speed-ups is 3.11 and the maximum is 35.06.
In addition, for the fixed 7, r and «, the speed-up is increasing with respect to the increase of m. For the
fixed m, r and n, the speed-up is increasing with respect to the increase of k. In addition, from Figure 4, we
observe that BRK-RK outperforms RK-RK in terms of computing time.

In Table 6, we report the numerical results of RK-RK and BRK-RK for extremely large standard Gaussian
matrices U and V. We see that RK-RK and BRK-RK are effective to solve the linear system UV = y without
computing the entire matrix. BRK-RK outperforms RK-RK in terms of both iteration steps and computing
time, the minimum of speed-ups is 3.95 and the RK-RK method fails to converge with k = 4000 and 5000.

Table 6: IT and CPU of RK-RK and BRK-RK for consistent X, where U = randn(10°, k) and V = randn(k, 10*) with different k

mxn k RK-RK BRK-RK speed-up
IT CPU IT Cru
10°x10* 1000 17737.0  80.249 1955.7 18.435 4.35
2000  41612.0 219.823  4547.4 55.631 3.95
3000 79133.0 446.798 78741  106.817 4.18
4000 - - 12148.0  187.921 -
5000 - - 3944.1 63.856 -

In Figure 5, we plot the computing time of BREK-RK with differentblock sizes T = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
and fixed stepsize a = 1.75/f,x for two inconsistent linear systems with coefficient matrices of Type I
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Figure 3: The average CPU of BRK-RK with different block sizes 7 = 5,10, 15, 20, 25,30, 35, 40,45, 50 and stepsize a = 1.75/Bux for
consistent linear systems. Left: X = randn(20000, 1000), k = 300. Right: X = ubpvT,m = 2000, = 1000, r = 500, x = 2.
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Figure 4: The average CPU of RK-RK, BRK-RK (7 = 10 and stepsize a = 1.75/Bx) for consistent linear systems. Left: X =
randn(m, 1000), m = 20000, - -+ ,90000, k = 500. Right: X = UDVT,m = 2000, - -, 16000, = 1000, r = 500, x = 2.
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Figure 5: The average CPU of BREK-RK with different block sizes T = 5,10, 15, 20, 25, 30, 35, 40, 45, 50 and stepsize a = 1.75/Bax for
inconsistent linear systems. Left: X = randn(10000,1000), k = 300. Right: X = ubDvT,m =2000,n = 500,r = 250, x = 2.
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Table 7: IT and CPU of REK-RK and BREK-RK for inconsistent X, where U = randn(m, k) and V = randn(k, n) with different k

mxn Method k 100 200 300 400 500
10000 x 1000 REK-RK IT 1940.0 4557.0 8410.3 15175.0 28734.0
CPU 2301 5266 9941 18529 35.035
BREK-RK IT 1940 4246 7613 13025 2318.8

CPU 0.501 1.125 2125 3.821 6.937

speed-up 459 468  4.68 4.85 5.05
12000 x 1000 REK-RK IT 1904.8 4444.0 8748.2 15539.0 27665.0
CPU 2671 5991 12026 22.123 38.621
BREK-RK IT 191.8 416.7 7785 13464 22544

CPU 0.582 1.207 2454 4507  7.559

speed-up 459 496  4.90 491 511
14000 x 1000 REK-RK IT 1908.8 4459.8 8258.2 14874.0 26574.0
CPU 2721 7372 14182 26.013 40.014
BREK-RK IT 191.7 4211 7526 13146 22625
CPuU 1.097 2657 4715 8703 14.127

speed-up 248 277  3.01 2.99 2.83
16000 x 1000 REK-RK IT 1884.8 4581.3 8433.0 15512.0 26565.0
CPU 3.337 7.652 14367 27.392 49.337
BREK-RK IT 187.8 420.7 7583 13464 22355
CPU 1211 2.837 5489 9499 16.165

speed-up 276 270  2.62 2.88 3.05
18000 x 1000 REK-RK IT 1866.8 4438.8 8419.8 14636.0 27948.0
CPU 3252 6.237 12500 23.735 53.362
BREK-RK IT 199.9 4167 7729 1276.0 2307.4
CPU 1423 2.634 4978 8788 17.729

speed-up 229 237 251 2.70 3.01

Table 8: IT and CPU of REK-RK and BREK-RK for inconsistent X, where U = Uy X Dand V = V]T

mxn Rank  «x REK-RK BREK-RK speed-up
IT CPU IT CPuU
4000 x 1000 100 2 20728  1.875 994  0.288 6.51
100 6 69589 6299 5056 1471 4.28
6000 x 1000 100 2 22456 2421 1171 0.641 3.78
100 6 76527 8711 5901  4.106 2.12
8000 x 1000 100 2 209.0 2546 1074 0913 2.79
100 6 94293  11.292 6714 5267 2.14
10000 x 1000 100 2 22615 3.078 1304 1.330 2.31
100 6 7889.1 10.618 578.6  5.372 1.98
12000 x 1000 100 2 21745 3195 1099 1.232 2.59
100 6 90174 13129 6415 6.781 1.94

(A = randn(10000, 1000), k = 300) and Type II (A = UDVTwith m = 2000,n = 500, 7 = 200, % = 2). From
Figure 5, we see that the CPU value reaches the minimum value at T = 10 for Type I, and the CPU value
reaches the minimum value at 7 = 25 for Type II. In Tables 7-9, we report the numerical results of REK-RK
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Table 9: IT and CPU of REK-RK and BREK-RK for consistent X, where U = randn(3000, k) and V = randn(k, 100) with different k

Method k 200 300 400 500 600 700 800
REK-RK IT 5284.9 5868.7 8378.5 11542.0 15166.0 19353.0 24588.0
CPU 2718 3.088 4.664 6.655 9.110 11.645 15.636
BREK-RK IT 2429 2667 3955 557.8 7696 9865 11937
CPU 0409 0494 0798 1154 1769 2321  3.061
speed-up 6.65 625 584 5.77 5.15 5.02 5.10

:
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Figure 6: The average CPU of REK-RK, BREK-RK (7 = 10,25 and stepsize a = 1.75/Buqx) for inconsistent linear systems. Left:
X = randn(m, 1000), m = 10000, - - - , 18000, k = 200. Right: X = UuDvT, m = 4000, - - -, 12000, = 1000, r = 200, x = 2.

and BREK-RK with two different types of coefficient matrices. Here, we use a fixed stepsize & = 1.75/Bqx-
A fixed block size T = 10 is used in Table 7 and a fixed block size T = 25 is used in Tables 8-9. From Tables 7-9,
we can conclude several observations. First, REK-RK and BREK-RK are effective to solve the factorised lin-
ear systems. Second, BREK-RK outperforms REK-RK in terms of both iteration steps and computing time.
Third, for Type I, the minimum of speed-ups is 2.29 and the maximum is 6.65, the speed-up is increasing
with respect to the increase of k. For Type II, the minimum of speed-ups is 1.94 and the maximum is 6.51.
Finally, from Table 9, we also see that BREK-RK converge faster than REK-RK for solving the consistent
linear system with n < k < m. In addition, from Figure 6, we also observe that BREK-RK outperforms
REK-RK for solving two inconsistent linear systems with different coefficient matrices.

6. Conclusion

We have presented two pseudoinverse-free block methods which intertwine RABK or BREK and RABK
for solving the factorised linear systems. The convergence theories of two new block iterative methods are
also analyzed. Numerical results are provided to confirm the theoretical results and the effectiveness of the
new methods. Accelerated variants and extensions will be the future work.
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