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Abstract. The (b, c)-inverse and the Bott-Duffin (e, f )-inverse are two classes of outer inverses, a few
characterizations of which have been presented by certain researchers. In this paper, we give some new
characterizations of (b, c)-inverses and Bott-Duffin (e, f )-inverses. First, we present a number of ring the-
oretic characterizations of (b, c)-inverses. Then we characterize (b, c)-inverses by equations. Finally, we
present some characterizations of Bott-Duffin (e, f )-inverses. More specifically, we use Bott-Duffin (e, f )-
inverses to characterize some classes of rings, such as directly finite rings, Abelian rings and left min-abel
rings.

1. Introduction

Let R be an associative ring with unity 1 and b, c ∈ R. An element a ∈ R is said to be (b, c)-invertible if
there exists y ∈ R such that y ∈ bRy ∩ yRc, yab = b, and cay = c. If such a y exists, it is unique and is called
the (b, c)-inverse of a, denoted by a||(b,c).

As a new class of outer inverse, the concept of the (b, c)-inverse was for the first time introduced by
Drazin in [2, Definition 1.3] in the setting of rings, which generalized the group inverse, the Drazin inverse,
the Moore-Penrose inverse, the Chipman’s weighted inverse and the Bott-Duffin inverse. Afterwards,
certain researchers further studied and generalized it. Rakić et al. [9] connected the core and dual core
inverses with the (b, c)-inverse. Wang et al. [11] gave some characterizations of the (b, c)-inverse, in terms
of the direct sum decomposition, the annihilator and the invertible elements. Ke et al. [7] investigated
the existence and the expression of the (b, c)-inverse in a ring with an involution. Boasso and Kantún-
Montiel [1] presented some other conditions for the existence of the (b, c)-inverse in rings, proving that the
conditions which ensure the existence of the (b, c)-inverse, of the annihilator (b, c)-inverse and of the hybrid
(b, c)-inverse are equivalent. For more results on (b, c)-inverses, we refer to [3, 4, 6, 8, 10].

In [2], Drazin introduced another outer generalized inverse which intermediates between the Bott-
Duffin inverse and the (b, c)-inverse. This class of generalized inverses is called Bott-Duffin (e, f )-inverses,
where e, f ∈ R are idempotents. Recall that the Bott-Duffin (e, f )-inverse of a ∈ R is the element y ∈ R which
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satisfies y = ey = y f , yae = e, and f ay = f . If the Bott-Duffin (e, f )-inverse of a exists, it is unique and
denoted by aBD(e, f ). The Bott-Duffin (e, f )-inverse and the (b, c)-inverse are formally very similar. It is not
difficult to find that a (b, c)-inverse y of a is a Bott-Duffin (e, f )-inverse of a if and only if b and c are both
idempotents. Conversely, if y is the (b, c)-inverse of a, then y is also the Bott-Duffin (ya, ay)-inverse of a [2,
Proposition 3.3]. More properties and applications of the Bott-Duffin (e, f )-inverse are studied by Ke and
Chen in [5].

In this paper, we present some new characterizations of (b, c)-inverses and Bott-Duffin (e, f )-inverses.
First, we give certain ring theoretic characterizations of the (b, c)-inverse of an element a ∈ R. The following
conditions are proved to be equivalent: (a) a is (b, c)-invertible; (b) c ∈ cabRc and R = bR⊕r(ab); (c) r(ab) = r(b),
l(cab) = l(c), and ab is right c-regular. Next, we characterize (b, c)-inverses by equations. It is showed that a
is (b, c)-invertible if and only if the equation bxab = b has solution x0 in Rc and its every solution is similar to
x0. Finally, we give some characterizations of Bott-Duffin (e, f )-inverses. To be specific, we use Bott-Duffin
(e, f )-inverses to characterize directly finite rings, Abelian rings and left min-abel rings.

2. Ring theoretic characterizations of (b, c)-inverses

In this section, we will characterize (b, c)-inverses in ring theory. First, we have the following proposition.

Proposition 2.1. Let a, b, c ∈ R. Then a is (b, c)-invertible if and only if b ∈ bRcab and c ∈ cabR.

Proof. “⇐” Let b = bucab and c = cabv, where u, v ∈ R. Take y = buc and x = bv. Then b = yab and c = cax.
Moreover, yay = yabuc = buc = y. By

y = buc = bucabv = yabv = yax, and x = bv = bucabv = yabv = yax,

we obtain x = y and c = cax = cay. So

y = yabuc ∈ yRc and y = bucay ∈ bRy.

Then a∥(b,c) = y = buc = x = bv.
“⇒” Let y = a∥(b,c). Then y ∈ bRy ∩ yRc, yab = b, and cay = c. Write y = br1y = yr2c, where r1, r2 ∈ R.

Then we have
b = yab = br1yab = br1yr2cab = b(r1yr2)cab ∈ bRcab,

and
c = cay = ca(br1y) = (cab)r1y ∈ cabR.

Note that c = cay = ca(br1y) = cabr1(yr2c) ∈ cabRc. Hence, we get the following corollary from Proposition
2.1.

Corollary 2.2. Let a, b, c ∈ R. Then a is (b, c)-invertible if and only if b ∈ bRcab and c ∈ cabRc.

Similarly, we have the following proposition.

Proposition 2.3. Suppose that a, b, c ∈ R. Then the following conditions are equivalent:

(1) a is (b, c)-invertible;
(2) b ∈ Rcab and c ∈ cabRc;
(3) b ∈ bRcab and c ∈ (cabR)2.

Proof. (1) and (2) are equivalent by Proposition 2.1.
“(3)⇒(1)” Since c ∈ (cabR)2 = cabRcabR ⊆ cabR, it is obvious from Proposition 2.1.
“(1)⇒(3)” It follows from Corollary 2.2 that c ∈ cabRc. Let c = cabvc, where v ∈ R. Then we have
c = cabvcabv ∈ cabRcabR = (cabR)2.
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For any x ∈ R, define l(x) := {y ∈ R | yx = 0}. Then we can characterize (b, c)-inverses using direct sum
decomposition of rings.

Proposition 2.4. Let a, b, c ∈ R. Then a is (b, c)-invertible if and only if b ∈ bRcab and R = Rc ⊕ l(ab).

Proof. “⇒” From Proposition 2.1, we know that b ∈ bRcab. Let y = a∥(b,c). Then we have

y ∈ bRy ∩ yRc, yab = b, cay = c, and yay = y.

Notice that y = br1y = yr2c, where r1, r2 ∈ R. For every x ∈ Rc∩ l(ab), one has that xab = 0. Let x = uc, where
u ∈ R. Then

x = u(cay) = uca(br1y) = (uc)abr1y = xabr1y = 0r1y = 0.

Hence, Rc ∩ l(ab) = {0}. Since
b = yab = (br1y)ab = br1(yr2c)ab,

it follows that ab = abr1yr2cab. Moreover, (1 − abr1yr2c)ab = 0, i.e., 1 − abr1yr2c ∈ l(ab). Next, let

1 − abr1yr2c = t ∈ l(ab).

Then
1 = abr1yr2c + t ∈ Rc + l(ab).

Therefore, R = Rc ⊕ l(ab).
“⇐” Since b ∈ bRcab, there exists some v ∈ R such that b = bvcab. Write y = bvc. Then b = yab and

yay = y. Thus, y ∈ bRy∩ yRc. Next we let 1 = wc+ f , where w ∈ R, f ∈ l(ab), for R = Rc⊕ l(ab). Then we get

ab = 1ab = wcab + f ab = wcab,

b = yab = ywcab,

and
cab = ca(ywcab) = ca(yay)wcab = caya(ywcab) = cayab.

Moreover, (c − cay)ab = 0, i.e., c − cay ∈ l(ab). Since c − cay ∈ Rc, it follows that c − cay ∈ Rc ∩ l(ab) = {0}.
Therefore, c = cay. Thus, a is (b, c)-invertible.

For any x ∈ R, define r(x) := {y ∈ R | xy = 0}, a right ideal of R. Using the same argument as in the proof
of Proposition 2.4, we get the following proposition.

Proposition 2.5. Let a, b, c ∈ R. Then a is (b, c)-invertible if and only if c ∈ cabRc and R = bR ⊕ r(ca).

Definition 2.6. Let d, c ∈ R. Element d is said to be right (left) c-regular, if there exists an element x ∈ R, such that
d = dxcd (d = dcxd).

Proposition 2.7. Let a, b, c ∈ R. Then a is (b, c)-invertible if and only if r(ab) = r(b), l(cab) = l(c), and ab is right
c-regular.

Proof. “⇐” Since ab is a right c-regular, there exists an element x ∈ R, such that ab = abxcab. Thus,

ab(1 − xcab) = 0, 1 − xcab ∈ r(ab) = r(b),

and

b(1 − xcab) = 0, and b = bxcab ∈ bRcab.

Notice that cab = cabxcab. We obtain that

(1 − cabx)cab = 0, 1 − cabx ∈ l(cab) = l(c), and (1 − cabx)c = 0.
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Therefore, c = cabxc ∈ cabR. From Proposition 2.1, we know that a is (b, c)-invertible.
“⇒” Let y = a∥(b,c). Then

yab = b, cay = c, yay = y, y = br1y, and y = yr2c, where r1, r2 ∈ R.

Obviously, r(b) ⊆ r(ab). Now, for any x ∈ r(ab), one gets that

abx = 0, bx = (yab)x = y(abx) = 0, and x ∈ r(b).

Therefore, r(ab) ⊆ r(b). It is straightforward that l(c) ⊆ l(cab). Conversely, let x ∈ l(cab). Then

xcab = 0, xc = xcay = xca(br1y) = xcab(r1y) = 0, x ∈ l(c), and l(cab) ⊆ l(c).

Therefore, l(cab) = l(c). Since

ab = a(yab) = a(br1y)ab = abr1(yr2c)ab = ab(r1yr2)cab,

we have that ab is a right c-regular.

Similarly, we get the following proposition.

Proposition 2.8. Let a, b, c ∈ R. Then a is (b, c)-invertible if and only if

r(cab) = r(b), l(ca) = l(c),

and ca is left b−regular.

Corollary 2.9. Let a, b, c ∈ R. Then the following conditions are equivalent:

(1) a is (b, c)-invertible;
(2) r(b) = r(cab), l(c) = l(cab), and ab is right c−regular;
(3) r(b) = r(cab), l(c) = l(cab), and ca is left b−regular.

Recall that an element a ∈ R is regular if there exists x ∈ R satisfying axa = a. In this case, x is a regular
(or inner) inverse of a.

Proposition 2.10. Let a, b, c ∈ R. Then the following conditions are equivalent:

(1) a is (b, c)-invertible;
(2) Rb = Rcab, cR = cabR, and ab is right c−regular;
(3) Rb = Rcab, cR = cabR, and cab is regular;
(4) Rb = Rcab, cR = cabR, and ca is left b−regular.

Proof. “(1)⇒(2)” It follows from Propositions 2.1 and 2.7.
“(2)⇒(3)” and “(4)⇒(3)” are obvious.
“(1)⇒(4)” It follows from Propositions 2.1 and 2.8.
“(3)⇒(1)” Let cab = cabwcab, b = vcab, and c = cabs. Then

b = vcab = vcabwcab = bwcab ∈ bRcab,

and
c = cabs = cabwcabs = cabwc ∈ cabRc.

By Proposition 2.1, the assertion holds.

Corollary 2.11. Let a, b, c ∈ R. Then the following conditions are equivalent:

(1) a is (b, c)-invertible;
(2) there exists some x ∈ R such that xax = x, xR = bR and Rx = Rc.
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Proof. “(1)⇒(2)” In view of Proposition 2.10, we know that b = vcab, c = cabs, and cab = cabwcab. Then

b = vcab = vcabwcab = bwcab,

and
c = cabs = cabwcabs = cabwc.

Take x = bwc. Then

b = xab, c = cax, and xax = xabwc = bwc = x.

Thus

xR = bR and Rx = Rc.

“(2)⇒(1)” Since 1 − xa ∈ l(x) = l(b) and 1 − ax ∈ r(x) = r(c), one has that b = xab and c = cax. Denote
x = bs = tc. Then x = xax = bsax ∈ bRx, and

x = xax = xatc ∈ xRc.

Thus a∥(b,c) = x.

3. Characterizing (b, c)-inverses by equations

In this section, we characterize (b, c)-inverses by equations. Let a, b, c ∈ R. If there exists an element
u ∈ Rc, such that buab = b, then x = u is said to be a solution of the equation bxab = b in Rc.

Definition 3.1. Suppose that x1 and x2 are two solutions of the equation bxab = b. If x2 = x2abx1 and x1 = x1abx2,
then x2 is said to be similar to x1.

Proposition 3.2. Let a, b, c ∈ R. Then a is (b, c)-invertible if and only if the equation bxab = b has solution x0 in Rc
and its every solution is similar to x0.

Proof. “⇒” Let a∥(b,c) = y. Then we have

y = br1y = yr2c, yab = b, cay = c, and yay = y, where r1, r2 ∈ R.

Moreover,
b(r1yr2c)ab = yr2cab = yab = b.

Thus, x0 = r1yr2c is a solution of the equation bxab = b in Rc. Next we suppose that x = uc is a solution of
the equation bxab = b in Rc. Then b(uc)ab = b. Since

r1yr2 = r1(br1y)r2 = r1(bucab)r1yr2 = r1bucayr2,

we have
r1yr2c = r1bucayr2c = r1bucay = r1buc,

b = b(r1yr2c)ab = b(r1buc)ab = br1b,

y = br1y = br1yr2c = b(r1yr2c) = br1buc = buc,

uc = ucay = ucabr1y = ucabr1yr2c = uc(ab)(r1yr2c) = ucabx0,

and

x0 = r1yr2c = r1yr2cay = r1yr2cabr1y = r1yr2ca(yab)r1y
= r1yr2ca(buc)abr1y = x0abucay = x0ab(uc).

Thus, x = uc is similar to x0.
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“⇐” Assume that x0 = uc is a solution of the equation bxab = b in Rc. Then we have bucab = b. Let
y = buc. Then b = yab and yay = yabuc = buc = y. Take

v = uc + (1 − cabu)c = uc + c − cabuc = uc + c − cay ∈ Rc.

Then
bvab = b(uc + c − cay)ab = bucab + bcab − bcayab = b + bcab − bcab = b.

Thus, x = v is also a solution of the equation bxab = b in Rc. From the assumption, we know that v is similar
to x0 = uc. Moreover,

v = vabuc = vay = (uc + c − cay)ay = ucay + cay − cayay
= ucay + cay − cay = ucay,

then ucay is also a solution of the equation bxab = b in Rc. From the definition of the similarity of solutions,
we have

uc = x0 = x0abucay = ucabucay = ucayay = ucay = v = uc + c − cay.

That is, c = cay, y = yay = bucay ∈ bRy, and

y = yay = yabuc ∈ yRc.

Hence, y is the (b, c)-inverse of a, i.e., a∥(b,c) = y.

Let a ∈ R. It is well known that the regular inverse of a, if there is one, is not always unique. We denote
a− the set of all regular inverse of a. For convenience, a− also indicates an arbitrary regular inverse of a
when no confusion can arise.

Proposition 3.3. Let a, b, c ∈ R, e, f ∈ E(R), bR = eR, and Rc = R f . Then the following are equivalent:

(1) a is (b, c)-invertible;
(2) The system of equations{

bxcae = e
f abxc = f

(1)

is solvable;
(3) cae and f ab are regular, e = bb−e(cae)−(cae), and f = f ab( f ab)− f c−c.

Proof. “(1)⇒(2)” Let a∥(b,c) = y, e = bd and f = tc, where d, t ∈ R. Then

yab = b, cay = c, and y = br1y = yr2c, where r1, r2 ∈ R.

Since b = eb and c = c f , one has that

y = br1y = ebr1y = ey, y = yr2c = yr2c f = y f , e = bd = yabd = yae,

and
f = tc = tcay = f ay.

Thus
e = yae = br1yae = br1yr2cae = b(r1yr2)cae,

and
f = f ay = f abr1y = f abr1yr2c = f ab(r1yr2)c.

Hence the system of equations (1) admits a solution x = r1yr2.
“(2)⇒(3)” Let x = u be a solution of the system of equations (1). Then
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bucae = e and f abuc = f .

Hence
cae = caee = cae(bucae) = caebucae.

Thus cae is regular. Then (cae)− exists. Similarly, we can prove that ( f ab)− exists. Denote

e = bd and f = tc, where d, t ∈ R.

Then b = eb = bdb, and c = c f = ctc. Thus both b− and c− exist. Moreover,

bb−e(cae)−cae = bb−bd(cae)−cae = bd(cae)−cae = e(cae)−cae
= bucae(cae)−cae = bucae = e.

Similarly, one can prove that f ab( f ab)− f c−c = f .
“(3)⇒(1)” We know that

b = eb = bb−e(cae)−caeb = b(b−e(cae)−)cab ∈ bRcab,

and
c = c f = c f ab( f ab)− f c−c = cab(( f ab)− f c−)c ∈ cabRc ⊆ cabR.

By Proposition 2.1, one obtains that a is (b, c)-invertible.

4. Characterizations of Bott-Duffin (e, f )-inverses

As we know Bott-Duffin (e, f )-inverses are particular (b, c)-inverses. They, however, has its own research
significance. Some results and approaches of (b, c)-inverses can be borrowed from to study Bott-Duffin
(e, f )-inverses. In this section, we give some characterizations of Bott-Duffin (e, f )-inverses. Mainly, we use
Bott-Duffin (e, f )-inverses to characterize some classes of rings. First, we have the following proposition
similar to Proposition 3.3. It is the basis of some propositions in this section.

Proposition 4.1. Let a ∈ R and e, f ∈ E(R). Then the following are equivalent:

(1) a is Bott-Duffin (e, f )-invertible;
(2) The system of equations{

ex f ae = e
f aex f = f

(2)

is solvable;
(3) f ae is regular, e = e( f ae)− f ae, and f = f ae( f ae)− f .

Proof. It follows from Proposition 3.3 by taking b = e and c = f .

Recall that a ring R is said to be Abelian if E(R) ⊆ C(R).

Lemma 4.2. A ring R is an Abelian ring if and only if (1 − e)Re = 0 for all e ∈ E(R).

Proof. “⇒” Since e ∈ E(R), one has that (1 − e)Re = (1 − e)eR = 0.
“⇐” Suppose that (1− e)Re = 0 for any e ∈ E(R). Since 1− e ∈ E(R), we have that [1− (1− e)]R(1− e) = 0,

that is eR(1 − e) = 0. Thus for any a ∈ R, it follows that ea(1 − e) = 0 = (1 − e)ae. This gives ea = eae = ae.
Hence R is an Abelian ring.

Proposition 4.3. The following conditions are equivalent:

(1) R is an Abelian ring;
(2) for any a ∈ R and any e, f ∈ E(R), if a is Bott-Duffin (e, f )-invertible, then e = f .
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Proof. “(1)⇒(2)” Let R be an Abelian ring, and a be Bott-Duffin (e, f )-invertible. By Proposition 4.1, we have
that

e = e( f ae)− f ae, and f = f ae( f ae)− f .

Since R is an Abelian ring, one has that f , e ∈ C(R). Hence

e = e( f ae)− f ae f = e f , and f = e f ae( f ae)− f = e f .

Thus e = f .
“(2)⇒(1)” Suppose that R is not Abelian. Then (1 − e)Re , 0 for some e ∈ E(R). By Lemma 4.2, there

exists some a ∈ R such that (1 − e)ae , 0. Write 1 = e + (1 − e)ae. Then

e1 = e, 1e = e + (1 − e)ae = 1, and 12 = 11 = (1e)1 = 1(e1) = 1e = 1.

Hence 1 ∈ E(R). It can easily be verified that eBD(1,e) = 1. Hence 1 = e by hypothesis, it follows that
(1 − e)ae = 0, a contradiction. Then (1 − e)Re = 0, and R is an Abelian ring.

Recall that a ring R is directly finite, if for any a, b ∈ R, ab = 1 implies ba = 1. Clearly, Abelian rings are
directly finite.

Proposition 4.4. The following conditions are equivalent:

(1) R is a directly finite ring;
(2) for any right invertible element a ∈ R and any e ∈ E(R), if a is Bott-Duffin (e, 1)-invertible, then e = 1.

Proof. “(1)⇒(2)” Let a be a right invertible element in R, and e ∈ E(R), such that a is Bott-Duffin (e, 1)-
invertible. By Proposition 4.1, we have that

1 = ae(ae)−, and e = e(ae)−ae.

Since R is a directly finite ring and a a right invertible element, one has that a is invertible. Hence, there
exists some b ∈ R such that ba = 1 = ab. Thus

e = 1e = bae, and b = b1 = bae(ae)− = e(ae)−.

Therefore
(1 − e)b = (1 − e)e(ae)− = 0,

so
(1 − e) = (1 − e)1 = (1 − e)ba = 0.

Then e = 1.
“(2)⇒(1)” Let a, b ∈ R such that ab = 1. Denote e = ba. Then

ae = a(ba) = (ab)a = 1a = a, eb = (ba)b = b(ab) = b1 = b,

and
e2 = ee = eba = ba = e.

It is obvious that aBD(e,1) = b. Then by hypothesis, we obtain that e = 1, namely ba = 1. Hence R is a directly
finite ring.

Recall that an idempotent e of a ring R is called left minimal idempotent, if Re is a minimal left ideal of
R. Denote by MEl(R) the set of all left minimal idempotent elements of R.

Let e ∈ E(R). If (1 − e)Re = 0, we call e a left semi-central idempotent element of R.
Recall that a ring R is said to be left min-abel [12] if either MEl(R) = ∅, or every element of MEl(R) is a

left semi-central idempotent element.
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Proposition 4.5. The following conditions are equivalent:

(1)R is a left min-abel ring;
(2) for any a ∈ R, e ∈MEl(R) and 1 ∈ E(R), if a is Bott-Duffin (1, e)-invertible, then e = 1e.

Proof. “(1)⇒(2)” Suppose a is Bott-Duffin (1, e)-invertible. Then by Proposition 4.1, we have that

1 = 1(ea1)−ea1, and e = ea1(ea1)−1.

Since R is a left min-abel ring, and e is a left semi-central element, one has that

1(ea1)−e = e(1(ea1)−)e.

Note that 1 = e1(ea1)−ea1 = e1. Then l(e) ⊆ l(1). Define

f : Re→ Re1 = R1, xe 7→ xe1.

It is easy to verify that f is a left R−module map. Since r1 = re1 for any r1 ∈ R1, one has that f (re) = re1 = r1.
Thus f is surjective. Hence R1 � Re/Ker f , so Ker f is a submodule of left R−module Re, i.e., Ker f is a left ideal
of R contained in the minimal left ideal Re. If Ker f , 0, we have Ker f = Re. This gives R1 � Re/Ker f = 0, so
1 = 0 and therefore e = 0, which contradicts that Re is a minimal left ideal of R. Then Ker f = 0, and R1 � Re.
Hence R1 is also a minimal left ideal of R, so 1 ∈ MEl(R). Since R is a left min-abel ring, one has that 1 is a
left semi-central element. Then

ea1(ea1)−1 = 1ea1(ea1)−1 = 1e, and e = ea1(ea1)−1 = 1ea1(ea1)−1 = 1e.

“(2)⇒(1)” If MEl(R) = ∅, we know that R is a left min-abel ring. We suppose MEl(R) , ∅ below. Assume
that there exist some e ∈ MEl(R) and some a ∈ R such that (1 − e)ae , 0. Then 0 , R(1 − e)ae ⊆ Re. Since Re
is a minimal left ideal, one has that R(1 − e)ae = Re. Write h = (1 − e)ae. One obtains that Rh = Re. Denote
e = ch, where c ∈ R. We get that

h = (1 − e)ae = (1 − e)aee = he = hch.

Put 1 = hc. Then h = 1h, and 12 = hchc = hc = 1, so 1 ∈ E(R). It is easy to check that cBD(1,e) = h. By
hypothesis, one has that

e = 1e = hce, and e = ee = ehce = e(1 − e)aece = 0,

a contradiction. Thus (1 − e)Re = 0, so R is a left min-abel ring.

Recall that a ring R is a strongly left min-abel ring [13] if either MEl(R) = ∅, or every element of MEl(R)
is a right semi-central element.

Proposition 4.6. The following conditions are equivalent:

(1) R is a strongly left min-abel ring;
(2) for any a ∈ R, e ∈MEl(R) and 1 ∈ E(R), if a is Bott-Duffin (e, 1)-invertible, then 1e = 1.

Proof. “(1)⇒(2)” Let a be Bott-Duffin (e, 1)-invertible. Then

e = e(1ae)−1ae, and 1 = 1ae(1ae)−1.

Since R is a strongly left min-abel ring, one gets that e is a right semi-central element. Thus 1 = 1e.
“(2)⇒(1)” Suppose there exist some e ∈MEl(R) and a ∈ R such that ea(1− e) , 0. Denote 1 = e+ ea(1− e).

Then

e1 = 1, 1e = e, and 12 = 1.

It can easily be verified that eBD(e,1) = 1. By hypothesis, we obtain that 1 = 1e = e, so ea(1 − e) = 0, a
contradiction. Thus, we have eR(1 − e) = 0, and therefore, R is a strongly left min-abel ring.
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