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Abstract. The (b, c)-inverse and the Bott-Duffin (e, f)-inverse are two classes of outer inverses, a few
characterizations of which have been presented by certain researchers. In this paper, we give some new
characterizations of (b, c)-inverses and Bott-Duffin (e, f)-inverses. First, we present a number of ring the-
oretic characterizations of (b, c)-inverses. Then we characterize (b, c)-inverses by equations. Finally, we
present some characterizations of Bott-Duffin (e, f)-inverses. More specifically, we use Bott-Duffin (e, f)-

inverses to characterize some classes of rings, such as directly finite rings, Abelian rings and left min-abel
rings.

1. Introduction

Let R be an associative ring with unity 1 and b,c € R. An element a € R is said to be (b, c)-invertible if
there exists y € R such that y € bRy N yRc, yab = b, and cay = c. If such a y exists, it is unique and is called
the (b, c)-inverse of a, denoted by all*9),

As a new class of outer inverse, the concept of the (b, c)-inverse was for the first time introduced by
Drazin in [2, Definition 1.3] in the setting of rings, which generalized the group inverse, the Drazin inverse,
the Moore-Penrose inverse, the Chipman’s weighted inverse and the Bott-Duffin inverse. Afterwards,
certain researchers further studied and generalized it. Raki¢ et al. [9] connected the core and dual core
inverses with the (b, c)-inverse. Wang et al. [11] gave some characterizations of the (b, c)-inverse, in terms
of the direct sum decomposition, the annihilator and the invertible elements. Ke et al. [7] investigated
the existence and the expression of the (b, c)-inverse in a ring with an involution. Boasso and Kantiin-
Montiel [1] presented some other conditions for the existence of the (b, c)-inverse in rings, proving that the
conditions which ensure the existence of the (b, c)-inverse, of the annihilator (b, ¢)-inverse and of the hybrid
(b, c)-inverse are equivalent. For more results on (b, c)-inverses, we refer to [3, 4, 6, 8, 10].

In [2], Drazin introduced another outer generalized inverse which intermediates between the Bott-
Duffin inverse and the (b, c)-inverse. This class of generalized inverses is called Bott-Duffin (e, f)-inverses,
wheree, f € R are idempotents. Recall that the Bott-Duffin (e, f)-inverse of a € R is the element y € R which
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satisfies y = ey = yf, yae = ¢, and fay = f. If the Bott-Duffin (e, f)-inverse of a exists, it is unique and
denoted by a®P@f). The Bott-Duffin (e, f)-inverse and the (b, c)-inverse are formally very similar. It is not
difficult to find that a (b, c)-inverse y of a is a Bott-Duffin (e, f)-inverse of a if and only if b and ¢ are both
idempotents. Conversely, if y is the (b, c)-inverse of 4, then y is also the Bott-Duffin (ya, ay)-inverse of a [2,
Proposition 3.3]. More properties and applications of the Bott-Duffin (e, f)-inverse are studied by Ke and
Chen in [5].

In this paper, we present some new characterizations of (b, c)-inverses and Bott-Duffin (e, f)-inverses.
First, we give certain ring theoretic characterizations of the (b, c¢)-inverse of an element a € R. The following
conditions are proved to be equivalent: (a)ais (b, c)-invertible; (b) ¢ € cabRcand R = bR&r(ab); (c) r(ab) = r(b),
I(cab) = I(c), and ab is right c-regular. Next, we characterize (b, c)-inverses by equations. It is showed that a
is (b, c)-invertible if and only if the equation bxab = b has solution xj in Rc and its every solution is similar to
xo. Finally, we give some characterizations of Bott-Duffin (e, f)-inverses. To be specific, we use Bott-Duffin
(e, f)-inverses to characterize directly finite rings, Abelian rings and left min-abel rings.

2. Ring theoretic characterizations of (b, c)-inverses
In this section, we will characterize (b, c)-inverses in ring theory. First, we have the following proposition.
Proposition 2.1. Let a,b,c € R. Then a is (b, ¢)-invertible if and only if b € bRcab and ¢ € cabR.

Proof. “<" Let b = bucab and c = cabv, where u,v € R. Take y = buc and x = bv. Then b = yab and ¢ = cax.
Moreover, yay = yabuc = buc = y. By
y = buc = bucabv = yabv = yax, and x = bv = bucabv = yabv = yax,
we obtain x = y and ¢ = cax = cay. So
y = yabuc € yRc and y = bucay € bRy.

Then a!®9) = y = buc = x = bo.
“=" Let y = al®9. Then y € bRy N yRc, yab = b, and cay = c. Write y = br1y = yrc, where 1,72 € R.
Then we have
b = yab = bryyab = bryyracab = b(r1yry)cab € bReab,

and
¢ = cay = ca(br1y) = (cab)r1y € cabR.

O

Note thatc = cay = ca(br1y) = cabri(yrac) € cabRe. Hence, we get the following corollary from Proposition
2.1.

Corollary 2.2. Leta,b,c € R. Then a is (b, c)-invertible if and only if b € bRcab and ¢ € cabRe.

Similarly, we have the following proposition.

Proposition 2.3. Suppose that a,b, c € R. Then the following conditions are equivalent:

(1) a is (b, c)-invertible;
(2) b € Reab and ¢ € cabRc;
(3) b € bRcab and ¢ € (cabR).

Proof. (1) and (2) are equivalent by Proposition 2.1.

“(3)=(1)" Since ¢ € (cabR)? = cabRcabR C cabR, it is obvious from Proposition 2.1.

“(1)=(3)” It follows from Corollary 2.2 that ¢ € cabRc. Let ¢ = cabvc, where v € R. Then we have
¢ = cabvcabv € cabRcabR = (cabR)?>. O



H. Yao et al. / Filomat 37:15 (2023), 4833-4842 4835

For any x € R, define I(x) := {y € R | yx = 0}. Then we can characterize (b, c)-inverses using direct sum
decomposition of rings.

Proposition 2.4. Let a,b,c € R. Then a is (b, c)-invertible if and only if b € bRcab and R = Rc & I(ab).

Proof. “=" From Proposition 2.1, we know that b € bRcab. Let y = al®9). Then we have
y € bRyNyRe, yab =b, cay = ¢, and yay = y.

Notice that y = briy = yroc, where 11,1, € R. For every x € Rc N I(ab), one has that xab = 0. Let x = uc, where
u € R. Then
x = u(cay) = uca(br1y) = (uc)abriy = xabriy = Or1y = 0.

Hence, Rc N I(ab) = {0}. Since
b = yab = (br1y)ab = bri(yrac)ab,

it follows that ab = abryyrcab. Moreover, (1 — abriyroc)ab = 0, i.e., 1 — abriyrac € I(ab). Next, let
1 —abriyryc =t € l(ab).

Then
1 = abryyryc +t € R + 1(ab).

Therefore, R = Rc @ I(ab).
“&" Since b € bRcab, there exists some v € R such that b = bucab. Write y = buc. Then b = yab and
yay = y. Thus, y € bRy N yRc. Next we let 1 = wc + f, where w € R, f € l(ab), for R = Rc @ I(ab). Then we get

ab = lab = wcab + fab = wcab,

b = yab = ywcab,

and
cab = ca(ywcab) = ca(yay)wecab = caya(ywcab) = cayab.

Moreover, (c — cay)ab = 0, i.e., ¢ — cay € l(ab). Since c — cay € Rc, it follows that ¢ — cay € Rc N l(ab) = {0}.
Therefore, ¢ = cay. Thus, a is (b, c)-invertible. O

For any x € R, define r(x) := {y € R | xy = 0}, a right ideal of R. Using the same argument as in the proof
of Proposition 2.4, we get the following proposition.

Proposition 2.5. Leta,b,c € R. Then a is (b, c)-invertible if and only if ¢ € cabRc and R = bR @ r(ca).

Definition 2.6. Let d,c € R. Element d is said to be right (left) c-regular, if there exists an element x € R, such that
d = dxcd (d = dcxd).

Proposition 2.7. Let a,b,c € R. Then a is (b, ¢)-invertible if and only if ¥(ab) = r(b), l(cab) = I(c), and ab is right
c-regular.

Proof. “<” Since ab is a right c-regular, there exists an element x € R, such that ab = abxcab. Thus,
ab(1 — xcab) = 0, 1 — xcab € r(ab) = r(b),
and
b(1 — xcab) = 0, and b = bxcab € bRcab.
Notice that cab = cabxcab. We obtain that
(1 = cabx)cab = 0, 1 — cabx € I(cab) = I(c), and (1 — cabx)c = 0.



H. Yao et al. / Filomat 37:15 (2023), 4833-4842

Therefore, ¢ = cabxc € cabR. From Proposition 2.1, we know that a is (b, ¢)-invertible.
“=" Let y = all®). Then

yab="b,cay =c, yay =y, y = br1y, and y = yroc, where rq, 1, € R.
Obviously, r(b) C r(ab). Now, for any x € r(ab), one gets that
abx = 0, bx = (yab)x = y(abx) = 0, and x € r(b).
Therefore, r(ab) C r(b). It is straightforward that I(c) C I(cab). Conversely, let x € I(cab). Then
xcab = 0, xc = xcay = xca(br1y) = xcab(r1y) = 0, x € I(c), and I(cab) € I(c).
Therefore, I(cab) = I(c). Since
ab = a(yab) = a(br1y)ab = abry(yryoc)ab = ab(r1yry)cab,
we have that ab is a right c-regular. [J
Similarly, we get the following proposition.
Proposition 2.8. Leta,b,c € R. Then a is (b, c)-invertible if and only if
r(cab) = r(b), l(ca) = I(c),
and ca is left b—regular.

Corollary 2.9. Leta,b,c € R. Then the following conditions are equivalent:

(1) ais (b, c)-invertible;
(2) r(b) = r(cab), I(c) = I(cab), and ab is right c—regular;
(3) 7(b) = r(cab), I(c) = I(cab), and ca is left b—regular.

4836

Recall that an element a € R is regular if there exists x € R satisfying axa = a. In this case, x is a regular

(or inner) inverse of a.

Proposition 2.10. Let a,b,c € R. Then the following conditions are equivalent:

(1) a is (b, c)-invertible;

(2) Rb = Rcab, cR = cabR, and ab is right c—regular;
(3) Rb = Rcab, cR = cabR, and cab is regular;

(4) Rb = Rcab, cR = cabR, and ca is left b—regular.

Proof. “(1)=(2)” It follows from Propositions 2.1 and 2.7.
“(2)=>(3)” and “(4)=(3)” are obvious.
“(1)=(4)” It follows from Propositions 2.1 and 2.8.
“(3)=(1)" Let cab = cabwcab, b = vcab, and ¢ = cabs. Then

b = vcab = vcabwceab = bwceab € bRcab,

and
¢ = cabs = cabwcabs = cabwc € cabRe.

By Proposition 2.1, the assertion holds. [

Corollary 2.11. Let a, b, c € R. Then the following conditions are equivalent:

(1) a is (b, c)-invertible;
(2) there exists some x € R such that xax = x, xR = bR and Rx = Rc.
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Proof. “(1)=(2)” In view of Proposition 2.10, we know that b = vcab, ¢ = cabs, and cab = cabwcab. Then
b = vcab = vcabwcab = bwcab,

and
¢ = cabs = cabwcabs = cabwc.

Take x = bwe. Then
b = xab, ¢ = cax, and xax = xabwc = bwc = x.
Thus
xR = bR and Rx = Re.

“(2)=(1)" Since 1 — xa € I(x) = I(b) and 1 — ax € r(x) = r(c), one has that b = xab and ¢ = cax. Denote
x = bs = tc. Then x = xax = bsax € bRx, and

x = xax = xatc € xRc.

Thus al®9 = x. O

3. Characterizing (b, c)-inverses by equations

In this section, we characterize (b, ¢)-inverses by equations. Let a,b,c € R. If there exists an element
u € Rc, such that buab = b, then x = u is said to be a solution of the equation bxab = b in Rec.

Definition 3.1. Suppose that x1 and x, are two solutions of the equation bxab = b. If x; = xpabxy and x1 = x1abx;,
then x, is said to be similar to x;.

Proposition 3.2. Let a,b,c € R. Then a is (b, c)-invertible if and only if the equation bxab = b has solution x, in Rc
and its every solution is similar to xo.

Proof. “=" Letall®9 = . Then we have
y = briy = yrac, yab = b, cay = ¢, and yay = y, where 1,1, € R.

Moreover,
b(r1yrac)ab = yrocab = yab = b.

Thus, xg = riyrac is a solution of the equation bxab = b in Rc. Next we suppose that x = uc is a solution of
the equation bxab = b in Rc. Then b(uc)ab = b. Since

riyry = r1(br1y)ry = r1(bucab)riyry, = ribucayr,,

we have
riyroc = ribucayroc = ribucay = ribuc,
b = b(r1yrac)ab = b(ribuc)ab = brqb,
y = briy = bryyrac = b(r1yrac) = bribuc = buc,
uc = ucay = ucabriy = ucabriyroc = uc(ab)(r1yrac) = ucabx,
and
Xo = MrYrc = riyricay = riyracabriy = riyraca(yab)riy

riyroca(buc)abriy = xoabucay = xoab(uc).

Thus, x = uc is similar to xg.
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“<"” Assume that xy = uc is a solution of the equation bxab = b in Rc. Then we have bucab = b. Let
y = buc. Then b = yab and yay = yabuc = buc = y. Take

v = uc + (1 — cabu)c = uc + ¢ — cabuc = uc + c — cay € Rc.

Then
bvab = b(uc + ¢ — cay)ab = bucab + bcab — beayab = b + beab — beab = b.

Thus, x = v is also a solution of the equation bxab = b in Rc. From the assumption, we know that v is similar
to xg = uc. Moreover,

v = wvabuc = vay = (uc + c — cay)ay = ucay + cay — cayay
= ucay + cay — cay = ucay,

then ucay is also a solution of the equation bxab = b in Rc. From the definition of the similarity of solutions,
we have
uc = xo = xoabucay = ucabucay = ucayay = ucay = v = uc + c — cay.

That is, c = cay, y = yay = bucay € bRy, and
y = yay = yabuc € yRc.
Hence, y is the (b, ¢)-inverse of 4, i.e., al®) = y. O

Leta € R. It is well known that the regular inverse of g, if there is one, is not always unique. We denote
a~ the set of all regular inverse of a. For convenience, 4~ also indicates an arbitrary regular inverse of a
when no confusion can arise.

Proposition 3.3. Leta,b,c € R, e, f € E(R), bR = eR, and Rc = Rf. Then the following are equivalent:

(1) a is (b, c)-invertible;
(2) The system of equations

bxcae = e
fabxc = f

is solvable;
(3) cae and fab are reqular, e = bb~e(cae)™(cae), and f = fab(fab)~ fc™c.

Proof. “(1)=(2)” Let all®d =y, ¢ = bd and f = tc, where d, t € R. Then
yab =b,cay = c,and y = br1y = yroc, where 11,1, € R.

Since b = eb and ¢ = cf, one has that

Yy =briy =ebriy =ey, y = yroc = yrocf = yf, e = bd = yabd = yae,

and
f =tc = tecay = fay.
Thus
e = yae = bryyae = briyracae = b(r1yro)cae,
and

f = fay = fabriy = fabriyroc = fab(riyry)c.

Hence the system of equations (1) admits a solution x = ryyr.
“(2)=(3)” Let x = u be a solution of the system of equations (1). Then
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bucae = e and fabuc = f.

Hence
cae = caee = cae(bucae) = caebucae.

Thus cae is regular. Then (cae)™ exists. Similarly, we can prove that (fab)~ exists. Denote
e=bdand f = tc, whered,t € R.
Then b = eb = bdb, and c = c¢f = ctc. Thus both b~ and ¢~ exist. Moreover,

bb~e(cae)"cae = bb~bd(cae)”cae = bd(cae)”cae = e(cae)”cae

bucae(cae)”cae = bucae = e.

Similarly, one can prove that fab(fab)™ fc™c = f.
“(3)=(1)" We know that

b = eb = bb~e(cae)"caeb = b(b~e(cae)”)cab € bRcab,

and
c =cf =cfab(fab)” fc"c = cab((fab)” fc")c € cabRc C cabR.

By Proposition 2.1, one obtains that a is (b, ¢)-invertible. [

4. Characterizations of Bott-Dulffin (e, f)-inverses

As we know Bott-Dulffin (e, f)-inverses are particular (b, c)-inverses. They, however, has its own research
significance. Some results and approaches of (b, c)-inverses can be borrowed from to study Bott-Duffin
(e, f)-inverses. In this section, we give some characterizations of Bott-Dulffin (¢, f)-inverses. Mainly, we use
Bott-Duffin (e, f)-inverses to characterize some classes of rings. First, we have the following proposition
similar to Proposition 3.3. It is the basis of some propositions in this section.

Proposition 4.1. Leta € Rand e, f € E(R). Then the following are equivalent:

(1) a is Bott-Duffin (e, f)-invertible;
(2) The system of equations

{re

is solvable;

(3) fae is regular, e = e(fae)™ fae, and f = fae(fae)™ f.
Proof. It follows from Proposition 3.3 by takingb =eandc = f. O
Recall that a ring R is said to be Abelian if E(R) € C(R).
Lemma 4.2. A ring R is an Abelian ring if and only if (1 — e)Re = 0 for all e € E(R).

Proof. “=" Since e € E(R), one has that (1 —¢)Re = (1 —e)eR = 0.

“&"” Suppose that (1 —e)Re = 0 for any e € E(R). Since 1 — ¢ € E(R), we have that [1 — (1 —¢)]R(1 —e) =0,
that is eR(1 — ¢) = 0. Thus for any a € R, it follows that ea(1 —e) = 0 = (1 — e)ae. This gives ea = eae = ae.
Hence R is an Abelian ring. [J

Proposition 4.3. The following conditions are equivalent:

(1) R is an Abelian ring;
(2) forany a € Rand any e, f € E(R), if a is Bott-Duffin (e, f)-invertible, then e = f.
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Proof. “(1)=(2)” Let R be an Abelian ring, and a be Bott-Dulffin (e, f)-invertible. By Proposition 4.1, we have
that

e = e(fae)” fae, and f = fae(fae)™ f.
Since R is an Abelian ring, one has that f, e € C(R). Hence
e =e(fae)” faef =ef,and f = efae(fae)” f = ef.

Thuse = f.
“(2)=(1)” Suppose that R is not Abelian. Then (1 — e)Re # 0 for some e € E(R). By Lemma 4.2, there
exists some a € R such that (1 — e)ae # 0. Write g = e + (1 — e)ae. Then

eg=e ge=e+(l-eje =g and g° = g7 = (ge)g = gleg) = ge = g.

Hence g € E(R). It can easily be verified that P99 = g. Hence g = e by hypothesis, it follows that

(1 —e)ae = 0, a contradiction. Then (1 —e)Re = 0, and R is an Abelian ring. [

Recall that a ring R is directly finite, if for any a,b € R, ab = 1 implies ba = 1. Clearly, Abelian rings are
directly finite.

Proposition 4.4. The following conditions are equivalent:

(1) R is a directly finite ring;
(2) for any right invertible element a € R and any e € E(R), if a is Bott-Duffin (e, 1)-invertible, then e = 1.

Proof. “(1)=(2)” Let a be a right invertible element in R, and e € E(R), such that a is Bott-Duffin (e, 1)-
invertible. By Proposition 4.1, we have that

1 = ae(ae)”, and e = e(ae) ae.

Since R is a directly finite ring and a a right invertible element, one has that 4 is invertible. Hence, there
exists some b € R such that ba =1 = ab. Thus

e = le = bae, and b = bl = bae(ae)” = e(ae)™.

Therefore
(1-e)b=1-c¢e)e(ae)” =0,
SO
1-e)=(1-e)l=(1-e)ba=0.
Thene = 1.

“(2)=(1)" Leta, b € R such that ab = 1. Denote e = ba. Then
ae = a(ba) = (ab)a = la = a, eb = (ba)b = b(ab) = bl =D,

and
2

e“=ee=ceba=ba=e.
It is obvious that aBP@) = b. Then by hypothesis, we obtain that ¢ = 1, namely ba = 1. Hence R is a directly
finite ring. [

Recall that an idempotent e of a ring R is called left minimal idempotent, if Re is a minimal left ideal of
R. Denote by ME(R) the set of all left minimal idempotent elements of R.

Lete € E(R). If (1 — e)Re = 0, we call ¢ a left semi-central idempotent element of R.

Recall that a ring R is said to be left min-abel [12] if either ME;(R) = 0, or every element of ME(R) is a
left semi-central idempotent element.
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Proposition 4.5. The following conditions are equivalent:
(1)R is a left min-abel ring;
(2) for any a € R, e € ME|(R) and g € E(R), if a is Bott-Duffin (g, e)-invertible, then e = ge.
Proof. “(1)=(2)” Suppose a is Bott-Dulffin (g, e)-invertible. Then by Proposition 4.1, we have that
g = g(eag)~eag, and e = eag(eag)™g.
Since R is a left min-abel ring, and e is a left semi-central element, one has that
g(eag)~e = e(g(eag)™)e.
Note that g = eg(eag)~eag = eg. Then I(e) C I(g). Define
f : Re = Reg = Ry, xe — xeg.

It is easy to verify that f is a left R—module map. Since rg = reg for any rg € Rg, one has that f(re) = reg = rg.
Thus f is surjective. Hence Rg = Re/Ker f, so Ker f is a submodule of left R—module Re, i.e., Ker f is a left ideal
of R contained in the minimal left ideal Re. If Kerf # 0, we have Kerf = Re. This gives Rg = Re/Kerf =0, so
g = 0 and therefore ¢ = 0, which contradicts that Re is a minimal left ideal of R. Then Kerf = 0, and Rg = Re.
Hence Ry is also a minimal left ideal of R, so g € ME;(R). Since R is a left min-abel ring, one has that g is a
left semi-central element. Then

eag(eag)g = geag(eag)~g = ge, and e = eag(eag)~g = geag(eag)™g = ge.

“(2)=(1)" If ME|(R) = 0, we know that R is a left min-abel ring. We suppose ME;(R) # 0 below. Assume
that there exist some ¢ € ME;(R) and some a € R such that (1 — e)ae # 0. Then 0 # R(1 — e)ae C Re. Since Re
is a minimal left ideal, one has that R(1 — e)ae = Re. Write h = (1 — e)ae. One obtains that Rk = Re. Denote
e = ch, where ¢ € R. We get that

h=(1-e)ae = (1-e)aee = he = hch.

Put g = he. Then h = gh, and g = hche = hc = g, so g € E(R). It is easy to check that c?P¥9 = h. By
hypothesis, one has that

e = ge = hce, and e = ee = ehce = e(1 — e)aece = 0,
a contradiction. Thus (1 —e)Re = 0, so R is a left min-abel ring. [

Recall that a ring R is a strongly left min-abel ring [13] if either ME;(R) = 0, or every element of ME;(R)
is a right semi-central element.

Proposition 4.6. The following conditions are equivalent:

(1) R is a strongly left min-abel ring;
(2) forany a € R, e € ME|(R) and g € E(R), if a is Bott-Duffin (e, g)-invertible, then ge = g.

Proof. “(1)=(2)” Let a be Bott-Dulffin (e, g)-invertible. Then
e = e(gae)~gae, and g = gae(gae)~g.

Since R is a strongly left min-abel ring, one gets that e is a right semi-central element. Thus g = ge.

“(2)=(1)” Suppose there exist some ¢ € ME;(R) and a € R such that ea(1 —¢) # 0. Denote g = e +ea(1 —e).
Then

eg =g,ge =e,and g*> = g.

It can easily be verified that efP@9 = g. By hypothesis, we obtain that g = ge = ¢, so ea(l —¢) = 0, a

contradiction. Thus, we have eR(1 — ¢) = 0, and therefore, R is a strongly left min-abel ring. O
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