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Abstract. In this paper, we introduce the notions of almost 7, (A)-network and weakly 7, (A)-network to
characterize the properties of almost Rothberger (Menger) and weakly Rothberger (Menger), respectively, in
the hyperspaces CL(X), K(X), F(X) and CS(X), endowed with the hit-and-miss topology. Also, we introduce
the concepts of groupable cy(A)-cover and weakly (A, A)-groupable cover of X to give equivalences of the
selection principles $1(Z, 2%), Sin(2, 2%), $1(2, Z*) and Siin(Z, %) in the same hyperspaces.

1. Introduction and preliminaries

The hyperspace theory started in the first half of the 20th century with the works [11, 19, 21, 28]. Given
a topological space X, we denote by CL(X) the family of all nonempty closed subsets of X. The set CL(X),
endowed with some topology, is known as hyperspace of X. Numerous relations between properties of
the space X and their hyperspaces have been widely studied. On the other hand, the study of selection
principles started in [2, 12, 18, 22, 23]. Some lines of research generated are the study of selection principles
concerning groupability properties [7, 8, 16] and weaker versions of Rothberger and Menger properties
[13, 20, 26].

The relationships between selection principles and hyperspaces have been developed by several au-
thors. Namely, in [8] the authors used m-networks to characterize topological spaces whose hyperspace,
endowed with the upper Fell topology, satisfies the Rothberger property. Then, in [17] are defined the
concepts of mp-network, nty-network, kp-cover and cy-cover and they are used to study the S;(«7, %) and
Siin(«7, #) principles in CL(X) endowed with the Fell and Vietoris topologies, for different families ./ and
2. Later, in [3] the authors introduce the generic notions of 714 (A)-networks (and ca(A)-covers), which are
a generalization of p-networks and my-networks (and of kr-cover and cy-cover, respectively). These con-
cepts are used to characterize Menger-type star selection principles [3], star and strong star-type versions

2020 Mathematics Subject Classification. Primary 54B20; Secondary 54A05, 54A25, 54D20.

Keywords. Almost Rothberger (Menger); Groupable cover; Hit-and-miss topologies; Hyperspaces; Selection principles; Weakly
groupable cover; Weakly Rothberger (Menger).

Received: 25 August 2022; Revised: 01 October 2022; Accepted: 07 October 2022
Communicated by Ljubi$a D. R. Ko¢inac

Email addresses: rcruzc@uaeh.edu.mx (Ricardo Cruz-Castillo), alejandro.ramirez@correo.buap.mx (Alejandro
Ramirez-Paramo), jtenorio@mixteco.utm.mx (Jests F. Tenorio)



R. Cruz-Castillo et al. / Filomat 37:15 (2023), 5053-5063 5054

of Rothberger and Menger principles [4] and Hurewicz like properties [5] in hyperspaces endowed with
the hit-and-miss topology.

Next, we recall two known notions both defined in 1996 by M. Scheepers [23]. Given an infinite set X,
let &7 and % be collections of families of subsets of X.

e Si(«7, %) denotes the principle: For any sequence (A, : n € IN) of elements of 27, there is a sequence
(By, : n € IN) such that for each n € N, B,, € A,, and {B,, : n € N} is an element of 4.

® Siin(«/, %) denotes the principle: for each sequence (A, : n € IN) of elements of 7 there is a sequence
(8, : n € N) such that B, is a finite subset of A, for each n € N and e B € B.

Let & be the collection of open covers of a topological space X. When we take S1(&, &) and Ssin (0, 0),
we get the well known Rothberger property [22] and the Menger property [12, 18], respectively.

On the other hand, a topological space X is almost Rothberger [24] (resp., weakly Rothberger [6]) if for
every sequence (U, : n € IN) of open covers of X, there is a sequence (U, : n € IN) such that for any n € N,
U, € U, and U{clx(U,) : n € N} = X (resp., clx(U,en Un) = X).

In turn, a topological space X is almost Menger [24] (resp., weakly Menger [6]) if for each sequence
(U, : n € N) of open covers of X, there exists a sequence (V, : n € N) such that for every n € N, V, is a
finite subset of U, and J,,enlclx(U) : U € V,} is a cover of X (resp., clx (Upen U Vi) = X).

Diagram 1 provides relationships between the properties defined previously. These follow immediately
from the definitions and are not reversible.

Menger almost Menger weakly Menger

| | T

Rothberger —— almost Rothberger —— weakly Rothberger
DiaGraM 1: RELATIONSHIPS BETWEEN SELECTION PRINCIPLES.

Many authors have made investigations on selection principles and interesting results have been ob-
tained, see [1, 14, 25, 27], among other works.

For the purposes of this work, we present some basic concepts about the theory of hyperspaces. All
spaces are assumed to be Hausdorff noncompact and, even, nonparacompact.

For a space (X, 1), we denote by CL(X), K(X), IF(X) and C5(X) the family of all nonempty closed subsets,
the family of all nonempty compact subsets, the family of all nonempty finite subsets of X and the family
of all convergent sequences of X, respectively.

For every subset U C X and any family U of subsets of X, we write:

U- = [AeCLX):ANU %0}
Ur = {AeCL(X):AcCU}

e = X\U

U = {U:UeU).

Let A € CL(X) a subfamily of CL(X) closed under finite unions and containing all singletons. Then, the
hit-and-miss topology on CL(X) respect to A, denoted by 77, has as a base, the family

{(ﬂ’fl V;)m(Bf)+:B cAand Vi e forie {1,...,m}}.

Following [29], the basic element (2, V) N (B)" will be denoted by (V1,..., Vin)j-

It is known that two important particular cases of the hit-and-miss topology are the Vietoris topology, Ty,
when A = CL(X) (see [19, 28]), and the Fell topology, tr, when A = K(X) (see [10]). Although in the literature
there are several topologies that can be defined on K(X), F(X) and CS5(X), throughout this work we will
consider them as subspaces of the (CL(X), 7}).
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Along this paper, unless we say the opposite, we will consider a family A € CL(X) such that it is closed
under finite unions. Recall that [A]*“ denotes the collection of all finite subsets of any set A.

Now, we recall the definitions of 7 (A)-network and ca(A)-cover of a space X, a remark and a couple of
lemmas which will be used along this work (see [3]).

Given a family A € CL(X), we denote

Ca={B;Vy,..., V) : BeAand Vy,...,V, are open subsets of X with V;NB° # 0 (1 <i<n), ne€N}.

Definition 1.1. A family J C C, is called a ta(A)-network of X, if for each U € A€, there exist (B; V4,...,V,) €
J with B C U and F € [X]*” such that FNU = @ and for each i € {1,...,n}, FNV; # 0. The family of all
nia(A)-networks is denoted by ITA(A).

Remark 1.2. We have the following statements.

(1) If A = K(X) and A = CL(X), then the notion of 1to(A)-network of X coincides with the definition of
nip-network of X (see [17, Definition 3.7]).

(2) If A = A = CL(X), then every ma(A)-network of X induces a mmy-network of X (see [17, Definition
3.11]), and vice versa.

Lemma 1.3. Let (X,t) be a topological space. Suppose that J = {(Bs; Vis,..., Vi) * s € S} and U =
{(VLS,...,VmS,S)gS :(Bs; Vs, o ooy Vis) € j}. Then, J is a nia(A)-network of X if and only if % is an open
cover of (A, T)).

Definition 1.4. Let (X, 7) be a topological space. A family U C A°is called a ca(A)-cover of X, if forany B € A
and open subsets V71,...,V,, of X, with BN V; # 0 for any i € {1,...,m}, there exist U € U and F € [X]**
such that BC U, FNU = 0 and for each i € {1,...,m}, FN V; # 0. We denote by Ca(A) the family of all
ca(A)-covers of X.

Lemma 1.5. Let (X, 1) be a topological space. A family U C A is a ca(A)-cover of X if and only if the family U° is
a dense subset of (A, TZ).

Continuing the work done in [3-5, 9], in this paper, we introduce the generic notions of almost and
weakly 1ta(A)-networks, groupable ca(A)-cover, weakly dense (A, A)-groupable family and weakly (A, A)-
groupable cover. Those notions are used to characterize the properties: selection principles of almost
Rothberger (Theorem 2.3), almost Menger (Theorem 2.7), weakly Rothberger (Theorem 2.13), weakly
Menger (Theorem 2.17), $1(2, 2%") (Theorem 3.4), Siin(Z, 27) (Theorem 3.8), $1(Z, ™) (Theorem 3.15)
and Sin(Z, 7“%) (Theorem 3.19) in the hyperspace (A, 7} ). As particular cases, we get some results obtained
by Liin [17] (Corollaries 3.6, 3.7, 3.21, 3.22).

2. Almost and weakly Rothberger and Menger properties

In order to characterize the almost Rothberger and almost Menger properties in hyperspaces endowed
with the hit-and-miss topology, we introduce the notion of almost 74 (A)-network.

Definition 2.1. A family C C Cu is called an almost ma(A)-network of X, if for every U € A°, there is
(B;V1,...,Vy) € Csuch that for any K € Aand Uj, ..., U, open sets in X, with U N K =0 and U°NU; # 0,
for 1 <i < m, there exist W € A° and F € [X]<“ which satisfy FNW =0, BUK C W, FNV; # 0, for each
1<i<nand FNU; # 0, for any 1 < j < m. The family of all the almost 715(A)-networks is denoted by
QHA(A)

Remark 2.2. It can be shown that every mta(A)-network is an almost 714 (A)-network.

Theorem 2.3. Given a topological space (X, 7), the following conditions are equivalent:
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(1) (A, ty) is almost Rothberger;
(2) (X, 1) satisfies S1(ITa(A), alIa(A)).

Proof. (1) = (2) Let (J,, : n € N) be a sequence in ITy(A). Denote, for any n € IN,

Uy ={(Vi,..., Vb - Bi Vo, ..., Vi) € T}

By Lemma 1.3, we have that for each n € IN, U, is an open cover of (A, 7). Applying (1) to the se-
quence (U, : n € N), there exists (V7,..., ann)gn € U,, for each n € N such that the collection U =

{clA ((Vf, e, V,"nn);n) ‘nE IN} is a cover of (A, T}).

We claim that the collection J = {(B” Vi ng) :neN } is an almost 1o (A)-network of X. Indeed,
let U € A°, then there is (B"; V1,..., Vy,) € J such that U € cIz((VY,..., V], )E.)- Let K€ Aand Uy, ..., U,
open sets in X such that U"NK = @ and U°NU; # 0, for 1 < i < [ Then U € (Uy,..., U);. Let
D e (V?,...,V,’;”)g,, N(Uy,...,U)gand F = {x1,...,Xm,, Y1,..., Y1}, where x; € D N Vi and y; € D N U; for
1<i<my,and1 < j <[ It can be shown that W = D¢ and F satisfy the conditions required in Definition
2.1. So, (X, 1) satisfies S1(ITa(A), alTo(A)).

(2) = (1) Let (U, : n € N) be a sequence of open covers of (A, 7). Suppose that for any n € IN, the open
cover U, consists in basic open subsets. For each n € N, let J,, = {(B; V1,..., Vi) : (V1,..., V)i € Uyl
Then, by Lemma 1.3, J, is a ma(A)-network of X, for any n € IN. Applying (2) to the sequence (J,, : n € N),
there is (B"; VY{,...,V}, ) € Jy, for every n € N such that = {(B"; V],...,V}, ) : n € N} is an almost
7ia(A)-network of X.

We see that the collection U = {cIs((VY,..., V}, );.) : n € N} is a cover of (A, 7}). Indeed, let D € A and
U = D¢, then there is (B"; V{, ..., V}, ) € J which satisfies Definition 2.1. So, if (U3, ..., U;)}, is an open basic
neighbourhood of U¢, then U°NK =@ and U NU; # 0, for 1 <i < . Hence, there exist W € A“and F € [X]**
which satisfy FANW =0, B"UKC W, FNV! # 0, foreach1 <i<m,and FNU; # 0, forany 1 < j <.
It means that W € (Uy, ..., U)g N (VY,..., Vy ). So, D € cla((VY,..., V3, )i We conclude that (A, 7}) is
almost Rothberger. [

From Theorem 2.3, we obtain some interesting particular cases.

Corollary 2.4. Let (X, 7) be a topological space. If A is any of the hyperspaces CL(X), K(X), F(X) or C5(X), then
(A, Ty) is almost Rothberger if and only if X satisfies S1(ITa(A), alIa(A)).

Corollary 2.5. Let (X, 7) be a topological space. If A is any of the hyperspaces K(X), F(X) or C5(X), then:

(a) (A, tr) is almost Rothberger if and only if X satisfies S1(Ikx)(A), allkx)(A)).
(b) (A, tv) is almost Rothberger if and only if X satisfies S1(Icrx)(A), allcray(A)).

From Remark 1.2, we have:

Corollary 2.6. Let (X, T) be a topological space, then:

(a) (CL(X), Tr) is almost Rothberger if and only if X satisfies S1(Ir, allkx)(CL(X))).
(b) (CL(X), tv) is almost Rothberger if and only if X satisfies S1(Iy, allcrx)(CL(X))).

Similarly as in Theorem 2.3, we obtain the next result.

Theorem 2.7. Given a topological space (X, t), the following conditions are equivalent:

(1) (A, Ty) is almost Menger;
(2) (X, 1) satisfies the property Sgin(IIa(A), alIa(A)).

From Theorem 2.7, we get some interesting particular cases.
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Corollary 2.8. Let (X, T) be a topological space. If A is any of the hyperspaces CL(X), K(X), F(X) or CS(X), then
(A, Ty) is almost Menger if and only if X satisfies Sfin(ITa(A), alTa(A)).

Corollary 2.9. Let (X, t) be a topological space. If A is any of the hyperspaces K(X), F(X) or C5(X), then:

(a) (A, tr)is almost Menger if and only if X satisfies Sin(TTk(x) (), allkxy (A)).
(b) (A, tv) is almost Menger if and only if X satisfies Ssin(Icrx)(A), allcri (A)).

From Remark 1.2, we obtain:

Corollary 2.10. Let (X, t) be a topological space, then;

(a) (CL(X), r) is almost Menger if and only if X satisfies Ssin(ITp, al Tk x)(CL(X))).
(b) (CL(X), tv) is almost Menger if and only if X satisfies Syin(Ily, allcrx) (CL(X))).

Now, we introduce the notion of weakly ma(A)-network to characterize the weakly Rothberger and
weakly Menger properties in hyperspaces endowed with the hit-and-miss topology.

Definition 2.11. A family C C C, is called a weakly 1ia(A)-network of X, if for every U € A, and any K € A
and Uy, ..., U, opensetsin X, with U N K =0 and U° N U; # 0, for 1 <i < m, there exist (B; V1,...,Vn) €,
W e A°and F € [X]*” which satisfy FANW =0, BUKC W,FNV; # 0, foreach1 <i < Nand FNU; # 0, for
any 1 < j < m. The family of all the weakly 7 (A)-networks is denoted by wITa(A).

Remark 2.12. It can be shown that an almost 714 (A)-cover is a weakly ma(A)-cover. So, every ma(A)-cover
is a weakly 7t (A)-cover.

Theorem 2.13. Given a topological space (X, T), the following conditions are equivalent:

(1) (A, t)) is weakly Rothberger;
(2) (X, 7) satisfies the property Sq(ITa(A), wITA(A)).

Proof. (1) = (2) Let (J, : n € IN) be a sequence in [T5(A). Denote, for any n € IN,

Uy ={(Vi,..., Vs - Bi Vo, ..., Vi) € T}

By Lemma 1.3, we have that for each n € IN, U, is an open cover of (A, 7;). Applying (1) to the sequence

(U, : n € N), there exists (V7,..., V)i € Uy, for any n € IN, such that cly (U {(V{’, .., V;’%); ne ]N}) =
A.

We see that the collection J = {(B“ VI V,”nn) ‘ne ]N} is a weakly ma(A)-network of X. Indeed, let
Ue A KeAand U,..., U open sets in X such that U"NK =0 and U°NU; # 0, for 1 <i < I. Then

uc e (Uy, ..., Uy Hence, given that cl (U {(Vl”, ..,V )+ ‘ne ]N}) = A, we have that

My Jgn

U{(V’fm); :ne]N}ﬂ(Ul,...,U;);g;t(Z),

Thus, there exist N € N and D € A with D € (VN, ..., V%N)EN N (Ui, ..., U)gand F = {xy, ..., Xy, Y1,---, Y1),
wherex;e DNVNand yje DNU for1 <i<myand1 < j<I It can be shown that W = D° and F satisfy
the conditions required in Definition 2.11. So, (X, 7) satisfies S1(ITa(A), wIIa(A)).

(2) = (1) Let (U, : n € N) be a sequence of open covers of (A, 7). Suppose that for any n € IN, the open
cover U, consists in basic open subsets. For each n € IN, let J;, = {(B; V1,..., Vi) : (V1,..., Vi)j € Uy}
Then, by Lemma 1.3, [, is a ma(A)-network of X, for any n € IN. Applying (2) to the sequence (J,, : n € N),
there is (B"; V{,...,V} ) € Ty, for every n € N, such that = {(B"; V],...,V}, ) : n € N} is a weakly
1ia(A)-network of X.
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We claim that cly (U{(V", e Vi i) 1 E ]N}) = A. Indeed, let D € A and (Uj, ..., U} an open basic
neighbourhood of D. Hence, applying Definition 2.11 to U = D, K, U;, ..., U, there exist N € N, W € A¢
and F € [X]* which satisfy FANW =0, BN UK C W, FN VN # 0, for each 1 < i < my and F N U; # 0, for any

1<j<I Itmeans that W e (Uy,..., U); N (VY,..., VI v+ 50, D € clp (U{(V{‘,...,ann)gn) ‘ne IN}). We
conclude that (A, 7}) is weakly Rothberger. [

We get, from Theorem 2.13, some interesting particular cases.

Corollary 2.14. Let (X, 1) be a topological space. If A is any of the hyperspaces CL(X), K(X), F(X) or CS(X), then
(A, ) is weakly Rothberger if and only if X satisfies S1(ITa(A), wITa(A)).

Corollary 2.15. Let (X, T) be a topological space. If A is any of the hyperspaces K(X), F(X) or C5(X), then:
(a) (A, tr) is weakly Rothberger if and only if X satisfies S1(Ikx)(A), wllkx)(A)).
(b) (A, tv) is weakly Rothberger if and only if X satisfies S1(Icre)(A), wllcrey (A)).

From Remark 1.2, we have:

Corollary 2.16. Let (X, T) be a topological space, then:
(a) (CL(X), tr) is weakly Rothberger if and only if X satisfies S1(ITr, wITkx)(CL(X))).
(b) (CL(X), tv) is weakly Rothberger if and only if X satisfies S1(Ily, wIlcyx)(CL(X))).

Similarly as in Theorem 2.13, we obtain the next result.

Theorem 2.17. Given a topological space (X, t), the following conditions are equivalent:
(1) (A, Ty) is weakly Menger;
(2) (X, 1) satisfies the property Sgin(IIa(A), wITa(A)).

We obtain, from Theorem 2.17, some interesting particular cases.

Corollary 2.18. Let (X, T) be a topological space. If A is any of the hyperspaces CL(X), K(X), F(X) or C5(X), then
(A, Ty) is weakly Menger if and only if X satisfies Sfin(ITa(A), wITa(A)).

Corollary 2.19. Let (X, t) be a topological space. If A is any of the hyperspaces K(X), F(X) or CS(X), then:
(a) (A, tr) is weakly Menger if and only if X satisfies Sfin(ITk(x) (), wIlk(x)(A)).
(b) (A, v) is weakly Menger if and only if X satisfies Syin(Icrx)(A), wllcrey(A)).

From Remark 1.2, we have:

Corollary 2.20. Let (X, t) be a topological space, then:

(a) (CL(X), tr) is weakly Menger if and only if X satisfies Sfin(ITp, wllkx)(CL(X))).
(b) (CL(X), Tv) is weakly Menger if and only if X satisfies Sgin(ITy, wllcrx)(CL(X))).

3. Groupable and weakly groupable covers

We denote by Z the family of dense subset of (A, 7}). In [15, 16] it is defined 2%, the family of every
groupable element of 2, where D € P is groupable if there is a partition D = |J,n Dy into finite sets such
that each open set of the space intersects 9, for all but finitely many n. Now, we introduce the notion of
groupable ca(A)-cover to characterize the selection principles S$1(Z, 2%7) and Ssin(2, 29F) in hyperspaces.
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Definition 3.1. Let (X, 7) be a topological space. A ca(A)-cover U of X is called groupable, if it can be
represented as a countable union of finite, pairwise disjoint subfamilies U, C U such that for any B € A
and open sets Vy,...,V,, in X, with V; N B¢ # 0, for each i € {1,...,m}, there is ny € IN, such that for each
n > ng, there exist U, € U, and F, € [X]** with F, N V; # 0 such that B C U, and F,, N U, = 0. We denote
by Ca(A)% the family of all groupable ca(A)-covers of a space.

In a similar way as [3, Remark 2.21], we obtain.

Remark 3.2. We have the following statements:

(1) If A = K(X) and A = CL(X), then the notion of groupable cx(A)-cover in X coincides with the definition
of F-groupable cover of X, as defined in [17, Definition 5.1].

(2) If A = A = CL(X), then U is a groupable cs(A)-cover of X if and only if U is a V-groupable cover of
X, as defined in [17, Definition 5.1].

Lemma 3.3. Let (X, T) be a topological space. Then D = {D,, : n € N} is a groupable dense subset of (A, T)) if and
only if V = {D, : n € N} is a groupable cp(\)-cover of X.

Proof. Suppose that D is a groupable dense subset of (A, 7)) and let D = {J,en Dy, a partition into finite sets
such that each open set of (A, ’Z?X) intersects D, for all but finitely many n. By Lemma 1.5, V = (D, : n € N}
is a ca(A)-cover of X. Furthermore, let V,, = Of. It can be proved that V = |J,cn Vi is a partition into
finite sets which witness that V is a groupable ca(A)-cover of X.

Reciprocally, suppose that V = {D¢, : n € N} is a groupable ca(A)-cover of X and let V = U, Vi
partition into finite sets which witness that V is a groupable cy(A)-cover of X. By Lemma 1.5, D = {D,, : n €
IN} is a dense subset of (A, 7}). Now, let D, = V;. It is not difficult to show that D = |, D, is a partition
into finite sets such that each open set of (A, 7}) intersects D, for all but finitely many n. [

Theorem 3.4. Let (X, T) be a topological space. The following conditions are equivalent:

(1) (A, Ty) satisfies S1(2, P%),
(2) (X, 1) satisfies S1(Ca(A), CA(A)P).

Proof. (1) = (2) Let (U, : n € N) be a sequence of ca(A)-covers of X. For any n € N, we put D, = U,
By Lemma 1.5, we obtain that, for any n € IN, D, is a dense subset of (A, 7;). Hence, applying (1) to the
sequence (D, : n € N), we obtain, for each n € IN, D,, € D,, such that {D, : n € IN} is a groupable dense
subset of (A, TZ). For any n € N, let U, = D5. So, by Lemma 3.3, we have that {U, : n € IN} is a groupable
ca(A)-cover of X.

(2) = (1) Let (D, : n € N) be a sequence of dense subsets of (A, 7). For each n € N, take V,, = Df. By
Lemma 1.5, we have that, for each n € IN, V,, is a ca(A)-cover of X. Hence, applying (2) to the sequence
(V, :n e N), exists V,, € V,, for each n € N, such that {V,, : n € N} is a groupable cj(A)-cover of X. For
any n € N, let D,, = V§. Thus, from Lemma 3.3, we have that {D, : n € N} is a groupable dense subset of
A, Ty). O

As a consequence of Theorem 3.4, in Corollaries 3.6 and 3.7, we generalize some results obtained
by Li (see [17, Theorems 5.2, 5.4]) and provide characterizations to the property S1(2, 2%) for another
hyperspaces.

Corollary 3.5. Let (X, T) be a topological space. If A is any of the hyperspaces CL(X), K(X), F(X) or C5(X), then
(A, 73) satisfies S1(2, P%) if and only if X satisfies S1(Ca(A), Ca(A)F).

From Remark 3.2, we obtain:

Corollary 3.6. Let (X, T) be a topological space and let A = K(X). Then:
(a) (CL(X), tr) satisfies S1(2, 2%) if and only if X satisfies S1(Kg, ]Kgp) (see [17, Theorem 5.2]).
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(b) Let A any of the hyperspaces K(X), IF(X) or C5(X). Then (A, tr) satisfies S1(2, 2%) if and only if X satisfies
S1(Ckx)(A), Crx)(A)P).

Corollary 3.7. Let (X, T) be a topological space and let A = CL(X). Then:

(a) (CL(X), Tv) satisfies S1(Z, 2) if and only if X satisfies S1(Cy, C‘g/p) (see [17, Theorem 5.4]).
(b) Let A any of the hyperspaces K(X), IF(X) or C5(X). Then (A, tv) satisfies S1(Z, 2) if and only if X satisfies
S1(Cerx(A), Cerx (A)F).

Similarly as in Theorem 3.4, we get the next result.

Theorem 3.8. Let (X, T) be a topological space. The following conditions are equivalent:

(1) (A, Tz) satisfies Sin(2, P);
(2) (X, 1) satisfies Sfin(Ca(A), Ca(A)F).

As a consequence of Theorem 3.8, we get the following results.

Corollary 3.9. Let (X, 7) be a topological space. If A is any of the hyperspaces CL(X), K(X), F(X) or CS5(X), then
(A, Ty) satisfies Sgin(Z, ) if and only if X satisfies Sfin(Ca(A), Ca(A)P).

When A = K(X), from Remark 3.2, we obtain the characterization of Ssn(2, 27) for A endowed with
Fell topology.

Corollary 3.10. Let (X, 7) be a topological space, A = K(X) and A in {CL(X), K(X), F(X), C5(X)}. Then (A, tr)
satisfies Sgin(2, 297) if and only if X satisfies Sfin(Cix)(A), Cexy (A)F).

If A = CL(X), from Remark 3.2, we get the characterization of Ssin(Z, 2%), for A endowed with Vietoris
topology.

Corollary 3.11. Let (X, t) be a topological space, A = CL(X) and A in {CL(X), K(X), F(X), C5(X)}. Then (A, ty)
satisfies Sgin(2, 29P) if and only if X satisfies Sfin(Cerx)(A), Cerx)(A)PP).

Now, following the ideas of Li (see [17, Theorems 5.6, 5.8 and Definitions 5.5, 5.7]), we introduce the
notions of a family weakly dense (A, A)-groupable and a weakly (A, A)-groupable cover to characterize the
selection principles S$1(Z, 2“%) and Ssn(2, ™) in hyperspaces.

Definition 3.12. Let (X, 1) be a topological space and consider the hyperspace (A, 7}). A family A C A is
called weakly dense (A, A)-groupable if it can be partitioned into a countable union of finite sets C,, n € IN, so
that {C, : n € N}isdensein (A, 7}). We denote by “% the family of every weakly dense (A, A)-groupable
family of a space.

Definition 3.13. Let (X, 7) be a topological space. An open cover U C A° is called a weakly (A, A)-groupable
cover of X, if it can be represented as a countable union of finite, pairwise disjoint subfamilies U, C U such
that {{J U, : n € N} is a ca(A)-cover of X. We denote by Ca(A)“% the family of all weakly (A, A)-groupable
covers of a space.

Proposition 3.14. We have the following statements.

(1) If A = K(X)and A = CL(X), then the notion of weakly (A, A)-groupable cover of X coincides with the definition
of weakly F-groupable cover of X (see [17, Definition 5.5]).

(2) If A = A = CL(X), then U is a weakly (A, A)-groupable cover of X if and only if U is a weakly V-groupable
cover of X (see [17, Definition 5.7]).
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Proof. We will show (2). Let U be a weakly (A, A)-groupable cover of X and U, the finite subfamilies of U
which witness it. Now, we show that the same families U, work. Let V, ..., V, be open subsets of X. We
apply the hypothesis to the sets B = (L, V¢ € CL(X) and V7, ..., V,, to obtain N € N and F € [X]<* which
satisfy Definition 3.13. The same Uy and F satisfy [17, Definition 5.7].

On the other hand, let U be a weakly V-groupable cover of X and U, the finite subfamilies of ¢ which
witness it. Lets see that the same families U, work. Let B € A and V3,...,V, be open sets such that
VinB® # 0, foreveryi e {1,...,n}. We consider the non empty open sets V1 N B¢, ..., V, N B°. By hypothesis,
there exist N € IN and F € [X]*“ which satisfy [17, Definition 5.7]. The same N and F satisfy Definition
3.13. O

Theorem 3.15. Let (X, T) be a topological space. The following conditions are equivalent:

(1) (A, T}) satisfies S1(2, 7*%);
(2) (X, 7) satisfies S1(Ca(A), CA(A)“F).

Proof. (1) = (2) Let (U, : n € N) be a sequence of ca(A)-covers of X. For any n € IN, we put D, = U,
By Lemma 1.5, we obtain that, for any n € IN, D, is a dense subset of (A, 7}). Hence, applying (1) to the
sequence (D, : n € IN), we obtain, for each n € N, B, € D,, such that {B,, : n € IN} can be partitioned into a
union of finite sets Cy,, 7 € IN, so that {{\C, : n € N} is dense in (A, 7}).

Let V, = Ci, we claim that (J{V, : n € N} is a weakly (A, A)-groupable cover of X. Indeed, consider
B € Aand open sets V, ..., V,, in X, with V; N B # 0, for each i € {1,...,m}. There is some N € N such that
NCn € (V1,..., V)i Forany i€ {1,...,m}, choose some x; € V;N (N Cn)and let F = {x; :i € {1,...,m}}. It
can be shown that B C (N Cn) = U Vyand FN JVy = 0. So, the same partition {7V, : n € N} works.

(2) = (1) Let (D, : n € N) be a sequence of dense subsets of (A, 7}). For each n € N, we put U,, = D;,.
By Lemma 1.5, we have that, for each n € N, U, is a ca(A)-cover of X. Hence, applying (2) to the sequence
(U, : n € N), for every n € N there exists V,, € U,, such that {V,, : n € IN} is a weakly (A, A)-groupable cover
of X. So, W = {V,, : n € IN} can be written as a countable union of finite, pairwise disjoint subfamilies
W, € W such that for any B € A and opensets Vy,..., V,, in X, with V;NB° # 0, for eachi € {1, ..., m}, there
exists Ne Nand F € [X]* with FNV; # Q0 foreachie {1,...,m},such that BC | JWxand FN|{J Wy = 0.

For eachn € IN, let C, = W.. So, (V¢ : n € N} = U[C,, : n € IN}, where every C, is a finite subset,
which satisfy, by Lemma 1.5, that {{1C, : n € N} is dense in (A, 7}). Itis, {V}, : n € IN} is weakly dense
(A, A)-groupable. [J

As a consequence of Theorem 3.15, we obtain the following particular cases.

Corollary 3.16. Let (X, T) be a topological space. If A is any of the hyperspaces CL(X), K(X), F(X) or C5(X), then
(A, 7)) satisfies S1(2, 2%P) if and only if X satisfies S1(Ca(A), Ca(A)“7).

From Proposition 3.14, we obtain:

Corollary 3.17. Let (X, T) be a topological space and let A = IK(X). Then:
(a) (CL(X), tr) satisfies S1(2, ™) if and only if X satisfies S1(KF, ]I(;ng).
(b) Let A be any of the hyperspaces K(X), F(X) or CS(X). Then (A, tr) satisfies S1(2, %) if and only if X
satisﬁes Sl(C]K(X)(A), C]K(X)(A)ng).
Corollary 3.18. Let (X, 7) be a topological space and let A = CL(X). Then:

(a) (CL(X), Tv) satisfies S1(Z, 2"9) if and only if X satisfies S1(Cy, C?/W).
(b) et A be any of the hyperspaces IK(X), F(X) or C5(X). Then (A, tv) satisfies S1(2, ™) if and only if X
satisfies S1(Ccrx)(A), Cer (A)“7F).

Similarly as in Theorem 3.15, it can be proved the following result.

Theorem 3.19. Let (X, 7) be a topological space. The following conditions are equivalent:
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(1) (A, }) satisfies Sin(2, 7 );
(2) (X, T) SﬂtiSﬁes Sﬁn(CA(A), CA(A)wgp).

As a consequence of Theorem 3.19, in Corollaries 3.21 and 3.22, we generalize some results obtained
by Li in [17, Theorems 5.6, 5.8] and provide characterizations to the Sqin(Z, 2“%) property for another
hyperspaces.

Corollary 3.20. Let (X, t) be a topological space. If A is any of the hyperspaces CL(X), K(X), IF(X) or CS(X), then
(A, 7)) satisfies Sfin(2, 2) if and only if X satisfies Sfin(Ca(A), CA(A)YP).

From Proposition 3.14, we obtain:

Corollary 3.21. Let (X, 7) be a topological space and let A = IK(X). Then:

(a) (CL(X), t) satisfies Sgin(2, Z"%) if and only if X satisfies Ssin(Kp, K ") (see [17, Theorem 5.6]).
(b) Let A be any of the hyperspaces K(X), IF(X) or CS(X). Then (A, tr) satisfies Sin(2, 2%9) if and only if X
satisfies Sfin(Cx(x)(A), Ci o (A)P).

Corollary 3.22. Let (X, 7) be a topological space and let A = CL(X). Then:

(a) (CL(X), Tv) satisfies Sin(2, ™) if and only if X satisfies Sfin(Cy, C?,’gp ) (see [17, Theorem 5.8]).
(b) Let A be any of the hyperspaces K(X), F(X) or C5(X). Then (A, tv) satisfies Sqin(2, %) if and only if X
satisfies Sfin(Ccrix)(A), Cer(A)“P).
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