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Abstract. The proposed work is presented in two folds. The first aim is to deals with the new notion called
generalized a;$;-H(., ., ...)-accretive mappings that are the sum of two symmetric accretive mappings. It is
an extension of af-H(., .)-accretive mapping, studied and analyzed by Kazmi [18]. We define the proximal-
point mapping associated with generalized «;f;-H?(., ., ...)-accretive mapping and demonstrate aspects on
single-valued property and Lipschitz continuity. The graph convergence of generalized a;$;-H’(., ., ...)-
accretive mapping is discussed.

Second aim is to introduce and study the generalized Yosida approximation mapping and Yosida inclu-
sion problem. Next, we obtain the convergence on generalized Yosida approximation mappings by using
the graph convergence of generalized a;$;-H?(., ., ...)-accretive mappings without using the convergence of
its proximal-point mapping. As an application, we consider the Yosida inclusion problem in g-uniformly
smooth Banach spaces and propose an iterative scheme connected with generalized Yosida approximation
mapping of generalized a;$;-H?(., ., ...)-accretive mapping to find a solution of Yosida inclusion problem
and discuss its convergence criteria under appropriate assumptions. Some examples are constructed and
demonstrate few graphics for the convergence of proximal-point mapping as well as generalized Yosida
approximation mapping linked with generalized a,$;-H"(., ., ...)-accretive mappings.

1. Introduction and preliminaries

Variational inequalities are very powerful tool to study a large variety of problems that appear in
electricity, mechanics, operations research, optimal control, etc. Due to its extensive applications, variational
inequality has been well researched and generalized in various directions. A wide range of issues we face
in electricity, mechanics, operation research and optimal control can be organize as an inclusion problem

0 e N(x), )

where N : H — H is a multi-valued mapping on Hilbert spaces /. Therefore the problem of finding a
zero © € N(x), that is a point x € H such that ® € N(x) is a elementary problem in many fields of applied
sciences.
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Many mathematicians have worked on the well-known fact that regularization of monotone operators
on Hilbert spaces into single-valued Lipschitzian monotone operators through the procedure known as
the Yosida approximation. These Yosida approximation are significant in approaching solutions to general
variational inclusion problems utilizing non-expansive proximal-point mapping. Many heuristics [2, 6, 7,
19-21, 27] have utilized the Yosida approximation mappings and their generalized versions to find out the
solutions of variational inclusion problems.

In this connection, the accretive (monotone) property of the underlying proximal-point mappings (re-
solvent operators) have a significant role in the field of variational inequalities and their generalizations.
Huang and Fang [15] were the first who considered and studied m-accretive mappings and its proximal-
point mapping in Banach spaces. After that many mathematicians studied different kinds of generalized
m-accretive mappings, we refer to [8, 22]. Sun et al. [31] proposed and analyzed M-monotone mappings in
Hilbert spaces. A few research works linked with M-monotone (accretive) and their extension are given in
[3, 10-14, 16-18, 25, 26, 28-30, 32, 34, 35].

In Recent years, H(.,.)-accretive mappings and generalized af-H(., .)-accretive mappings were investi-
gated and studied in Banach spaces, an natural extension of M-monotone mapping, see [18, 34, 35]. They
studied the variational inclusions involving these underlying mappings.

Demonstration of graphical convergence related to H(., .)-accretive mappings and equivalence between
proximal-point mappings and graphical convergence of a sequence of H(.,.)-accretive mappings studied
and analyzed by Li and Huang [23]. Recently, graphical convergence on A-maximal relaxed monotone,
A-maximal m-relaxed n-accretive studied and analyzed by Verma [32] and Balooee et al. [4]. For detailed
study in this direction, see [1, 2, 5, 16, 23].

Motivated and inspired by the research work discussed above. Our research work is presented in two
folds. Firstly, we consider a;$;-H?(., ., ...)-accretive mappings defined on a product set which are the sum
of two symmetric accretive mappings. This notion is the generalized form of a-H(., .)-accretive mappings
studied and analyzed by Kazmi et. al [18]. We define the proximal-point mapping and discuss its some
properties. Further, we focus on graph convergence connected with generalized «a;g;-H?(., ., ...)-accretive
mappings.

In the second phase, we consider and study generalized Yosida approximation mapping with few nice
properties. Next, We establish the equivalence between convergence of the proximal point mappings,
Yosida approximation mappings, and graph convergence of a sequence of generalized a;3;-H”(., ., ...)-
accretive mappings. Further, an iterative algorithm involving generalized Yosida approximation mappings
linked with generalized &;f;-H*(., ., ...)-accretive mappings is constructed and then, convergence analysis for
this algorithm in the context to find uniqueness and existence of a solution to class of Yosida inclusion along
some suitable assumptions is examined in the setting of g-uniformly smooth Banach space. A few examples
are constructed and shown some graphics for the convergence of proximal-point mappings and generalized
Yosida approximation mappings linked with the generalized a;f;-H?(., ., ...)-accretive mappings. Our work
is the extension and refinement of some results available in the literature, see [2, 9, 18, 34].

Let Y be a real Banach space endowed with a norm ||.|| and inner product (., .) which presents the duality
pairing between Y and Y*. Let CB(Y) be the family of all nonempty closed and bounded subsets of Y and

2Y be the power setof of Y. Set Y = Y X Y X ... X Y.
————

p times
Definition 1.1. “A multi-valued mapping ], : Y — Y*, q > 1is said to be the generalized duality mapping, if
Joh) = {Fe Y : (&b = It IHl = 17", VieY.

It is well known that J,(t) = T 2(t) VY t(# 0) €Y, where ], is usual normalized duality mapping on Y. If Y is
equivalent to real Hilbert space X, then, |, become identity mapping on X", [33].

Definition 1.2. “A Banach space Y is smooth if for every t € Y with ||t|| = 1, there exists a unique | € Y* such that
1l =1¢) =17, [33].
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Definition 1.3. “Let Qy : [0, 00) — [0, o0), then, modulus of smoothness of Y is given as

|| N "
Ol = sup{%—l: <1, IItIISM} 133) &)

Definition 1.4. “A Banach space Y is said to be
(i): uniformly smooth if lim, o Qy(u)/u = 0;
(ii): g-uniformly smooth (q > 1), if there exists k > 0 with Qy(u) <k u9, u € [0, o).

It is observe that | become single-valued if Y is uniformly smooth”, [33].

Lemma 1.5. “A real uniformly smooth Banach space Y is q-uniformly smooth iff there exists a constant c; > 0 such
that, for every t,t' € Y,

£+ E17 < (117 + qCE, Jo(D) + cllEI"", [33]-

Lemma 1.6. “Let {b,} and {c,,} be the two non-negative real sequences, which are satisfying the inequality b,.1 < 1b,+
¢, withc, —» 0and 0 <1 < 1. Then, lim,_,o b, = 07, [24].

Definition 1.7. Let 7 : Y — Y be a single-valued mapping, then, T is said to be
(i) accretive if

(T @) =T W), ;@ —u)) >0 Vo', u' €Y;
(ii) &-strongly accretive if there exists £ > 0 with
(T@) =T W), Jy@w —u)) z Elw —uw'|lT Yw', 0" €Y;
(iii) Ar-Lipschitz continuous if there exists A > 0 with
17 (@") =T @) < Arllw” —u’ll, Yo', u" €Y;
(iv) A-expansive if there exists A > 0 with
N7 () =T W)l = Allw* —u’ll, Yw', u" €Y;
(v) T becomes expansive if A = 1.
Following new notions are needed to continue subsequent sections.

Definition 1.8. Leti € {1,2,...,p},p 23and HP : YP — Yand A; : Y — Y be the single-valued mappings. Then,
HP is said to be
(i) a;-strongly accretive with A, if there exists o; > 0 such that

<Hp(vlr ey z)i—1114id’]r Vitly -er vn) - Hp(vlr ey Ui—l/Aii}/ OVit1y -oer U‘rl)l Iq(w - ﬁ)> 2 q; ”Z’T) - 6”qr
vw/ ZN}/ U1+, 0i-1,Vit1, -+, Un € Y/
(ii) Bi-relaxed accretive with A; if there exists B; > 0 such that
<HP(Z)1, ey Ui_l,Ajw, Vitls ooy Un) - m(vl, ceey vi—llAiﬁ/ Vitly ooer v?’l)/ ]q(w - 5)> Z _ﬁi ||ZD - 5||q/
VZ’D/ ?7/ 01,4y Ui=1, Vi41, o+, Un € Yr

(iii) s;-Lipschitz continuous with A, if there exists s; > 0 such that

||Hp(vlr ceey vi*l/Aiwr Ui+1/ cery Un) - Hp(vll ey vi*l/Aiﬁ/ vi+1/ ey vn) S Si ||ZD - zN)”I

vw/ 27/ U1y ey Ui-1,Vix1, -, U € Y/



S. Gupta, E. A. Khan / Filomat 37:15 (2023), 4881-4902 4884
(iv) a1 PorasPy...qp-1Bp-symmetric accretive with Ay, Ay, ..., Ap iff fori € {1,3,...,p = 1}, HP (..., A;, ...) is aj-strongly
accretive with A; and for j € {2,4, ..., p}, H?(..., A}, ...) is Bj-relaxed accretive with A;, where p is even, satisfying
Bot+Pat..+Bp<artazt..+ap

and P +Pa+ ..+ =ar+az+..+a, 1 iff 0 =7;

(v) a1foazfa, ...fp-1, ap-symmetric accretive with A1, A, ..., Ap iff for i € {1,3,...,p}, H(..., A;, ...) is a;-strongly

accretive with A; and for j € {2,4,...,p — 1}, H?(..., A}, ...) is Bj-relaxed accretive A; where p is odd, satisfying
Bat+Pst..tPfp1<art+az+..+ay

andﬁ2+ﬁ4+---+‘8r;_1 =mtazt+..+ap l:ffﬂ)zf).

Definition 1.9. For i € {1,2,..,pl,p = 3, let N : YP —o Ybe a multi-valued mapping and f; : Y — Y be a

single-valued mapping . Then, N is said to be
(i) pi-strongly accretive with f; if there exists fi; > 0 such that

<wi - ZNJ’I‘/ ]q(w - Z7)> 2 Fli ||ZD - 5||q/ VZTJ, ?7/ Ul/ ceey vi—lrvi+1/ ceey Up € Yr
wi € N(vll ey Z)1'71/ ﬁ(w)/ Z)i+1/ ey Un)/ 5i € N(vlr ey vi*l/ ﬂ(ﬁ)/ vi+1l ey vn);
(ii) y;-relaxed accretive with f; if there exists y; > 0 such that
<ZD1‘ - 7717 ]q(w - 5)> = - 77i “Zb - Z7||q/ vwr ﬁr U1y 0ees i1, Vig1y ooer vp € Y/
wi € N(Ulr ey Ui, ﬁ(ﬁ])/ Vitly eeey Ul’l)/ 5i € N(Ull ey Vi1, fl(ﬁ)l Vi+1, "'Ul’l)/.
(iti) f1P2[37 4. flp-1Yp-symmetric accretive with fi, fo,..., fp iff for i € {1,3,...,p = 1}, N(..., fi, ...) is fi;-strongly
accretive with f; and for j € {2,4, ..., p}, N(..., fj, ...) is y -relaxed accretive with f;, where p is even, satisfying
)72+)74+...+)7p <[ +[:l3+...+[._1p_1

and o+ o+ .o+ Pp =M1+ 03 + o + fp iff W = T;

(iv) [1Y20374, ---fp, Vp-1-Symmetric accretive with fi, fa,.., f, iff for i € {1,3,..,p}, N(.., fi,...) is fi;-strongly

accretive with f; and for j € {2,4,...,p — 1}, N(..., fj, ...) is y -relaxed accretive with f;, where p is odd, satisfying
Vot Pat . +Ppa <tz +..+[p

and o + Y4+ o+ Ypo1 =1+ @3+ ..+ [y iff 0 = 0.

2. Generalized a;8;-H*(., ., ..., .)-accretive mappings

At first, we consider some assumptions (M;-M,) to introduce and study the new notion a;;-generalized
HP(.,.,...)-accretive.

Let foreachie(1,2,..,p}, p=23and N : YV — Y be multi-valued mappingand H? : Y¥ - Y, A;: Y = Y
and f; : Y — Y be the single-valued mappings.
M;y: If p is even, H” is a1fra3p4...ap-1f,-symmetric accretive with Ay, A, ..., A,.
M;y: If p is odd, H? is a1foa3fs...fp-1a-symmetric accretive with Ay, A, ..., Ap.
M;: If pis even, N is fi172f13)4...fip-17p-Symmetric accretive with fi, fo, ..., f,.
My: If pis odd, N is fi172[i374...Vp-1p-symmetric accretive with fi, f, ..., fp.

Definition 2.1. Let p > 3, then, N is said to be a generalized a;f;-HP(., ., ..., .)-accretive mapping with mappings
(A1/A2/ '-'/Ap) and (fl/fZ/ '-'/fp)

(i) iff N is fip2i3Ps...fip-1Yp-symmetric accretive with fi, fa, ..., f, and (HV(Al,Az, s Ap) +pN(f1, f2, . fp))(Y) =
Y, forall p > 0 if p is an even number;

(i) iff N is 1 y2[i3V4...V p-1 flp-symmetric accretive with f1, fa, ..., fu and (Hp(Al,Az, s Ap)+oN(f1, f2,..s f,,))(Y) =
Y, for all p > 0 if p is an odd number.
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Proposition 2.2. Let assumptions M and M, hold for everyi € {1,2,..p}, p 2 3and N : YP —o Y be a generalized
a;pi-HP (A1, Ay, ..., Ap)-accretive mapping with mappings (A1, Az, ..., Ap) and (f1, fo, ..., fy) and Y fi; > Y. 7, Y. o >

Y.Bj, if (X7, J,(u' —7"))y > 0is satisfied for each (v', ) € Gr(N(fl,fz, ...,fp)), Xe N(fl,fz, ...,fp)(u’), where
Gr(N(fi, for s £)) = {0, 3) : T € N(F, fo s ) 0)-

Proof. Assume that there exists (wy, zg) ¢ Gr (N (fi, fo, oo fp)) such that

(z0 - x, Jywo =) = 0, ¥ (u, x) € Gr(N(fi, fa s f5))- 3)

If pis even: Since, N is a generalized a;;-H” (Al, Ao, ..., Ap)-accretive mapping with mappings (A1, Ay, ..., Ap)
and (f1, f2, ..., fp), then, N is baru1 72 fi374...fl,-1Y,-symmetric accretive with mappings fi, f2, ..., f, and
(Hp(Al,Az, e Ap)+pN(f1, fo, ...,fp))(Y) = Yholds foreach p > 0, then, there exists (w1, z1) € Gr(N(fl,fz, ...,fp))
such that

HP(Ayewo, Agtwo, ..., Aywo) + pzo = H (Aywn, Agwy, ..., Aywor ) + pz1 € . (4)
From (3) and (4), we have
pzo — pz1 = H’”(Alwl,Azwl, ...,prl) - H’”(Alwo,Azwo, ...,pro) €Y,
(pzo0 — pz1, J4(uo — w1)) = <H”(A1w1,A2w1, vy Apwr) — HP (Aywy, Agwy, ..., Apwo), [ (o — w1)>.
Setting (u,x) = (w1,z1) in (3) and using M3 in (4), we obtain

(1 + @3+ oo+ fp1) = P2+ Vo — oo + Pp)]llwo —wnll? < plzo — 21, J(wo — w1))
< —(HP(Aywo, Asw, .., Aywo) = HP (Aywy, Agtws, .., Aytwy), Jy(wo — w1))

= —<HP(A1w0,A2wo, vy Apwo) — HP (Aqwy, Agwy, ..., Apw), J4(wo — w1)>
— (HP (Avwo, Agtwy, .., Aywo) = HP (Avawg, Agtwr, .., Aywo), Jo(wo — wy))

— (HP (Aywo, Agwy, ..., Aywwo) — HP (Aywo, Agtwo, ..., Ayion), Jo(wo — 1))
< [ +as+ .+ ap) = B2+ Put o+ y)|lwp — il
Let
Zai:a1+a3+“'+a”‘1’ Zﬁj =P+ Ps— .t Py,
Zp,- = [+ [z + .+ fp1, 277]- =TV2+ P4 — ot P
Then, we have

[Zai—Zﬁj+P(ZFli—ij)]||wo—w1||qSO- 5)

Since, ). @; > Y.V, La; > Y. pj and p > 0, it implies that wy = w;. By (3), we have zp = z;. Thus
(w1,z1) = (w,, 2,) € Gr(N (f1, 55, ..., fp)). By the same procedure, we can obtain the result when p is odd.

Theorem 2.3. Let assumptions My and M, hold for every i € {1,2,...p}, p 2 3and N : YV —o Y be a generalized a;f3j-
HP(Ay, Ay, ..., Ap)-accretive mapping with mappings (A1, Az, ..., Ap)and (f1, fo, .., fp)and Y f; > Y. 7;, Yo > Y. B,

-1
then (HV(Al,Az, s Ap) + pN(f1, fo, ...,fp)) is single-valued.
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-1
Proof. For any givenu € Y, letx, y € (H”(Al,Az, e Ap) + pN(f1, fo, ...,fp)) (u). It follows that

—H”(Alx,Azx, ...,Apx) +ue pN(fl,fz, ...,fp)x,
—H”(A1y,A2y, ...,Apy) +ue pN(fl,fz, ...,f,,)y.

Let p is even. Since, N is {i172f1374...flp-1Yp-Symmetric accretive with fi, f5, ..., f,, we have

(1 + @3+ o+ fp1 = V2= Vo= . = Ppllx =yl
< %( — HP(A1x, Azx, ..., Apx) + u — (=HF (Ary, Azy, ..., Apy) + ), Jo(x — y)>
= p(f1+ s+ .+ fp1— V2= Va— . = Pp)llx —yll
< —(HP(Arx, Agx, .., Apx) = H (Ary, Aoy, .. Apy), Jo(x = y))
= —<H’”(A1x, Axx, ..., Apx) — HP(Ary, Arx, ..., Apx), Jo(x — y)>

~(HP(Ary, Ao, .., ApX) — HP(Ary, Aoy, ..., Apx), Jo(x = 1))

—(HY(Avy, Asy, ..., Apx) = H'(Ary, Ay, ., Ay), To(x = ).
Proceed the same as to obtain (5), we have

[Y =Y gi+p() =) 7)) e —yll <o0. (6)

Since, Y. fi; > Y. 7, X, a; > ¥, pjand p > 0, we have [lx—y|| < 0. It implies that x = y. Thus (H"(A1, A, ..., Ap) +
oN(f1, fa, s fp))’1 is single-valued. By the same procedure, we can obtain the result when p is odd.

Definition 2.4. Let assumptions My and My holds for p > 3 and N : YP —o Y be a generalized a;B;-HP(., ., ...)-
accretive mapping with mappings (A1, Aa, ..., Ap) and (f, fo, ..., fp) and Y fi; > Y. 7, Y. a; > ¥, Bj. A proximal-point

mapping RI:pA((()) 1Y — Y is define as
H () -1
RIYG) ((2) = [H/(A1, Ay Ap) + pN(f, for s f)] (), Y R EY, )

where p is non-negative constant.
Now, we prove the Lipschitz continuity of proximal-point mapping.
Theorem 2.5. Let assumptions My and M holds forp > 3and N : Y¥ —o Y bea generalized a;;-HP (., ., ...)-accretive

mapping with mappings (A1, Az, ..., Ap) and (f1, fa, ..., fp) and Y. i; > Y. 7, Y. a; >}, B;. Then, the proximal-point
Pl )) 1Y — Y is A-Lipschitz continuous, where

mapping RIP_I,N( ........
a=[Ya-Yeo(La-Yr)

Proof. Let x, y € Y, and from (7), we have

R () = (HV(Ay Ags s A)) + pNFi frroer £)) | (0),
» -1
RIG (@) = (H (A Aoy A) + pN(F, for o ) (0)-
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It follows that
%(x—HP(AﬂRH’( ----- ) ), AR (@), ey ARG 6)) € N(REG) (),
p(y HP(Ay RS (), Aa(REG (), ey ApRENG () € N(RITG (1)

Letx! = RH ( )(x) and y' = R’;p’jv( (y)

If p is even: Smce N is ya...fip-17p- symmetr1c accretive with fi, f, ..., f,, we have

((r = (AL, Are), s Ap D) = (v = HP (ALY, A2y, - Ap (), T+ = 1))
> p(p =72+ s = 7a+ o+ B = | - v
(x =y = (H (A1 (), Ap()), .. Ap(x)) = H(A1(y)), Ao(y"), - A1), T = 1))
> p((f1 + fis + . + fp1 — (P2 + Pa— o 77,,))Hx1 - ylHq.
Let
Zai =ataz+..tap, Zﬁj =B2+Ps— ..+ By,
Zgi =y + {3+ .+ fip, Zyj = P2+ V4= e+ Pp.
We have
sl =™ 2 Gy e )
> (H/(A(h), Aa(!), .. Ap(a)) = HY(Ar(), Ao (), - Ap(yh)),
i =y )+ o (Lp= Ym) - v
> it =y [ - palpt -yl it -
(L - L)
= [La-Xaroa-Xo)l v
Hence
G N DI WA MR 1A | SR
that is,
[R5 =Rl < alfe - vxw ey

where A = [Z a =Y. Bi+p (Z pgi— 27 ]-)]_ . By the same procedure, we can obtain the result when p is odd.

3. Generalized Yosida Approximation Mappings

We define the generalized Yosida approximation mapping in terms of proximal-point mapping given
by (7)
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Definition 3.1. The generalized Yosida approximation mapping ] N( zs defined as

.......

where 1 is identity mapping and p is non-negative constant.

Lemma 3.2. The generalized Yosida approximation mappmg] """" deﬁned by (8),is
(i) D1-Lipschitz continuous, where

_ 1;A, A=Y ai-Y g+oY 5= Y 7]

and Ya;> Y. B, Y. > L7y

(i) ®,-strongly accretive, where

®, = %, A=Y ai= Y Bi+pQ mi= Y 7]

and Y a; > Y. B;, Y. fli > X Jj.

Proof. (i) Let x, y € Y and p > 0. Using Proposition 2.3, we have

||]l§lp/(\/( (x) ]p N )(}/)” = %I(x) Rp N (x) [I(y) Rp N )(y)]'
< 2ol - - R ]
< S lle=ol = o=
S
<Aty
that is,
e -1 0] = eie-o],

-1
where ®@; = 1?—)A,A = (Xai—Zﬁj+P(Zﬁi —277]')) and Y a; > Y. B, X fli > L 7j-
(i) Let x, ¥ € Y and p > 0. Using Proposition 2.3, we have

<]gj\(,'gjj;,),)(x) TS ) T = y)>
= 2 (10 - R 0 - [0 - RIS )] - v),

= %(x ~yJ(x-y)) - %< o @ = ROG ) Jofe = V)>
R I LR Y | S
-1
At I A |
> 5o
p
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that is,
<]Ip_1p)(\’( )(x) ]p N( )(y) ]q( )> > @2” —

where @ = 22, A= (Tay - LB+ p(C i~ L7))) and Ty > LB, L > L7

p

Note The proximal-point mapping defined by (7) and generalized Yosida approximation mapping defined
by (8) are associated by the following relation:

0 = [ON(Bfor )+ (A e ) - ] REG 0 .

.......

4. Graph convergence of the generalized Yosida approximation mappings
Now, we discuss the graph convergence of the generalized Yosida approximation mappings.

Definition 4.1. Let N : YP —o Y be a multi-valued mapping, then, graph of N is given as:

Gr(N(ﬂl,ﬂz, ap)) = {((ﬁl,ﬁz, ey TIy), x*) X e N(ﬁl,ﬁz, a,,)}

Definition 4.2. For n = 0,1,2,...., let N;,, N : Y — Y be the multi-valued mappings such that N, N, be the
generalized a;;-HP (., ., ...)-accretive mappings with mappings (Al,Az, ...,Ap) and ( fi, for s f,,). Graph convergence
of a sequence {N,} to N expressed as N, <, N, if for each (( f1(x), fa(x), ..., f,,(x)), y) € Gr(N ( fi, for s fp)), there

exists a sequence

((fl(xn),fz(xn), ...,f,,(xn)), y,,) € Gr(Nn(ﬁ,fz, v fp)) such that

filxn) = f1x), faxn) = f2(5), s fp(2n) = fp(X), yu = y asn — oo

Theorem 4.3. Let us consider the assumptions My and My hold good. For n = 0,1,2,..., Ny N : YV — Y
be the generalized a;ff;-H"(., ., ...)-accretive mappings with mappings (Al,Az, .y A,,) and ( fi, for s fp) and Y, fi; >
Y.V, ai>Y.Bj. Foreachi€ {1,2,..,p}, p > 3, assume that

(i) H?(.,., ...) is s;i-Lipschitz continuous with respect to A;;

(ii) f; is ki-expansive in the ith-argument;

Then Ny —> N if and only if

RS @) = R (), Yx e, p>0,
where R N() (HP(Al,Az, ...,Ap) + pNn(fl,fz, ...,fp))_l,
RS"’(N( = (H(Ay Aoy 8) + pN(f fo )
Proof. Since, the proximal-point mappings connected with a;f i-HP (.,.,...)-accretive mappings are Lipschitz
continuous. That is, RIP_I /(V( ...... and R /(V,z (.y are A-Lipschitz continuous.
If part: Assume that N, S5 N.
Given forany x €Y, letz, = Rp Moo, )(x), z = Rp N )(x)

Then, L [x — HP(A12, A2z, .., Ayz)| € N( Fus for s ) @),
or [z, HEE HP(A1z, Aoz, .., Ap2))| € Gr(N(fy, fa, .. By ))-
By definition of Gr(N (fl, fo, ..., fp)), there exists a sequence { f1GEn), f2(Z), s fp(Zn), y,,} such that

FE) = fi@), HE) = o2, folEn) = f2), T — %[x—H”(Alz,Azz,...,Apz)] (10)
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as n — oo. Since, fj, € N,,(fl(Zn), foZn), . fp(Zn)), we have

HP(ArZn, Aoz, ) Apn) + Pl € [HP(A1, A,y Ap) + pNu(fo, for o )] En)-

Therefore,
= RV [H P(Alzn,Azzn, s Apfin) + Pl
Using the A-Lipschitz continuity of R """" .y wehave

llzn —zll < ”Zn_zn” + 112, — 2l

||RH”( @ - RIP—IPEV( [ P(Alzn,Azzn, ...,Apzn) + pyn] + ||z, - z“
<A ”x - H? Alzn,Azzn, ...,A,,z,,) —pul| + ||z — 2
< A [”x - H7”(A12, Arz, ...,Apz) — Pn
+||H7’(A12,Azz, s Ay2) = HP (A2, Ag, s A ||| + [0 - z“ (11)
Using the s;-Lipschitz continuity of H” (., LA, ), we have
7 (A1, Asz, ., Ay2) = HP(Arza, Ao, oy At < (514 52+ 4 5) [l = 2| (12)
Using (11) and (12), we have
Zy — z” < AHX - H”(Alz,Azz, ...,Apz) — piul| + [1 + A(51 +5) + ...+ sp)] ”z —Zl. (13)
As f; is x;-expansive, then we have
|5 - £ 2 w2~ 2 = 0. (14)
Let n — oo, we have fi(2,) — fi(z). Using (11), (14) and let n — oo we get Z, — z and
%[x - HP(A1z, Aoz, ..., Apz) — pyn] - 0
Let n — oo and Using (13), we have ||z, — z|]| = Oi.e.
pr_{p N (u) — RH ( (u)
Only if part:
Suppose thatR """" I Rgpfv( ,Yu ey, p>0.Forany given (fl(x) f2(x), ..y fp (%), y) € Gr(N(fl,fz, ...,fp)),
we have y € NI ( f1 fz fp) and
HP(Arx, Agx, .., Apx) + py € [H(A1, Ay, .. Ap) + pN(fi, for o f)|(0).
Therefore x = RHP( """" [H’”(Alx Aorx, .. px) + py]. Letx, = Ripk};’i:fw)[Hp(Alx, Arx, ..., A,,x) + py]. Then,

we have

%[H”(Alx,Azx, s Apx) = H(Arxtn, Ag, .. Apt) + py] € Nu( frGen), o), s fi(in))-
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Lety, = %[H”(Alx,Azx, ...,Apx) — H”(Alxn,Azxn, ey Apxn) + py], now we evaluate

- y” - H%[W(Alx, AX, .., Apx) = HP (A1, Agit, .., Apn) + Py - y”

_ %”H?(Alx, Agy oy Apx) = HYArtn, A, oy Agiin)

< %(Sl +Sz+...+Sp)

Xy — xH (15)

As Rm() - R """" ) for given any u € Y, we have [[x, — x|| » 0. Letn — oo, equation (15) gives

Yn — Y. Therefore, N,, S, N.

Now, we prove the convergence of the generalized Yosida approximation mapping with the help of
graph convergence of generalized a;f;-H?(., ., ..., .)-accretive mapping without using the convergence of the
proximal-point mapping defined by (7).

Theorem 4.4. Let us consider the assumptions My and My hold good. For n = 0,1,2,..., Nyy N : YP — Y be
the generalized a;f;-HP(., ., ...)-accretive mappings with mappings (A1, Ay, ..., Ap) and (f1, fa, ..., fp) with ¥ a; >
Y.Bj, X fi> Y.y Foreachie€{1,2,..,p}, p > 3, assume that

(i) H?(., ., ...) is s;i-Lipschitz continuous with respect to A;;

(ii) f; is xi-expansive in the ith-argument.

Then, Ny —> N if and only if

G @ = ) (@), vxe Y, p >0,

where ] () = [1 R ](x) J) ()= 1 [1 R G) )] ().

.......

Proof. If part: Suppose that N, — N. For any given x € Y, let

_ B _ HP(,.
Zn = P, N( (x)/ z = 0, N( (x)
Then
1
_ HP () e,
z= Ip, N(.,.,...)( x) = P [l Rp N( ](x)
implies that
(x=pz) = RIS () = (HP(Av, A, ., Ay) + pN(f ) @
pz) = 0, N(yoyenr) 1,42, ..., p P 1'f2""/fp
that is,

HP(Al,Az, ...,Ap)(x - pz) + pN(fl,fz, ...,fp)(x - pz) =x

Thus, we have

% [x - H”(Al,Az, ...,Ap)(x - pz)] € N(f1,f2, ...,fp)(x - pz).

[fl(x = p2), 2(x = pz2), ..., fp(x = p2), % [x —HP (A1, Az, ..., Ap)(x — pz)]] € Gr(N(fl,fz, ...,fp)).
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By definition of Gr(N (f1, f2, ..., fp)), there exists a sequence {f1 (i), f2(iy), ..., fp(#lx), Ju} such that

Filin) = filx = p2), o01) = folx = p2), ooy foliln) = fp(x = p2),

7y — %[x — HP(Ay, Ag, .. Ap)(x = p2)| (16)
as n — oo. Since, i, € Ny(fi(iin), f2(i4), ..., fp(#in)), we have

HP(A1, Ag, ooy Ap)iin) + pij € [HP(A1, Ag,y e Ap) + pNu(fo, for oo f)| (1)

and so

i = [H7(A1, Ay s Ay) + N(fir for o )] [HP (AL, Ay Ayt + ]

i, = Rg’/pj\';;,}:fn“)[HP(Al,Az,...,A,,)ﬂn + pTn]
iy = [I- p]ﬁp/(\'}",’(':_)w_)][H”’(Al,Az, s Ay )iy + i

which shows that

%an = %H”(Al,Az, oy ATty + T = TN THP(A1, A,y Ay Vil + ] (17)
We get
a2 = k@
= I+ =2
0 L A 0 [ e Yo ] -
< I @ =1 [H Az, sty . Ayity) + 7| + H%H?(Al,Az, s AVl + G — %ﬁn -4
< ®1Hx — HP(AiZ, Aaily, ey Ayily) = i | + H%H”(ALAZ, s Ay )i + G = %x” + ”%u - %(x - pz)”

IA

((Dl - %) Hx — HP(Al,Az, ...,Ap)(ﬁn) — pia|| + % iy — (x — pz)”

< (<D1 - %) [ = (A1, A, oy A )0) + HP (A1, s, o A, ) (= p2)

~HP(A1, Ag, oy Ay)(x = p2) = pilal[ + % iy — (x — pz)”
< (cp1 - %) ”x ~ (A, Ag, ot Ay)(x = p2) — pi]| + % i, — (x — pz)“
+ (qal - %) ”HP(Al,Az, s Ay )(x = p2) = HP(Av, Ag, o Ay )i | (18)
Using the Lipschitz continuity of H(A1, Ay, ..., Ap), we have
[F7(A1, 4o, ., A ) = p2) = HP(As, Ao,y Ay )| < 5 [ = pz = 2] (19)
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where s1 + 8, + ... +5, = 5. It follows from (17) and (18) that

Zn — z” < (CDl - %) ”x - H’”(Al,Az,...,Ap)(x - pz) — Pl + [% + s(CD1 - %)] Uy, —x+ pz”. (20)
Since, f; is k;-expansive mapping, we have
|F0 - @] 2w -2 2 0. 1)

Since, fi(Z,) = fi(z) asn — oo. By (17), (21), we have ii, — (x — pz) and §, — %[x - H”(Al,Az, ...,Ap)(x - pz)]
ie.

i, — x + pz” -0, % Hx - H’”(Al,Az, ...,Ap)(x - pz) —piu||— O

as n — oo. From (21), we have ||z, — z|| = 0 as n — co. Hence

G

HP(.,.,...
P, Nul.r, >(x)_> (<)>(x)'

o, N(opee
Only if part' Suppose that

HP
](

pN( (x) ]pN( (x) VxeY, p>0.

For any given (fl(x), f2(2), e (%), y) € Gr(N(fl,fz, ...,fp>), we have y € N(fl,fz, ...,fp)(x)
W(Alx,Azx, ...,A,,x) +py € [HP<A1,A2, ---,Ap) + PN(fllfz, ---,fp)](x)

andsox = [ ]p Ny ][HP<A1x Asx, .. px) +py].
Let

Xn = [I ]pHp/(V( ][ ”(Alxn,Azxn,...,Apx”) +P]/].
Then,

%[H”(Alx,Azx, s Ap) = HP(Av, A, oot Apta) + py] € Nu i), o) oo fo)
Let

Yn = %[Hp(Am,Azx, ...,Apx) - HP(Alxn,Azxn, ...,Apxn) + P]/]-

It follows from (18) that

Yn — yH < H%[H”(Alx,Azx, ...,Apx) - H”(Alxn,Azxn, ...,Apxn) + py] - yH

= %”HP(ApC, Arx, ...,A,,x) - HP(Alxn,Azxn, ...,Apxn)

S
< —

< Xy — x”, where 1 + 5, + ... +5, = 5. (22)
Xn — XH H(I ]pHp,(V( )(Hp(z‘hx, Aox, ..., Apx) + py) (I ]pHp/(V( ) )(H”(Alx, Aox, ..., Apx) + py)H(ZB)
B H[(I v )) - (1 -1 )] [HP(Arx, Ao, ..., Apx) + py]” (24)

Since, ] ) ») for any u € Y, we know that [[x, — x|| - 0. Now (22) implies that

P(.,
pN( D IPN
Yo — Yy as n— ooandsoNn—>N
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Theorem 4.5. The convergence of the proximal-point mapping
R ) x) - R )(x) VxeY, p>0,
and the convergence of the generalized Yosida approximation operator

Hr(,.,
e @ = 1) ), Yae Y, p>0,

are equivalent if and only if the operator N, SN

Proof: Assume that
RHP(""&") )(x) - RHV( )(x) VxeY, p>0,

2, Nu(ore )N 7 70, Ny
We have
RI: ''''' @) = R o) (x) VxeY, p>0,
HP(., H(.,..

(1 i )(x) (-1 ).

1 HP (o 1 HP (o

p([ Rp ) ))(x) p(I R ))(x),

....... HP(,
:pN( _______ (x) ]pN( >(x) VYxeY p>0.

On similar way, we can show that

HP(.,.,
I @ = TG @), Vxe Y, p> 0,
implies that
HP () gy o THP (e
Rp, N )(x) - ]p N )(x) VxeY, p>0.

Now we construct the following consolidated illustration which shows that the mapping N is aip;-
HP(.,.,.,..)-accretive with mappings (A1, A, ..., Ay) and (f1, f2, ..., fp), N 5, N and ]P N( 5 ]ZIV/(V())
By using MATLAB programming, we presents some graphics for the convergence of generalized Yosida

approximation mapping.

Example 4.6. Let Y be 2-uniformly smooth Banach space Y = IR with the usual inner product. Let p is
even number and A;: R — R foreachie€{1,2,..,p},is given by

3
M) = As(0) = o= Apa() = 5 + 3

3
x
A1) = Ag(x) = .. = Ap(x) = 5,
such that the inequality xy + x> + y?> > 0 is satisfied for all x € R?.
Let fi: R — Rforeachie€ {1,2,..,p},is given by

() = f5(5) = e = fra(x) = 2

fo(x) = fa(x) = oo = fp(x) = f_;‘

Assume that H” : RX R X ... X R — R are defined by
—————

p times

H(Al(x),Az(x), ey A,,_l(x),Ap(x)) = A1(x) — Aa(x) + ... + Ap_1(x) — Ap(x),
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It can be easily shown that H” is 3-strongly accretive with A; for eachi € {1,3, ..., p — 1} and H? is 3-relaxed
accretive with A, for alli € {2,4, ..., p}.

Assume that N, N : RX R X ... X R —o R be the multi-valued mappings and defined by
———e

p times

N @), o), s 1 (), @) = (A1) = o) + o + fra(0) = f(0)) + %
N(AG, @), - fra1 (0, () = i) = @) + o fpaa (@) — fo(@).

It can be easily shown that N is 1-strongly accretive with f; for each i € {1,3,...,p — 1} and H is 1 -relaxed
accretive with f; foralli € (2,4, ..., p}.

One can easily verify the following for p = 1:
[H(A1, Ay, .., Ap) + pN(fi, for s fy) [R = R.

Now we will show that N, =R N, if for each ( f@), f2(x), ..., fp(x)), y) € Gr(N (fi, f2, s fp)), there exists a
sequence

((fl(xn)rfz(xn)/“vfp(xn))ryn) € Gr(Nn(fler/"'rfP)) such that fl(xn) - fl(x)rfz(xn) - fZ(x)/'-vfp(xn) -

fp(x), Yn — Yy asn — oo. For this, we consider

X, = (1 + 1)x,

n
Xn
fl(xn) = fS(xn) = = fp—l(xn) = Z/
5

fz(xn) = f4(xn) = = fp(xn) = Exnz n € N.

Since, lim,, x,, = lim,, (1 + %)x = x Thus, we have x, — x as n — co. Now

liﬁnfl(xn) - fi(x), liﬁnfg(xn) — fa(x), ....,lignf,,_l(x,,) - fra(x),
lirIIan(x”) - fa(x), lirIlnf4(xn) — fa(x), "“’h,r,nfp(x") = fp(x).

Since,
Yn = N(fl(xn)/fZ(xn), ...,fp(xn))
() = B0+ fa i)~ o)+ 5 = B[ = 2

Now we compute

- h Ex_n_5xn] 1_3[5_51]

1‘;5“3/”‘115“2[4 12 +n§_24 12
_(5_5_X)+(§_5_X)+ +(§_5_X)
4 12 4 12) 7 \4 12)°

p terms
@) = fo(x) + oo+ fr1(x) = fo(2).
N(x) =y.
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. ]HF’(.,.,...)

Therefore, y, — y as n — oo and hence, N, SN Next, we will show that ]p Mol VR

as
N, S, N. For p = 1, the proximal-point mappings are given by
1\3
RIS 00 = [HP(Ay Az, A) 4 Nt for o )] 00 =2 (1= )

’:”‘W S = [HP(A1, As, ... Ay) + pN(fi, for o f)|(0) = 200

and the generalized Yosida approximation are given by

1
1 1\3
HP(.,.,...) HP(.,., — |y — R
Jo, Ny ) = o [I R N )] () = [x Z(x nz) ]'

HP () 11 .. !
]p N ) = o [I Rp, Ny )] (x) [x 2x3]
1
We evaluate ”]Hﬂ(”"'”) ) ]pH;/(V( H “ [x 2 X — %)3] - [x - Zx%]
H(, H(, ) H(,
“]pN,, ]pN( ...... )||—>0asn—>oo 1e]pN( )—>]pN( asN SN

5. Uniqueness and existence of solutions of Yosida inclusion problem:

Let Y be a g-uniformly smooth Banach space. Foreachi € {1,2,..,p}, p >3, H : Y? - Y, A, fi: Y =Y
be single-valued mappings. Let N : Y? — Y be a multi-valued mapping such that NV be a generalized
a;p;-HP(., ., ..., .)-accretive mapping. Then, Yosida inclusion problem is to find x € Y such that

®c ] i) W)+ N(AiR), L&), @) Yx €Y, p >0, (25)

X = RIP_I;(/( """ [HV(Al,A2, Ap)(x) = p]’J N )(x)] where constant p > 0. (26)

.......

Algorithm 5.2. For any given x} € Y and obtain {x}}, by iterative scheme

xl = RHV( """" [Hp(Al,Azl p)(xn) - P]pN ( (xn)] 27)

n+1 pN(

.......

where n=0,1,2,... and constant p > 0.

Theorem 5.3. Let us consider the problem (25) with assumption M1-My hold good and N, N : YP — Y be
the generalized wa;f;-HY(.,.,...)-accretive mappings with mappings (A1, Az, ..., Ap) and (f1, f2, ..., fp) and Y. a; >
Y.Bj, X > Y.y Foreachie{1,2,..,p}, let H(,.,...) is s;-Lipschitz continuous with A;. Assume that there exists
non-negative constant p > 0 such that

Y=Y g0 a-Y )21 -a ai= Y B +e] "+ [1-gos v cpran] s 28)
D=2 opirp (= Y72 [sr+ o2t sy pu] @)
Then,

(1) the general nonlinear operator equation (25) based on generalized a;B;-HF(., ., ...)-accretivity framework has a
unique solution x' in'Y;

(2) iterative sequences {x} developed through Algorithm 5.2 is converges strongly to the solution x* of problem (25).
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(d) The convergence of Ip, N o N

Proof. Let P: Y — Y be given as

P(x') = R?j jv()) (H”(Alxl,Ale, o Apxt) = p]fi )(V(.,_,).__)(xl)), Valey.

P(y) = R (m(A1y1,A2y1, o Agyh) = plﬁpx‘(’,‘,‘.‘,)m>(yl)),v Jev.
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From Proposition 2.3 and using the Lipschitz continuity of proximal-point mapping, we have
[paty - || = RS (H”(Alxl,Ale, s A = p] ) (xl))
RN (H”(AlylfAzylf Aoy =PI |
<A ’ (W(Alxl,Ale, o Apxh) = p]f /(V( ....... )(xl))

- (H’”(Alyl,Azyl, s Ay =PI i) )) ”

= 4 Hp(Al,Az,...,A,,)(xl)—H”(A1,Az A~ p(]P N =T ))H
< A4, As, ., A) ~ FP (AL, As, o, ) (2= )|
T ol Jf”x( S| (30)

By using the s;-Lipschitz continuity of H"(, ..., A; ..,.), we have
s, 4o, .., 406 = HP (A3, Ao, 4|
< ”H”(Alxl,Ale, Ay = HP(Ayy!, Agx, ...,Apxl)H

H|HP ALy, Ao, ., Aty = P (A, Aoy, ., A

+||H?(A1y1,Azyl, o Apx?) = HP(Ary', Aoy, ---pryl)H

< (51 +S + ..+ sp)”x1 — y1||.

(31)

n-1" X ||r

s, o, . A - B (AL As, .y AL )| <5 1y =

Since, H is symmetric accretive with mappings A, Az, s Ap and s;-Lipschitz continuous with A;, using the
Lemma 1.5, we have

Hx1 —y = (HP (AL, Ay, o AR — HP (A1, A, ...,Ap)(yl))Hq

<[kt =]l - g(H (A1, Ag, ..., Ap)() = HP (A1, Ay, . Ap) (YY), 2t = ')
+c‘7”HF’(A1,A2, AR - HY (A, Ay, ...,Ap)(yl)“q

d -y L= Epll -

Pyt At .. 48 - YAy Aoy, . A

A DRI B |

| 4 Ik
+(51+52+...+Sp) X -y

< [1 - q(z a; — 2‘87) + cqsq]”x1 - y1||q.

IN

IA

Thus, we can write

”xl — ! = (HP (A1, Ay, ., A () = HP (A1, Ag, o Ap) )y )H 1-g Z“l - Zﬁ] +Cqsq]”x —y H
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which implies that
[ = ot = (s, Ao, A - A Ao, A < [1-a(Y @i Y ) + cqsq]wal - @2

Since, I """" ) ) 18 ¢1-Lipschitz continuous and ®,-strong accretive, and using the Lemma 1.5, we have

.......

+p"cq||fp, ﬁ(.;:;...xxl) - IS“M ) “
< ”xl _ y1||q _ quI’z”Xl _y ” + pchHX _ y1“'1
< [1 —qpD, + p"cqul]Hxl - yluq.

Thus, we can write

[ -y _p(]p N6 = TR ))” [1 -0+ cypian ]|
which implies that
||x -y - p(]p o )( ) - ];I”}(\-;-(,..- K¢ )) H < [l —qpDd;y + cqpﬂqpl]l/q”xl _ ]/1H- (33)

Using (30)-(33) in (31), we have
IP(x!) = P(yMIl = Yl =y, (34)

Y= A[[l -q (Z a; — Zﬁ]) + cqsq]l/q + [1 —qpdy + cqpqqh]l/q].

From condition (28), we have 0 < Y < 1, so (34) implies that

- HP(,,.,...
P=r" )(Hv(Al,Az,...,Ap)—PJP,M )>)

..............

is a contraction mapping and has a unique fixed point x! in Y. Hence x! is a unique solution of (25).
Now we prove that x} convergence strongly to x!. In fact, it follows from Theorem 5.1 and Algorithm

5.2 that

x xl” _ HRIF%( A Ay, )(xn)—p]p e
~RIG) [HP (A, Ag, . A = ] 6|
s%ﬂr[m%ﬂz A = ol )]

—RIG) [HP (A, As, ey Ap)) = I 70 (60)
+HRH’7( [H? (A1, Ay, ... p)(xn)—pfgp,(\'}"('" )(xn)]

—RI:};\(/( [W(A1/A2/ Ap)(a') _p]p N )(xl)]”

IA

[A HH’”(Al,Az, Ap)(x ") - P]p Not )(x}l)]

.......

~[Hr A, Az, A = PTG 6]+ K (35)

.......
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where

[H (A, Az Ap)d) = pT1L ) D)

.......

—RIG) [H Ay, A, . )(xn)—p]pg """ (3

..............

.......

Using the s;-Lipschitz continuity of H?(., ., ., ...) with A; and the generalized Yosida approximation map-
ping, we get

[ cas, 4o, .., 460 - (AL As, . A6 = [T ) - Jp el
< [Hreas, Az, 460 = HP (A, Ag, o A + ol ) = T )|
< [P, Ao, ., Apxd) = HP(Anx!, Ag, o, Aph||+ p|[ 1) ) = 1 et
+ ||H7’ Arxl, Agxl, . Ay — HP(Agx!, Agxt, ., Ayl
(36)
+ ||H7’(A1x1,A2x1, s Al — HP(Agx!, Aped, ...,Apxl)“
<s x,l1 —x1|| + 5 x,li —xlu +..ts x1 —xlu
o e = T e+ el n>—f’”g """ el
X - x ||++p1|1p VAR CD B ARG | RS | NN G B MVARACD
SSH || +P||fp~,x S0y = ) (o +p||pr' """ () =76 )|
Sstn—x ||+pln+p<1>1 xh—x ”
(37)

where [,, = ||]55\(/ ( n)_]f;\(/( ....... )(xl
Using (36) in (35), we get

1 1 _—
xn+l —-X ||

x,li - x1|| + Aply,
where @; = %. By Theorem 4.3, we have

RIG) [HP (A, Ay, .\ Ap)(xy) =

HF(.,.,...)
pN( P N ( _______ )(xn)] - RP,N(V,_,"_)[HP(AL AZ/ p)( n) P N ( )(xn)]

.......

Thus we have

.......

HP () oady .y 7H (oo
]P N( VVVVVVV )(xn) . ]P N( )(x )

Asn — o0, k,, 1, » co. Thus we have

x! —x1H = Y, (

1 1
n+1 Xp =X H + Oy,

where ©, =k, + Apl, and Y(®;) = A(s + pP;). From (29), we have 0 < Y(P;) <1and ®, — O as k,, I, = 0
(n — o). From Lemma 1.6, we have [|x! | —x'|| - 0.
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Remark 5.4. Let p be an even number. Let us consider the functional f : Y — IR on Y, then, vector % such
that

f) - f@) 2 (% y—z), Yy ey, (38)

where f(y) is finite for each y € Y, is called the subgradient of f at y. The collections of all such subgradients
of f at y holding (38) is called the subdifferential df(y) of f at y. Let 8(., - fis ) : Y? — Y be a multi-valued
mapping. We consider the Yosida inclusion problem to find x € Y such that

0€ 1) + 3 fu, for o fi) ). -

Then, it turns out that [H”(., . ...)+&(f1,f2, .y fp)] is L-strongly accretive, where L = [Z ai+ Y, fi— (Z Bi+ % 77]-)]
> 0, if HP is a1foazfy...ap-1fp-symmetric accretive with Ay, Ay, ..., Ay, f1, f2,..., fp : Y — Y be the locally
Lipschitz functional on Y, and 8( fis for s fp) be [i172f1374...flp-17p-symmetric accretive with fi, f2, ..., fp,

equivalently we can state that 07(..., fis ) is ;;-H*(., ., ...)-accretive. Now all the assumption of Theorem 5.3
hold, and one can easily find the solution of problem (39) by using Theorem 5.3.

6. Conclusion:

In this manuscript, we focussed on generalized Yosida approximation mappings and Yosida inclusions
in Banach spaces. To approximate the solutions to such kinds of inclusion problems, we considered a gen-
eralized a;f j—Hp(., ., ...)-accretive mapping, which is the generalized form of generalized af-H(...)-accretive
mapping [18]. We proved the graph convergence of generalized «;f;-H(., ., ...)-accretive mappings and
generalized Yosida approximation mappings. As an application part of generalized a;;-H*(., ., ...)-accretive
mappings and generalized Yosida approximation mappings, we designed an iterative algorithm and proved
that the iterative sequences generated from the underline algorithm strongly converge to the solution of
Yosida inclusion problem in g-uniformly smooth Banach spaces. In future, the results of this manuscript
can be continued to the system of Yosida inclusions in the setting of Banach spaces.

Acknowledgment: The authors would like to thank the referees for their valuable comments and sugges-
tions, which improved the original version of the manuscript.
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