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Abstract. In virtue of the conception of the tempered fractional integrals, put forward by Sabzikar et al. in
the published article [J. Comput. Phys., 293: 14-28, 2015], we present a fractional integral identity together
with multi-parameter. Based on it, we develop certain parameterized integral inequalities in association

with differentiable mappings. Furthermore, we give two examples to verify the correctness of the derived
findings.

1. Introduction

The topic of the integral inequalities taking advantage of function convexity has been considered as an
emerging subject in the last decades. The researchers are attempting to discover new generalizations and
extensions of convex functions, and as a consequence new outcomes are being enriching to the theory of
inequalities. Recently, a large number of researchers have committed themselves to exploring the properties
as well as inequalities in accordance with convexity in various orientations, please see the published articles
[1, 6,10, 25, 26, 40] as well as the bibliographies quoted therein. Among them, the Hermite-Hadamard’s
(HH) integral inequality, one of the most distinguished integral inequalities giving thought to convexity, is
employed widely in plenty of other disciplines of applied mathematics. Let us retrospect it as below:

Suppose that p : U € R — R, defined on the real-valued interval U, is a convex mapping, where
71, T2 € U with 71 < 75. The successive inequality is named as the HH integral inequality:

T1 + T2 1 T2 P(Tl) + p(TZ)
‘O( 2 )S T2—T1£ p(h)dhsf'

1

1)

Due to the fact that the inequality (1) plays a critical role in convex analysis, it obtained numerous
researchers’ attention. There have been a mass of discussions in relation with the HH-type inequalities for
other families of convex mappings. For instance, one could refer to Ref. [29] for convex mappings, to Ref.
[38] for s-convex mappings, to Ref. [21] for h-convex mappings, to Ref. [42] for h-preinvex mappings, to
Ref. [51] for generalized harmonically convex mappings, to Ref. [2] for N-quasiconvex mappings, to [52]
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for s-type preinvex convex mappings, and to Ref. [14] for exponential-type convex functions and so on. For
more findings in connection with such types of inequalities, the reader may consult Refs. [3,17,20, 30, 39, 41]
and the bibliographies quoted therein.

In order to meet the need of the later exploration, let us look back some indispensable definitions as
below.

Definition 1.1. [53] Considering the mapping n : U x U — R", if for each ©1, 7, € U as well as & € [0,1], T1 +
En(to, 11) € U, the set U C R" is named as an invex set in relation with the mapping 1.

Definition 1.2. [53] Given that U C R" is an invex set in association with n : U X U — R". The mapping p
defined on the invex set U C R is called to be a preinvex mapping regarding the mapping n, if for each 11,7, € U
as well as & € [0, 1] one gains that

p (11 +&n(ta, 11)) < (1 = E)p(T1) + Ep(T2).

If we consider taking the mapping n(t2,71) = 72 — 71, then the preinvex mapping transfers to the
classically convex mapping.

Definition 1.3. [24] The set U C R" is called w-invex with regard to the mapping n : U X U x (0,1] —» R”"
regarding certain fixed w € (0,1] if w1 + En(to, T1, w) € U holds true for every 11, T2 € U as well as & € [0,1].

Definition 1.4. [56] Assume that U C R" is an w-invex set pertaining to n : U X U x (0,1] — R". For each
11, T2 € U as well as w € (0, 1], the ny-path Py, ., linking the points wt, with t3 = w1 + 1(72, T1, W) is defined as

Pepr, = {010 = w1 + En(ra, 11, ), & € [0,1]).

Definition 1.5. [43] For any real numbers a > 0 and A, u > 0, the u-incomplete Gamma function is defined by:

A
yula, A) = f he et dh,
0

Apparently, if we consider taking p = 1, then the u-incomplete Gamma function transfers to the
incomplete Gamma function [19]:

A
y(a, A) = f he e " dh, a > 0.
0
Definition 1.6. [18] It is assumed that the mapping n : U X U x (0,1] — R, where U C R be an open w-invex

subset with some fixed w € (0,1]. For any real numbers a > 0 along with A, > 0, the (1, n)-incomplete Gamma
function is defined by:

A
qu(z,u,w)(a/ /\) — f ha—le—yq(z,u,w)hdh.
0

Definition 1.7. [36] Given that [u,z] is a real-valued interval and u > 0,a > 0. For a mapping p € L'([u, z]), the
left- as well as right-sided Riemann—Liouville (RL) fractional integrals, correspondingly are defined as:

1 X
500 = s [ =t x>,
and
TLp(x) = ﬁ f (h—x)*"p(h)dh, x < z,

in which the Gamma function is defined as T'(a) = j(;m e"he=1dh, as well as TP, p(x) = T2 p(x) = p(x).
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By virtue of the RL-fractional integrals above, Sarikaya et al. generalized and extended the classical HH
integral inequality to the form of fractional integrals as below.

Theorem 1.8. [49] Suppose that p : [u,z] — R is a mapping together with u < z as well as p € L'([u,z]). If the
mapping p is convex defined on [u, z] and o > 0, then one acquires the undermentioned fractional integral inequalities

p(u) + p(z)
_—

p(u+z) F(a+1) [ o)

@

2 — 2(2 p(Z + j p(u):l

As a quite powerful approach, the fractional calculus is widely acknowledged to be a crucial cornerstone
of mathematics and applied science. Many academics have paid attention to a series of researches by virtue
of fractional calculus. For example, taking advantage of conformable fractional integrals, Khan et al. [35]
deduced the left parts of the HH-type integral inequalities. And they applied the derived outcomes to
special means as well as midpoint formula as applications. Iscan et al. [31] inferred certain HH-type as
well as Bullen-type integral inequalities with relation to Lipschitzian mappings in terms of conformable
fractional integrals. The outcomes acquired in the work extended and generalized the original study. And
in the sense of RL-type fractional integrals, Set et al. [50] and Nasir et al. [44] developed the Simpson-type
integral inequalities. They illustrated the relationship between the outcomes obtained in their study and
previous findings in special cases. In the sense of multiplicative differentiable functions, Ali et al. [4]
obtained two identities to achieve Ostrowski- and Simpson-type multiplicative integral inequalities, and
they gave detail applications of their main outcomes. Baleanu et al. [8] explored the approximations on
trapezoidal type integral inequalities regarding the classical integrals as well as the RL-fractional integral
operators. And they constructed inequalities involving moments in correlation with a continuous variable
by applying the obtained inequalities. Also by means of the AB-fractional integral operators, Butt et al. [16]
investigated integral inequalities of various Hadamard types with the help of a general integral identity. For
more interesting findings with relation to the fractional integrals by different approaches, we recommend
the published literatures [7, 9, 13, 15, 22, 27, 32] for reference. Also, we mentioned some papers devoted
to parameterized inequalities, please see the published papers [11, 12, 33, 34, 55] and the bibliographies
quoted therein.

Recently, Sabzikar et al. [48] introduced the notion of the tempered fractional integrals.

Definition 1.9. Assume that [u, z] is a real-valued interval and p > 0, > 0. For a mapping p € L*([u, z]), the left-
as well as right-sided tempered fractional integral operators, respectively, are defined as:

(a o)

PO = Ta )f (x =l le Ppydh, x> u,

and
T p(x) = ﬁ f (h = )" te H D p(ydh, x < .
X

If one attempts to take u = 0, then the tempered fractional integrals turns to the RL-fractional integrals.

For recent relevant development pertaining to the tempered fractional integrals, please see the published
articles [28, 43, 46] and the literatures cited therein.

Enlightened by the above-mentioned works, particularly the outcomes displayed in the papers [18, 43],
the current paper is mainly committed to investigating some HH-type integral inequalities in association
with the established multi-parameterized integral identity, which involves with the tempered fractional
integral operators. Given this goal, we analyze the coming two cases: (i) the derivative of the disquisitive
function is generalized (s, w)-type preinvex; (ii) the derivative of the disquisitive function is bounded. The
obtained findings here can be transfered to the RL-fractional integral inequalities for = 0 and the Riemann
integral inequalities for a = 1 along with u = 0.
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2. Main Results

Throughout this study, we assume that U C R is an open w-invex set regarding 7 : U x U x (0,1] - R
for certain fixed w € (0,1], u, z € U together with wu < wu + 1(z, u, w), as well as p : U — R is differentiable
satisfying that p’ is integrable on n,-path Py, : 0 = wtq + An(12, 11, w) for any 71, 72 € [u, z].

2.1. A new definition and a lemma

Now, we come up with the conception of the generalized (s, w)-type preinvex mappings, which is the
extension of preinvex functions, s-type convex functions as well as convex functions.

Definition 2.1. It is assumed that U C R" is an open w-invex set with regard ton : U X U x (0,1] — R"*. The
mapping p : U — R is named as the generalized (s, w)-type preinvex functions if the subsequent inequality

p(wrs + En(ra, 11, w)) < w(1 = sE)p(t1) + [1 = s(1 = E)p(12)

is available for all T1,t, € U, certain fixed s,w € (0,1] and & € [0, 1].

Remark 2.2. Certain special cases concerning with Def. 2.1 are stated below.

(i) If the mapping n(t2, 11, w) degenerates to 1(to, T1) along with w = 1, then we attain the conception of the s-type
preinvex functions explored by Tariq et al. in [52]. Furthermore, if we take s = 1, then we attain the preinvex
functions given by Weir and Mond in [53].

(ii) If we consider taking 1n(t2, 11, w) = T2 — Tyw together with w = 1, then we attain the conception of the s-type
convex functions presented by Rashid et al. in [47]. Furthermore, if we consider taking s = 1, then we have the
conception of the convex mappings.

We next give subsequent lemma, which is of importance in deducing the parameterized integral in-
equalities.

Lemma 2.3. The undermentioned tempered fractional integral equality along with0 < A,0 <1,a > 0, u > 0 holds
true:

Tp (a/ [J/ A/ 6/ T]/ w)

A
= 1,0 [ (O0itonsn @) = Pt A = D)o o + 1,0 ©)
0

1
+ f (V;u](z,u,w) (D{,i’ +A- 1) - nyr;(z,u,w)(a/ /\))P/(wu + tT](Z, u, ZU))CU’],
1-A

where
7'[) (a/ H/ A/ 6/ T’/ w)
= )/M,,(Z,u,w)(a, /\)[Qp(wu + An(z, u, w)) +(1- Q)p(wu)]

+ YV unGuw) (@, /\)[Gp(wu + (1 -Mn(z,u, w)) +(1- G)p(wu +1(z,u, w))]

I'(a)
0z, u,w)

[ j;f:il) p(wu + An(z,u, w)) +9 ((;M’ 21](z,u,w))*p<wu +(1-Mn(z,u, w))]

Proof. Integrating by part and changing variable of definite integral yield that
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A
11 = f (nyn(z,u,w)(a/ /\) - yyr](z,u,w)(a/ A= t))P’(wu + fT](Z, u, w))dt
0

= m[@)/un(z,u,w)(a, A) = Vunzumw)(a, A = t))p(wu +H(z,u, w))'g

- j; A(A — 1A tempnGuA-) p(wu Ttz u, w)) dt]
= mwmw)(a, /\)[Gp(wu + An(z, u,w)) + (1 - G)p(wu)]

- m f::umn(z,u,w) (wu T A ) — v)a_le‘“(u”” in (Z’“’w)_”)p(u)dv
- mlﬁm(z,u,w)(a, /\)((1 - 0)p(wu) + Hp(wu + An(z,u, w)))

- %5 o) o(wu + An(z, u,w)).

Similarly, we obtain that

1
= [ (a4 2= 1) = O D) o + e, )l
1-—

1

— 1
= T](Z, ) [(Vyr](z,u,w)(a,t +A-1)- nyn(z,l,,w)(a, )\))p(wu + tn(z, u, w))'

1-A
1
- (t+ A = 1)* Lem#nGEuw)t+A=1) p(wu +tn(z,u, w))dt]

1-A

= —q(z,i, ) Y un(zu,w) (@, A)[Gp(wu + (1 -z u, w)) +(1- Q)p(wu +1(z,u, w))]

1 wi+1)(z,u,w) -1 —ulo- 1-Mn(z,u,w)
- f [v - (wu +(1-A)n(z, u,w))]a e H(v (wu+ L ))p(u)dv
1 (Zl u, ZU) wu+(1-A)n(z,u,w)

- T](Z,}/l, w) y“n(z’“’w)(a’/\)[ep(w” +(1=Mnzu, w)) +(1- G)p(wu +1(z,u, w))]

_T@ sew
Nz, u, w) ™ @) P

(wu +(1-MN)n(zu, w)).

Adding I +I; and then multiplying the resulting by the factor 1(z, #, w), we can acquire the desired equality.
This accomplishes the proof.

Corollary 2.4. If one attempts to take u = 0 and n(z, u, w) = z — wu together with w = 1 in Lemma 2.3, then the
equality (3) transfers to

A0p((1 = M+ Az) + (1 - O)p)| + 1*[Op(Au + (1 = V)z) + (1 - 0)p(2)]
IMa+1)
CE-we

A 1
=(z- u)[ fo (0A% = (A = %)p'((1 - tyu + tz)dt + fl

-A

T p((1 = A+ Az) + T oA+ (1 - A)z)]
((£+ A =1)* = 022)/((1 = B+ tz)dt].

Remark 2.5. From Corollary 2.4, one could see that the next identities are correct clearly:
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(1) If we consider taking A =1 as well as 0 = 1, then we gain that

pw) +p(z) T(a+1) [
2 2(z —u)

which is given by Sarikaya et al. in [49]. In particular, if we consider taking o = 1, then we get that

pu )+P(Z) f o(t)dt =

which is demonstrated by Dmgomzr and Agarwal in [23].
(2) If we consider taking A = 1 as well as O = 1, then we obtain that

srl5)- a5 el )

1
“ 0(z) + T2 p(u)] =Z > “ fo [ — (1 - ' ((1 - by + t2)dt,

1 (2t = 1)p'((1 - yu + tz)dt,
0

=(z- u){ foé [(%)a - (% - t)a]p’<(1 — Bu + tz)dt + fl [(t - %)a - (%)a]p'((l — u+ tz)dt}.

1
2

Particularly, if we attempt to take o = 1, then we get that

P(u ; Z) - E - fuz p(t)dt = (z - u)[ fo% tp'((1 - byu + tz)dt + f(t ~Dp/((1 -ty + tz)dt],

which is given by Kirmaci et al in [37].
(3) If we consider taking A = } as well as 6 =

1

L
zla[P(u);rp(z)er(un)] Ez(a_;)la[ (u+z) g(u+z)]

(a

-c-of [ B3 -G-

Particularly, if we consider taking a =1, then we get that

% [p(u) ; P@ | p(u +Z f p(Hdt

=(z— u)[foé (t - %)p'((l — B + tz)dt + f (t - Z)p'((l —Pu+ tz)dt],

which is established by Qi et al. in [45].
(4) If we attempt to take A = % and 0 = 3, then we get that

g .120( [p(u) + 4p(“T+Z) ¥ p(z)] _ Z”‘_;)la) 5+p(u + z) b e (u ;r z)]

then we achieve that

4924

(-t +tz dt+f [( ) ( ) ]p'((l —t)u+tz)dt}.

=(z- u){ foé [g(%)a - (% - t)a]p’((l — B + tz)dt + f; [(t - %)a - g(%)a]p'((l — )+ tz)dt}.

In particular, if we consider taking o = 1, then we obtain that

[ (u)+4p( )+pZ) ——f p(t)dt
:(z—u)[fz(t—%) ((1—t)u+tz)dt+f
0 1

which is provided by Alomari et al. in [5].

1

(t - g)p’((l —Hu+ tz)dt],
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2.2. |p’| and |p’|1 are generalized (s, w)-type preinvex

Considering the mappings whose the absolute values of the first-order derivative are the generalized
(s, w)-type preinvexity, we are capable of establishing certain tempered fractional integral inequalities with
regard to such class of mapping.

Theorem 2.6. If |p’| is a generalized (s, w)-type preinvex mapping along with certain fixed s,w € (0,1], then the
following inequality for tempered fractional integral operators with0 < A,0 <1, a > 0 and p > 0 holds:

Tt 11,,0;m,0)| < Gz, 1, 0)(2 = 5)(wlp! @) + Ip' @)1, @
in which
A
o1 = f |9Vyr](z,u,w)(0fr A) - qu(z,u,w)(a/ A - t)|dt-
0
Proof. In terms of Lemma 2.3 as well as the generalized (s, w)-type preinvexity of |p’|, one deduces that

“Tp((x, u, A, 06;1, w)’

A
<1z, u, w)[ f )ny,,(z,u,w)(oz, A) = Vuneuw) (@, A = p’(wu + tn(z, u, w))‘ dt
0

+ j; ; |7/wz(z,u,w) (a,t+A=1) = 0yuneuwe, /\)) 'p'(wu +tn(z,u, w))| dt]
<z, w)[ fo A 107wtz A) = Vim0, A = B[ (1 = st)lp’ @)l + [1 = s(1 = Hllp’ (2)I|dt
5
+ fl ; |V unuwy (@t + A = 1) = 0w, D|[w(d = sHlp’ @) +[1 - s(1 - Hlp’ @) dt] ()
=G, w)[ j; A |0V i) (@ A) = Vinuw (@, A = B|[eo(d = st)lp’ @)l + [1 = s = Hlip’ (2)I|dt

A
+ fo it @A = ) = 0@, Dt =1 = Dllp' Gl + (1 = splp’ @]

A
= 1z, 1,w)(2 - 5)(lwp’ (w)] + |’ (2)]) f |67 w1z (@ A) = Vi@, A = BdE.
0

As a consequence, the proof of Theorem 2.6 is finished.

Corollary 2.7. If we consider taking i = 0 as well as 1(z, u, w) = z — wu alone with w = 1 in Theorem 2.6, then we
derive that

A%[0p((1 = Ayu + Az) + (1 - O)p(w)]

+ /\“[Qp(/\u + (1= A)z) + (1 - 0)p()]

F(oz +1)
—u)”

<(z-u)2- s>(|p’<u>| +lp'(2)])QA, 6, ),

p((1 = M+ Az) + T p(Au + (1 - A)z)]

where

1 200 anl
_ya+l(_ = -
QA,0,a)=A (oc+1 6+a+19 )
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Remark 2.8. From Corollary 2.7, we see that the next inequalities are correct clearly:
(1) If we attempt to take A = % as well as 6 = 0, then we achieve that

‘P(H);P(Z)_l("z(a_z)?[ 3+p(u+z) LT (u+z)]

(2= w2 =3)(|p' ()] +]0'@)).

<1
(a + 1)2a+1

In particular, if we take « = 1 = s, then we get that

() + p(z) 1 (z -
‘Pu p( _z—uf S| < ( )

2
which is the same result established by Dragomir and Agarwal in [23, Theorem 2.2].

(2) If we consider taking A = } and 0 = 1, then we deduce that

i) ol 3+p(””)+:f“ o5
(z—w)@-s)(|p’ ).

In particular, if we attempt to take o« = 1 = s, then we get that

o(152)- 24 [ oo < S22

This is the same result given in [37, Theorem 2.2].

a
P —
(a + 1)20+1

()| +

p'a))

(3) If we attempt to take A = 1 and O = 3, then we obtain that

2la[P(u);wO(:/:)er(u;rz)]_ga_z)la)[ 3+p(u+z)+jz{{ ( +z)]
)

1 1 2 (1)1 (1
a+1 2 a+1\2

In particular, if we consider taking a = 1 = s, then we gain that

‘%[P(u);rp(z) N p(u;‘Z)] _ Ziu f: o

which is the same result provzded by Xi and Qi in [54, Corollary 3.4].
(4) If we attempt to take A = 1 and O = %, then we infer that

o 52) 0] - B D o) 57
).

1 2 2a [2\F
< _ _ < = ’
(z-u )2a+1 [0{+1 3+a+1(3) ](

S@-wQ2-s)57

2a+1

)
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In particular, if we take @ = 1 = s, then we derive that

< 5(z — u)(
72

alow +ao(*37) e - = f plt)dt o]+l

This is the same result presented in [5, Corollary 1].

Theorem 2.9. For q > 1 along with g™ + p~' =1, if |p’|9 belongs to the generalized (s, w)-preinvexity together with
certain fixed s, w € (0, 1], then the following inequality in correlation with tempered fractional integral operators with
0<A,0<1,a>0andu >0 holds:

‘Tp(a, w A, 6;m, w)|

<lnte w)‘{Lf [w(A = S 42)ipr ot + (1= s+ S A2)p )| @)

+ L (A= 52+ S22t + (2 - §A2)|p'(z)|q]q},
where

A
-Ll = f |9)/yq(z,u,w)(6¥, /\) - yw(z,u,w)(oc, A— t)|pdf,
0

and

1
-£2 = f |7/w](z,u,w)(0l,t +A— 1) - 9V#1](Z,u,w)(0(, A)'pdt
1-A

Proof. Making use of Lemma 2.3 as well as the Holder’s inequality, it finds out that

|TP(0(/ H/ A/ 6/ n/ w)|
A
< ’n(zl u, w)‘[j; |67/yr](z,u,w) (ar A) - ypr[(z,u,w)(ar A= t)| P’(w” + tT](Z/ u, w))'dt
1
+ ﬁ 3 |V;u](z,u,w) (a,t+A=1) = OVupzuw)(a, A) p’(wu +tn(z, u, w))|dt] ®)

1
q

A 1A
< ’TT(Z/ u, w)‘ ’QVyn(zfurw)(“r A) = VunGuw)(, A = t)|pdt '
0 0

1 % 1
+ (f |)/pr1(z,u,w) (art +A- 1) - QYyi](z,u,w)(a/ /\))pdt) (f
1-A 1-A

Due to the generalized (s, w)-type preinvexity of |p’|7, one acquires that

r

p'(wu +t1(z, u, w))‘th)

p’(wu +tn(z,u, w))‘th);}.

A
p’(wu + tn(z, u, w))rdt < I} {w(l —shlp’ )7 +[1-s(1 - t)]|p’(z)|‘7}dt
= w(t - %Az)lp'(u)lq +(A-sh+ %/\2)|p’(2)|‘7,
and
q 1
¢/ (wu + tn(z,u, w))' dt < f1 . {w(@ = st)lp’ @)l + [1 - s(1 - £)]|p’ (2)17)dt

=w(A-sA+ %/\Z)Ip’(u)l”’ +(A- %/\z)lp’(z)l".

1
I

Applying (9) and (10) to (8), we deduce the desired result. This accomplishes the proof.

(10)
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Corollary 2.10. If we attempt to take p = 0 as well as 1(z, u, w) = z — wu together with w = 1 in Theorem 2.9, then
the inequality (7) transfers to

A20p((1 = M+ Az) + (1 - 0)p(u)

+ A% 0p(Au + (1= N)z) + (1 - 0)p(2)]

Ia+1)
S (z-uy

8 p((1 = A+ Az) + T2 p(Aw + (1 - )\)z)]

1
q

)

Remark 2.11. In terms of Corollary 2.10, we see that the next inequalities are correct clearly:
(1) If we attempt to take A = 1 as well as 6 = 1, then we can gain that

<(z- u){( fOA oA — (A - £yt E[(/\ - %Az)lp’(u)lq +(A-s1+ %Az)lp’(z)lq

T

1 1
+ (fH |t +2-1)% - 9)\a|ﬂdt)” [(/\ —sA+ %/\2)|p’(u)|q +(2- §A2)|p'(z)|‘7]

pn) +p()  T(+1)
2 2(z — u)*

|72 + 7200

<

— 1 1 s
z - u{(fo |1 -(1- t)‘¥|pdl’>p[(1 - %)|p'(u)|q + (1 _ %)lp/(z)lq]q
1 1 f
+ (jo‘ |ta — 1|pdt)p[(] — §)|p'(u)|q + (1 _ %)lpf(z)w]ﬂ}

1

<= 1= ) - Dheeor (- Hpan]

In particular, if we take @ = 1 = s, then we obtain that

pw)+pz 1 (7
‘ 5 —Z_ufu p(t)dt

1
q

p
p+1

) (1@l + 3l

< (z—u)(

(2) If we consider taking A = } and 0 = 1, then we achieve that

el e G e R |

sconf 1G9
+«£w0_9a_GYp V%—%Wﬂmw+é—§gwcmr}
s@_mbﬁ;(QWHF“G‘éﬁVWW+G—§ﬁﬂ@ﬂé

+“%—%WﬂMW+@—%9W&WT}

[ - o)+ (5 - Sshrer|
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In particular, if we attempt to take @ = 1 = s, then we derive that
u+z 1 *
‘P( 2 )_z—uj; plt)dt
1 1
Z_”Lp(g ) + Lo q)ﬁ
< (P+1) [4lp @l + 710" @)l

(g + )’ |

(3) If we consider taking A = } as well as 6 = 1, then one deduces that

%[P(u) ;r p(2) . p(u ;— z)] _ ga_z)la)[ ,iﬂp(u +z) LT (u + z)]
<c-of( [|3G) - G- ) |3 - Sopwrcam « (3 - 2]
(=3 - GG G - 3o + G- gohwror] |

In particular, if we attempt to take o« = 1 = s, then we get that

‘%[P(u);rp(z) N p(u;—Z)] - i : fuz o

z—uf 1 ' 3, 1, g
<2 (ﬁ) [(;ﬂp Wl + 710G

(g + )’ |

(4) If we consider taking A = § as well as 6 = 3, then we can get that
1 u+ IFa+1)[,, (u+z . (U+z

sl ) o] Gl e 7ol )

12y e (1 11 1 ]
< (- u){( fo A -G V]G - golerr+ (5 - S|
1 a a ; i
(S =2 - GUe T [ Fohwoor G- gohoen] }
In particular, if we take = 1 = s, then we derive that

‘ o0 +4p(*5%) @) - L [ ot

@+ Gy

(3 1 (1 3 i
< (z—u)[épT] [(gm'(u)w + 5@ + (gl @l + Sl @) ]

4929
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Theorem 2.12. For q > 1, some fixed s,w € (0,1], if the mapping |p’|7 belongs to the generalized (s, w)-type
preinvexity, then the undermentioned integral inequality for tempered fractional integral operators together with
0<A,0<1,a>0andu >0 holds:

7@ 1,4, 63m,)
1-1 % 1-1 % (11)
< )n(z,u,wﬂ{él q[wAﬂp'(u)I"+Az|p’(2)l"] v, ! [WAzIP’(u)I"+A1|p'(Z)|‘7] }

in which
1
0o = f |7/yr](z,u,w)(ar t+A-1)- 6V;u](z,u,w)(a/ /\)|dt/
1-A
S S
A = ()\ -3 /\2)(6 + DY (@A) + A = DY@ +1,8) = > Yuneuw(@ +2,4),
and
S S
Ay = (A —sA+ E/\z)(e + 1)yy1](z,u,w)(a/ A)+(s—sA - 1)Vyr](z,u,w)(a +1,A)+ Eyyr;(z,u,w)(a +2,7),

where 01 is the same as in Theorem 2.6.

Proof. Taking advantage of Lemma 2.3 as well as the power-mean integral inequality, we achieve that

A
Tp(a/ u, A/ 6; 1, ZU) < |T](Z/ u, ZU)| |97/w](z,u,w) (0(, /\) - Vyr;(z,u,w) (0(, A= t)‘ Pl wu + tn(zl u, ZU) dt
0

1
+ f |yp,,(z,u,w)(0z, t+A=1) = 0Yueuw(, A)| p’(wu + tn(z,u, w))’dt]
1-A

1-1

A
< )TT(ZI u, w)‘{( L |97/yn(z,u,w)(a/ A) - qu(z,u,w)(a/ A= t)ldt)

p’(wu +t1(z, u, w))|thr

A
X ](; |67/‘ur](z,u,w)(a/ /\) - yyn(z,u,w)(a/ A= t)’
1

1-1

+ (f |yyr](z,u,w)(a/t + A= 1) - nyn(z,u,w)(ar /\))dt)
1-A (12)

p’(wu +tn(z, u, w))’th] % }

1
X f |7/,uq(z,u,w)(art +A - 1) - 67y1](z,u,w)(a/ /\)|
1-A

A 1-1
< }7](2/ u, w)‘{(ﬂ |6Vyn(z,u,w)(ar /\) - y.WI(Z,u,w)(a/ A= t)|dt) '7

p’(wu +tn(z, u, w))‘th]ﬁ

X [ fOA (|9yw;<z,u,w> (a, A)| + ‘Vp?](z,u,w)(a, A— t)|)
1-1

1
+ (f |yyr](z,u,w)(a,t + A - l) - nyq(z/u,w)(a, /\))dt)
1-A

1 1
X [jl‘/l (‘yw(z,u,w)(a,t +A- l)| + ‘Qyw(z,u,w)(a, /\)’)’p'(wu +n(z,u, w))rdt]" }

Using the generalized (s, w)-type preinvexity of |p’|7 and changing the order of the integration, we deduce
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that

A
’ q
jo‘ )sz(z,u,w)(a, A= t)(lp (wu + t1(z, u, w))| dt
A
= f [Yunam (@ A = B[ = s’ @)l +[1=s(1 = £)]lp’@)V|at
0
* A
) wlp,(u)wf (1 =Ytz (@, A = AL + " )P f (1= =By uneuwa, A = Hdt
¢ 0
A At
= wlp’ (W) f f (1 = st)p* Lo HEnDR gpdt
0 0
A At
+ |P’(Z)|‘7 f f [1-s(1- t)]va—le—yn(z,u,w)vdvdt 13)
0 0
A A—v
= w|,0’(u)|q f f (1 — st)va_le_HT](Z,u,ZU)Udth
0 0
A A—v
+ |P/(Z)|q f f [1 — 3(1 — t)]vﬂé—le—yq(z,u,w)ydtdv
0 Jo

, S S
= w|P (u)|q[()L - §A2)yyn(z,u,w)(a/ /\) + (SA - 1)yyq(z,u,zu)(a + 1/ A) - Eyyn(z,u,w)(a + 2/ /\)]

, S S
+ |P (Z)Iq[(A -sA+ EAz)y;tn(z,Lt,zu)(ar A) + (S —SA— 1)yyn(z,u,w)(a +1, /\) + Eyyl](z,u,w)(a +2, A)]

Analogously, we can get that

1
ﬁ-)\ |yw(z,u,w)(a, F+A— 1)| p’(wu +tn(z, u, w))|th

1
: f1 Drneasota, t+ 4 = Dl = splp' Gl + [1 =51 = D/ @

(14)
- w|p’(u)|q[(/\ =52+ 20 @A)+ (5 = 5A = Do @+ 1A + Y@ +2, /\)]
+ |p’(z)|q[</\ - %)\Z)yyn(z,u,w)(ar A) + (SA = V)Y unuwy(@ +1,A) = %yyr](z,u,w)(a +2, A)].
Employing the generalized (s, w)-type preinvexity of |p’|7 and integrating by part yield that
A
fo I@yy,,(z,u,w)(oz, /\)I'p'(wu +tn(z,u, w))rdt
< fo ' |0V untz (e, M|Jw(L = st)lp ()] + [1 = s(1 = H]lp (2)l|dt -

+ 0V (e, Mlp’ @It = st +5)
0 2 0

, #
= GYyrl(z,u,w)(a/ /\)w|P (u)|(t - SE)

’ S ’ S
= 07 e, Molp (I(A = 54%) + 07 ey, DI’ @A = 51+ 5A%),
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and

1
jl‘_A |9)/Hq(z,u,w)(ar A)||P’(wu + tT](Z, u, w))'th

1
gﬁmewmeW—wMMM+H—M—mwwwt

1 2
+ 97/;117(2,11,10)(&/ A)|P’(Z)|(t —st+ SE)
A

(16)

2 1

, t
=6mwMMmMMPWMFﬂEL_

1-A
’ S ’ 5
= eyyq(z,u,w)(a/ /\)W|P (u)|()\ —sA+ 5/\2) + nyq(z,u,w)(a/ /\)|P (Z)l(/\ - EAZ)
As a result, the desired outcome can be obtained by combining inequalities (13), (14), (15) and (16). The
proof is completed.

Our next purpose is to gain the error bounds involving with the tempered fractional integral operators
when the derivative of the researchful functions p’ is bounded.

Theorem 2.13. If there exist constants m < M satisfying that —co < m < p’(x) < M < +oo for every x €
[wu, wu + 1(z, u, w)], then the successive inequality is effective:

Tola, y, A, 0;1,w)| < n(z, u, w)(M — m)dy, (17)
where 01 is the same as in Theorem 2.6.
Proof. It yields from Lemma 2.3 that
Tola, p, A, 0;1,w)
=1(z,u, w)[ f(; ! (Gym(z,u,w)(a, A) = Vunzuw) (@, A = t))p’(wu +tn(z, u, w))dt

1
+ f (Vo (@ £+ A = 1) = By, A) ) (ot + (2,1, w))dt]
1-A

A
, m+M m+M
= 77(21 u, w){ f (nyr](z,u,w)(a/ A) - V‘ur[(z,u,w)(a/ A= t))[P (ZUM + tT](Z, u, ZU)) - 2 + 2 ]dt
0

A
, m+M m+M
+ f (yy,](z,u,w) (a,A—1t)— Qyu,,(z,u,w)(a, /\))[p (wu + (1 -tz u, w)) - + > ]dt}
0

A
, m+ M
=1n(z,u, w){f (Gyw(z,u,w)(a, A)— qu(z,u,w)(a//\ — t))[p (wu + tn(z,u, w)) i ]dt
0

A
, m+M
+ I) (Vm(z,u,w)(ar A=) = 0y uw (@, /\))[P (wu + (1 -Dn(zu, w)) i ]dt}-

Due to the function p’ meets that —co < m < p’(x) < M < +00, we gain that

m+M§p’(x)—m;M§M—m;M,

m —_—
which implies that

’(x)—m+M <M—m
P 2 172
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Taking modulus the identity above, one derives that

Tp(a/ Mi A/ 6/ TI/ w)’

A
< n(z, u, w)(M — m) f |9)/m](z,u,w)(ar A) = Vyn(z,u,w)(ar A —t)|dt
0
= 1z, u, w)(M — m)0;.
As a consequence, the proof of Theorem 2.13 is fulfilled.

Corollary 2.14. If we attempt to take p = 0 and n(z, u, w) = z — wu along with w = 1 in Theorem 2.13, then we
acquire that

A26p((1 = M+ Az) + (1 = O)p()| + 1*[Op(Au + (1 = V)z) + (1 - O)p(2)]

o5

<M -m)(z-u)QA,0,a),
where Q(A, 6, av) is defined by (6) in Corollary 2.7.

Remark 2.15. In accordance with Corollary 2.14, we clearly see that the following inequalities are true:
(1) If we take A = % and 0 = 0, then we deduce that

‘P(u)+p(z) _ F(a+1)[ ap(u+z)+jap(u+z)]'
2 z 2

24 (z—uy [T
< M—m)z—u)
(a + 1)22+1

In particular, if we consider taking a = 1, then we can achieve that
p(u) + p(z) 1 f *

- Hdt

‘ > —u p(t)d

(2) If we attempt to take A = L as well as 6 = 1, then we deduce that

1 p(u+z) F(a+1)[ 1‘,"+p(u+z)+j;‘,p(u+z)]

 M-m)z—u)
N 8

20-1F\" 2 ]z e 2 2
< aM —m)(z —u)
(a + 1)2a+1

In particular, if we attempt to take o = 1, then we infer that

‘p(u;rz)_ziuj;p(t)dt

(3) If we attempt to take A = 1 as well as 6 = 1, then one gains that

AT - T ) el )

s%[ L —%+ 2a (1)0}(M—m)(z—u).

(M —m)(z — u)
5 .

<

a+1 a+1\2
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In particular, if we take a = 1, then we derive that

ey g P

(4) If we take A = % as well as 6 = % in Corollary 2.14, then we get that

el ) o B ) )

—zalﬂ[ o (g)T}<M—m><z—u).

(M -=m)(z—u)
16 ’

a+1 3 a+1\3

In particular, if we take a = 1, then we have that

o+ ("5 %)+ o] - 2 [ ot

3. Examples

5
< ﬁ(M - m)(z — u).

To help readers understand the findings established in the previous section more intuitively, we provide
two examples to illustrate the correctness of Theorem 2.6 and Theorem 2.9 in this part.

Example 3.1. Let us consider the mapping p(x) = 3x°, for x € (—co,00). Then |p’| = x? is an (s, w)-ty, premvex

mapping in association with n(y,x,1) =y —xwiths = landw = 1. Ifwe takeu =0,z =1, a =%, u = =1as

well as A = 1, then all hypotheses mentioned in Theorem 2.6 are met.
Clearly, the left-hand part of the inequality (4) is:

|‘Tp(a, u, A, 6;1, w)|

R T | NG SR R (__) (1) ”
—24f0t26dt 3[£(2 t)Etht+;t2 dt
~ 0.101492.

For the right-hand part of the inequality (4), we have that
n(z, 1, w)(2 = 5)(wlp’ ()] + |p’ (2)])61

T b
=f —f t%e*dt—f tzetdt
0 2 0 0

=~ 0.164717.
Obviously to see that 0.101491 < 0.164717, which shows the correctness of the outcome described in Theorem 2.6.

dt

Remark 3.2. Case 1: Suppose that the parameter 1 is not a fixed constant in Example 3.1. For instance, we consider
taking u € [1, 3], by virtue of Theorem 2.6, we can obtain the outcome for the parameter y as below:

1 it
—f —f x_Ze_”xdx—f x"2e M dx
0 2 0 0
5 % 1\ Lqy\3
<% -3 ‘“fdt——[ f (——t) e tGDBdr + f (t—z) e‘H(f‘%)Pdt] (18)

1 1
2
= f
0

dt

[NTE

dt.

1 (2 it
- X Ze M dy — x"2e " dx
2o 0
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Three functions given by the double inequalities on the left-, middle- and right-hand parts (18) are plotted in Figure
1 against u € [1,3]. The graphs of the functions inllustrate the validity of dual inequalities.

0.25

the right function
0.2 the middle function ||
= the left function

Function Value p(y)
o

-0.15 ¢

-0.2 *

.0.25 . . . . . . . . .
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Variable p

Figure 1: Graphical representation of Example 3.1 for variable & = { and p € [1,3]

Case 2: Suppose that the parameter « is not a fixed constant in Example 3.1. For instance, a € [1, 3], on the basis
of Theorem 2.6, we achieve the finding for the parameter a as below:

1 1 14
2 1 2 2
- f = f x* e dx — f x* e dx
0o 2o 0
1 1
5 2 1 21 a1 1 1 1\ 1 1
<2 a1 —t __[ (__ ) -(3-1)43 f ( __) —(t-1)43 ] 19
_240tedt3fo‘2te2tdt+;t2etht (19)

Hy b S
< = x¥ e dx — x¥ e dx
0 |2 Jo 0

The visualization findings of three functions given by the double inequalities on the left-, middle- as well as right-hand
parts (19) are plotted in Figure 2 against o € [1,3]. As we can see from Figure 2, the findings presented in Theorem
2.6 are always hold true regarding the parameters p = 1 as well as « € [1, 3] are given any value.

dt

dt.

Case 3: Suppose that the parameters « as well as u are not two fixed constants in Example 3.1. For instance,
a, u € [1,3], according to Theorem 2.6, we can achieve the outcome for the parameters o and i as follows:

AT -t
- f = f x* e dy — f x* e #dy| dt
0o 2o 0
1 1
5 (2 11 2(1 \*' o Lo 1ye! ,
< = a1 ,—ut _ _[ (_ _ ) —y(——t) 3 f ( _ _) —y(t—f) 3 ] 20
_2401‘ e Hdt 310‘ 7 t e M2 tdt+%t 5 e ) dt (20)

dt.

Hy o -
< = 2 e dy — 2 lemH¥dy
0 |2 Jo 0

Let us discretize the region of [1,3] X [1,3]. From the visual perspective of graphics, Figure 3 vividly describes the
outcome exhibited in Example 3.1.
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0.05 T T T T T T T T T

the right function
the middle function |7
— the left function
0.03 3

0.02 i
0.01 \ :

-0.01 F 4

Function Value p(a)
o

-0.02 .

-0.03 i

-0.04 .

-0.05 L L L L L L L L L
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Variable «

Figure 2: Graphical representation of Example 3.1 for Variable y =1 and « € [1,3]

[ the right function
I the left function
I the middle function
0.05 +
=
S
SE
@
=
< 0
=
[
e
°
o
>
u- 3
-0.05 =
3

2
1.5
Variable 1

1 Variable «

Figure 3: Graphical representation of Example 3.1 for Three-dimensional

Example 3.3. Let us consider the mapping p(x) = e*, for x € (—oo,00). Then |p’(x)|7 is a generalized (s, w)-type
preinvex mapping in ussociation with n(y,x 1) =y—xwiths =1and w = 1. If we consider takingu =0,z =1,
O0=%1p=2=ga=1%1 u=0and A =1, then all hypotheses mentioned in Theorem 2.9 are met.

Clearly, the left-hand part of the inequality (7) becomes:

1

1 _1 1 _1
Tola,u, A, 6; n,w)| (e2+;+;e) ;(foz(%—t) Zetdt+j: (t—%) Zetdt]

= 0.089819.
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The right-hand part of the inequality (7) becomes:

1
q

In(z,u, w)|{£;l’ [w()\ ) )l + (A —sA+ %AZ)Ip’(z)Iq]
+ L1 -1+ 30l + (A - §A2)|p'(z>w]"}

2 1
1 (3.1, (1 52)}
t dt){(8+8€)+8+8€

2

=(fr-

=~ 0.8843501.

\/5(1 )i

Obviously to see that 0.089819 < 0.8843501, which demonstrates the correctness of the outcome derived in Theorem
2.9.

Remark 3.4. Case 1: Suppose that the parameter « is not a fixed constant in Example 3.3. For instance, o € [1,3],
on the basis of Theorem 2.9, we infer the result for the parameter o as below:

(LR GTa (Crae) (o 2e))
< (%)a [ze% + % + %e] - a(f: (% - t)a_l efdt + ff (t - %)a_letdt] (21)
<([RE-C-o Ta) {Gete) +(2+ 29 )

Three functions given by the double inequalities on the left-, middle- as well as right-sides (21) are plotted in Figure 4
against a € [1,3]. The graphs of the mappings show the validity of dual inequalities.

0.3
the right function
the middle function
= the left ffunction
0.2 -
T o -
U
[}
E \
<
> o+ J
=
K=
©
E]
o -0.1 -
0.2 - 4
-0.3
1 1.2 1.4 1.6 1.8 2 22 2.4 2.6 2.8 3

Variable «

Figure 4: Graphical representation of Example 3.3 for the variable 6 = % and « € [1, 3]

Case 2: Suppose that the parameter 0 is not a fixed constant in Example 3.3. For instance, O € [1, 3], based upon
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Theorem 2.9, we get the result for the parameter O as below:

([ {3 (3
< g 20t +(1-6) + (1 - Q)e] - % (fz (% - t)_%etdt ; fl (t - %)_%etdt] 22)
0 ;

<([[Lo- (- [ {Grae) +(3+3)')

—0-|5-t
The visualization results of three functions given by the double inequalities on the left-, middle- as well as right-sides

2 2
(22) are plotted in Figure 5 against 6 € [1,3]. As can be seen from Figure 5, the results given in Theorem 2.9 are

consistently correct if the parameters a = % as well as 0 € [1, 3] are given any value.

2o

4

the right function

the middle function
3 [ mmm——— the left function .
2 4

Function value p(6)
‘ o

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Variable 6

Figure 5: Graphical representation of Example 3.3 for Variable @ = 1 and 6 € [1,3]

Case 3: Suppose that the parameters « as well as 6 are not two fixed constants in Example 3.3. For instance,
a, 0 € [1, 3], based upon Theorem 2.9, one gains the result for the parameters o and 9 as below:

([ PGS -G {Grae) +(G+32) )
< (%) [zee% +1-0)+(1- e)e] - a[ fo % (% - t)al eldt + f 1 (t - %)1 efdt] 23)
<([ 0@ -G Tl (G 1) +(3+2))

Let us discretize the region of [1,3] X [1,3]. From the visual perspective of graphics, Figure 6 vividly describes the
result exhibited in Example 3.3.




P.Z.Tan, T. S. Du/Filomat 37:15 (2023), 4919-4941 4939

three-dimensional Figure

3 [ the right function
I the left function
[ the middle function

Function Value p(a,p)
o

2

1.5

Variable p 1 1 Variable o

Figure 6: Graphical representation of Example 3.3 for Three-dimensional

4. Conclusion

In the current study, we apply the (u, 7)-incomplete gamma functions to generalize a series of findings,

which involve the HH-type integral inequalities in relation with the generalized (s, w)-type previnexity and
bounded functions, respectively. To obtain the novel outcomes in the investigation, we propose a multi-
parameterized identity through the tempered fractional integrals. Furthermore, the visualization results of
two interesting examples are enumerated to identify the correctness of the acquired inequalities. With these
contributions, we are convinced that the outcomes of the present study could be a source of enlightenment
for researchers working in the fractional integral inequalities field.
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