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Abstract. The purpose of this article is to construct on Hermite-Hadamard type inequalities via Caputo-
Fabrizio fractional integral fors-convex function. The results are applied to fractional variations of Hermite—
Hadamard type inequalities for differentiable mapping ¢ with s-convex absolute value derivatives. The
findings also provide a new lemma for ¢’ and new limits via Caputo-Fabrizio fractional operator by using
the well-known Holder’s integral inequalities. Moreover some new bounds for applications of matrix and
special means of different positive real numbers are also discussed.

1. Introduction and Preliminaries

Convexity is well known to play an important and vital role in many areas, including economics, fi-
nance, optimization, game theory and different sciences. This concept has been extended and general-
ized in several directions due to its diverse applications. For more than a century, this theory has been
the focus and motivation of outstanding mathematical research. Convex analysis theory provides power-
ful principles and techniques for studying a wide range of problems in both pure and applied mathematics.
Numerous mathematicians and applied scientists are constantly attempting to apply and make available
novel ideas for the enjoyment and beautification of convexity theory. Because of their importance in
traditional calculus, fractional calculus, quantum calculus, interval-valued, stochastic, time-scale calculus,
fractal sets, and other fields, inequalities have an intriguing mathematical model.

Definition 1.1. [1] Consider an extended real valued function ¢ : I — R, where I C R" is any convex set, then
the function @ is convex on I, if

Ppm+T=x)n) < xe(m)+ 1= x)@(n2) 1)
holds for all n1,my € T and x € (0,1).
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The Hermite-Hadamard(H-H) inequality assert that, if a mapping ¢ : 7 € R — R is convex function on
an interval 7 of a real numbers and 1,1, € 1 and 1, > 11, then

1 2
(P(m;nz)s - f Py < @(m);@(nz) @)
m

interested readers can refer to [2] and [3].

Bothinequalities hold in the reversed direction if ¢ is concave. The inequality (2) is known in the literature
as the Hermite-Hadamard'’s inequality.

We note that the Hermite-Hadamard’s inequality may be regarded as a refinement of the concept of
convexity and it follows easily from Jensen’s inequality. The classical Hermite-Hadamard’s inequality
provides estimates of the mean value of a continuous convex function ¢ : [11,172] = R.

The following concept was introduced by Orlicz in [4]:

Definition 1.2. A mapping ¢ : [0, +00) — R is said to be s-convex in the first sense.

p(ax+py) < a’p (x) + o (y)

holds for all x, y € [0, +00) and a, f > 0 with o + ° = 1, for some fixed s € (0, 1]. The class of s-convex mappings in
the sense is usually denoted this class of real functions by K.

In [5], Hudzik and Maligranda consider the following class of function:

Definition 1.3. A mapping ¢ : [0, +00) — R is said to be s-convex in the first sense.

p(ax+By) < @ (x) + o (y)

holds for all x,y € [0, +00) and o, f > 0 with a + p = 1, for some fixed s € (0, 1]. The class of s-convex mappings in
the sense is usually denoted this class of real functions by K2.

Definition 1.4. A mapping ¢ : R* — R, where R* = [0, +00), is called to be s-convex in the second sense for a
real number s € (0,1] or ¢ belongs to the class of K2, if

e (xm+1-x)m) < x'(m)+1-x) ¢ () ®)
holds, ¥ 11,12 € [0, +00) and x € [0, 1].
Dragomir and Fatzpatrick in [2], proved the following Hadamard’s inequality which holds for the s-convex

in the second sense as:

Theorem 1.5. Suppose a mapping @ : [0, +00) — [0, +00) is an s-convex in the second sense, where s € (0,1) and
let n1,m2 € [0, +00), N1 < mo. If @ € LM, 2], then the following inequalities hold

-1 m+nz) 1 e @ (m) + ¢ ()
2 (p( 5 < f(p(x)de—SJrl

< , 4)
M2—m

m

the constant k = - is the best possible value in the second sense in (4). The inequalities (4) are sharp. (see [6][7],

[8]1, [9D).
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Here I'(.), B(.,.) are the classical Gamma, Beta functions as described by

1
()= f ey
0

and

1
pom = [ ra- oy
0

In recent years, several scholars have been interested in the definition of fractional derivative. Nonlo-
cal fractional derivatives are classified into two types: those with singular kernels, such as the Riemann-
Liouville and Caputo derivatives, and those with nonsingular kernels, such as the Caputo-Fabrizio and
Atangana-Baleanu derivatives.

However, fractional derivative operators with non-singular kernels are particularly successful in solv-
ing non-locality in real world issues in the desired manner. We'll return to the Caputo-Fabrizio integral
operator later. We would like to refer the reader to (see [10]-[15]) and references therein for more informa-
tion.

New studies on many modeling and real-world problems have been conducted with the assistance
of the Caputo-Fabrizio operator. This is because the Caputo-Fabrizio definition is very effective in bet-
ter describing heterogeneity and systems with different scales with memory effects. The Caputo-Fabrizio
definition’s main basic feature can be explained (see [16], [17] ).

Definition 1.6. [18] Let ¢ € H(u, )(where H is class of first order differentiable function), T > u, x € (0,1)
then, the definition of the new Caputo fractional derivative is:

X
D0 = 14 [ e -
u

K
- (t - s)] ds, (5)

where M(x) is normalization function.
Moreover, the corresponding Caputo-Fabrizio fractional integral operator is given as:
Definition 1.7. [19] Let ¢ € H(u, 1), T > u, x € [0,1].

1-x«

() (1) = P00 + f "oy
: M) M(x) J,

and

CF 7 _1-x K ’
(7 729) 0 = F500* i |, 0y

where M : [0,1] — (0, 00) is normalization function that satisfying M(0) = M(1) = 1. (see [17], [20])

I. Iscan found the following inequality for integrals in [21], which outperforms the classical Holder
inequality.
The integral of Holder 1. Iscan integral inequality is the following theorem .

Theorem 1.8 (Holder I. iscan integral inequality). Supposep > landp™ = 1—g7. If® and WV are real functions
defined on [y, n;] and if |®F, and V|7 are integrable on [m, 2], then

12 % 12 16
( f D) dx) ( f [Pl d)()
m m



J. Nasir et al. / Filomat 37:15 (2023), 4943—4957 4946

1 72 _ ) ;l; 12 ~ 7 %
> Uz—fh{( . (12 = X) 12(x)| dx) (fm (2= 0 [¢(x)| d;()
12 ; 12 i
N ( f (X—nl)lq)(x)l”dx) ( (x—m)lw)mx) }
m m
12

2 [DO)Y ()| dx- (6)
m

The following is Improved power—mean integral inequality:

Theorem 1.9. Supposeq > 1. If® and \V are real functions defined on [11, np] and if |®|, and |®||\Y|7 are integrable on [, n2],

then
2 -1 2 i
( DY) d)() ( f (DO d)()

m m
1

1 2 =50 rm Y
2 n _m{(fm (2= X) |<1>(X)|dx) (fh (2 = ) 1PCOIT (V) dx)

) -5 2 i
+ ( (X—m)IGD(X)IdX) ( f (x = m) 1PN ()N dx) }
n m

1

12
> fn @GOV () d. @)

2. Main Results

In this section, we give Hermite-Hadamard’s type inequalities for Caputo—Fabrizio fractional integral
operator are obtained for a differentiable functions on (11, 112). For this, we give a new Caputo—Fabrizio(CF)
fractional integral identity that will serve as an auxiliary to produce subsequent results for improvements.

2.1. Hermite—Hadamard’s type inequality via the Caputo—Fabrizio(CF) fractional operator
Theorem 2.1. Suppose a positive mapping ¢ : I = [m,m2] = R, ¢ € LIn,n2] If ¢ is s-convex mapping in
the second sense on [11,12], s € (0, 1], then the following double inequality holds

- - M (a) a o 2(1-a)
2 1@(771 znz) < a(flz—aﬂl){GfI 0)®) + (FI0) () - M(oj qo(k)}

< P(m) + ()
h s+1

, 8)
where k € [n1, 2] and M () > 0 is a normalization function.

Proof. Let [n1, m2], with 1 < 1p. Given that the function ¢ is s-convex. We get from (4)

2o 2) < o 2 - ]n ¢ () dz <2 LW TP (”15) :f(’“), )
25(p(771+’72)§ 2 {fk(p(z)dz+fn2(p(z)dz}.
2 m-mtJy, k
By multiplying on both sides above with ag%}g; ) and adding 2/(&((_;;)@ (k), we have
2lp (1) 2 (Xi (;;71) + 2 (‘a‘;‘)q) ®) < {(ST0) (0 + (TT0) 00 . (10)
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After suitable rearrangement of (10), we arrive at left inequality of (8)
Now we will prove the right side (8). The Hadamard inequality for s-convex function

2 12 @ (m)+ ()
Z dZSZ.—
T]z—Thfl P s+1

2 * " @ (m) + ¢ ()
nz—m{f,,l(’)(z)d“fk <p(z)dz}52T 1)

(]2 m)

and adding 2/(\}((;) @ (k), we have

By multiplying on both sides above with

a a(m-m) 201-a)
{(%fl )(k)+(CPIn2(P)(k)}< @)+ T+ @ P (12)

After rearrangement of (12), we get the required right side the inequality of (8), which completes the proof.
O

Remark 2.2. If we choose the s = 1 in Theorem 2.1, then the inequality (8) becomes the inequality (1) of Theorem 2
in [22].

Lemma 2.3. Suppose a mapping ¢ : I = [n1, 2] = R is differentiable on (1, m2) with 2 > m. If ¢’ € LIm, n2],
then a € [0, 1], the following Caputo—Fabrizio(CF) fractional identity holds

pm)+e(n) M@
2 a(nz—m)

x { (5710) 0+ (7T )go) 0+ (G, (W) ") 0+ (“I0) 0

T R LEE R S Y TS T Y
) 4(1 2 0w, (13)
a(m2—m)

where k € [m, n2] and M(a) > 0 is a normalization function.

Proof. It can be write that

nz;m{f (-x )fp( Xm+1;an)dx+f01x<p’(1;)(m+1;an)dx}
- 20, (14)
a(m—m)

Integrating by parts, by taking

Ilf()() 1)( zy)dx

x (B + —nz) U (B + )
{ . fo e nz A1 d)(}

m—n2
2
m+n

= nzfm(p(m)—ﬁ{f:(p(z)d2+£ i (p(z)dz}.
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By multiplying on both sides above with a(fﬁ(zl)) and subtracting 2/(&((7:‘)) @ (k), we have

_ p(m) M(a) o o
= 37 e G @ (TTagayp) 0 a5

Similarly, we can write that
! 1-x 1+x
Iz=f)((p’( m+— T]z)d)(
0

_e(n) M)
T2 T a(nz_m){(fi;]z) )(k”(CFqu(P)( )}- (16)

By using the values of I; and I, with equation (14), we can get the (13). Thus, the proof is completed.
O

Theorem 2.4. Suppose a mapping ¢ : I C [0,00] — R is differentiable on (1, m2) with n, > 1. If ” € L[, n2],
2] for some fixed s € (0, 1], then the following inequality holds

‘90(771) +e(n) M@

a(n2—m)

x{(10) 0+ (T 0) 0+ (i 10) 0+ (T0) 0

%@ (k)
< (G herar T ) (b @l Lo ) @)

where k € [, 2] and M(@) > 0 is a normalization function.
’| , we have

‘(P(Th) +o(n2) a(/nvz((—o?h)
< (10) 00+ (T Ly @) 00 + (e 10 ) 60+ (P15 0) 0}

=)
2 [ o e el [ (5 e

5V b o) e

Jor]

o+ (3

=2 [ o
[ 5 ot (52

By using the calculus tools, we get
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‘(p(m) +e(n) M@
2 a(n2—m)

10 (0 o) 10
4(1-a) ®
a(n2—m)

<772—771{ 2sen@s 41 +ﬁ(2,s+1) (
=77 UG+DG+22 >

o ()] + |’ ()] )}

Thus, the proof is completed. [

4949

Theorem 2.5. Suppose a mapping ¢ : I C [0,00] — R is differentiable on (11, 1m2) with n, > 1. If " € L[n1, n2],

and

¢'[

‘@(Th) +e(n) M@
2 a(n2—m)

1 (10) 0+ (L) 00 + (e 0 ) 60+ (T 0) 0}

4(1-0a)
o)

c-m 1 ;[{2“1—1
- 4 p+1 (s+1)2s

25+1 -1
’ q
¢ (Th)| + m

’ q 1
o (m)|" + IR

o)

ez s}
-1

where k € [m, 2] and M (a) > 0 is a normalization function, p™' =1 -q7%.

Proof. By using Lemma 2.3, the well-known Holder’s integral inequality and the s-convexity of

have

‘@(m) +e(n) M@
2 a(nz—m)

1 (10) 0+ (L) 00 + (g 10 ) 60+ (I 0) 0}
4(1-0a)
a(m—m)

< e
[ |
<=L ()
L] (f

@(k)‘

dx

1+ 1-
o (5 )

dx}

1- 1+
o (FEm )

1+ 1-
o (S —5E)

qu)é]

1
q q
d)()

1- 1+
o (5 5 )

is s-convex on [n1, 2] for some fixed s € (0,1], q > 1, then the following inequality holds

(18)

q
, we
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_ 1 S
nz4m[(f0 x”dx) (fo {(1+ ) ( ) }dx)
(fol Xde)V(val{(l_ ) ) (Th)|‘7 ( ) )(p (nz)| }d;() ]
) 552 y

+{ 1 , N 2S+1_1 , }E]
(s+1)2s (s+1)2s '

1

+

’ q 1
@ (Th)) + GrD2

Thus, the proof is completed. [

Theorem 2.6. Suppose a mapping ¢ : I C [0, c0] — R is differentiable on (1, m2) with n, > m. If o’ € L[N, na],
[n1, 2] for some fixed s € (0,1], q = 1, then the following inequality holds

‘qo(m) +e(n) M@
a(n2—=m)
1 (10) 0+ (L0 00 + (e 0 ) 60+ (T 0) 0}
4(1-a)
a(n2=m)

cM-m (1)1‘3 [{ 2se"@s 41
- 4 2 (s+1)(s+2)2s

@(k)‘

(s+1)( +2)2s

1
}ﬂ
1

N 2seM@s 4 1 Y
wl'+ ez @l @)

1
" {(s D622
where k € [m,n2] and M (a) > 0 is a normalization function, p™t =1 —q71.

q
, we have

Proof. By using Lemma 2.3, the power-

‘@(Th) +o(p) M@

a(n —m)
X {(gfza )0+ (CF1€,]1+,,2 )(p) *) + ( i 9 )(k) +(CI2.0) () }
4(1-a)
2= ®)
< B Lol (e )l

d)(}
1+ 1-
o (5]

qu)é]

1
1—=x 1+x
ol (s L)
j; P\ n 5 2
_ 1\
< 7724771[(f Xd)() (f?(
0 0

Lo\ 1- 1+
+(f xdx) (fX(P'( S+ zxnz)
0 0

1
q  \4
d )()
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< T]z;ﬂl[(ﬂl)(dx)l—q (fo«lx{(l )() ( )

+(f01)(d;()1—q(f01)({(1 )'(P( )|17 ( ) o )'q}d)() ]

=
2sen@s 4 1

1

o )

/

/]

Theorem 2.7. Suppose a mapping ¢ : I C [0, 0] — R is differentiable on (11, 12) with ny > m. If ¢’ € Lm, n2],
[n1,n21 for some fixed s € (0,1], q > 1, then the following inequality holds

‘(P(Th) +e(n) M@

1
+{@+1HS+D?
Thus, the proof is completed. O

a(m = m)
< (T10) 0+ (1) 0) 0+ () 10) 0+ (1) 0
“ ™

o @)’

<’D—U1H 1 ;{{_(5+$2”1+2wm®5+5+3
-4 (p+1)(p+2) (s+1)(s+2)2°

1 }3;
T 2
(2 flf{ 2seln@s 4+ 1 N 1 }3}
p+2 (s+1)(s+2)2s (s+1)(s+2)2s
o)
p+1D{p+2)
1 (s +2)25*1 4 25eM2s 1543 q i
X{Giiiﬁ T GrDGer @(mﬂ}
1\ 1 2565 1 g
+(p+2){@+1xs+mzs +@+1MS+DZS¢(WM} ”’ (20)

where k € [m, 2] and M (a) > 0 is a normalization function, p™' =1 - g%

7

we have

pm)+e(n) M)
2 a(n2—m)

< (10) 0+ (T8 10) 0+ () 10) 0 + (1) 0

4(1-0a)
=)

< ﬂz—ﬂl{f
- 4

dx

')

v (Em 3
2 N




J. Nasir et al. / Filomat 37:15 (2023), 4943—4957 4952

1
’ 1_)( 1+X
+ X ( + )d)(}
‘ﬁ P\ m+—"m
_ _ 9\
<P 171 (f (1- X)X”dx)( 171+ an) dx)
1 1+x 1- 7\
([ ] ([ o (B m) )}
0
1+ Y
{(f (1- )cx”dx)( ( L+ Zan) dx)
1 1
1- 1+ T\
([ ([ e )
0

< Wz;ﬂl[{(f (1_;();(%(); |
( f (1- X) ) ()| + ( ) }dx)

1 1

([ ([ A5 or (52 ot o
(f a- X)X’”dx)
(f a-0{(S5E) e ol +(*

([ s ([ (52 ot (52 b ol ] )

By using the calculus tools, we can get (20). Thus, the proof is completed. [

X)s

qwaé

Theorem 2.8. Suppose a mapping ¢ : I C [0, 0] — R is differentiable on (1, 1m2) with n, > 1. If ” € L[N, n2],
[n1, 2] for some fixed s € (0,1], q > 1, then the following inequality holds

‘@(Th) +e(n) M@
a(nz—m)

1 (10) 0+ (L) 00 + (g 0 ) 60+ (P 0) 0}
4(1-aw)

a(m—m)
< Mm2—m
- 4

[I6) " (eemesmeae

@@‘

}3 1)

/)

1
TG ) G+3) >

1\5 (217 (s +2) @ 1)
+(§) G+1)(GE+2) (+3)

21
(s+1)(s+2)(s+3
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g AG-1)e"® 1545 T
LY ey e AL }

2175 (%5 +2) @ — 1)
s+1)(s+2)(s+3)

+{(%)l_q {m

" (%)l_q {(s ) (52:52) +3)

where k € [m1, 2] and M (a) > 0 is a normalization function, p™* =1—-g71.

il @

q
1", we

Proof. By using Lemma 2.3, the Improved power-
have

‘@(771) +e(n) M@
a(n2—m)

x{(10) 0+ (T 0) 0+ (i 10) 0+ (T50) 0

4(1-0a)
a(ﬁz—ﬁl)(p(k)‘

< N2 — 1M

- 4

[ ol (5 e [
s%[{(fol(l—x)xdx) (f @-xe
4£wﬁﬂffwz%ﬁi%ﬁ
+{( 01(1—)())(01)() (f -2 x|p
(o] ([ e (e 1;%)

d;(}l
. )

1- 1+
(P'( Xy + an)

o'

Th+

qu)q |

Th+

mm

1
q
d)()

2

<> o)

(55 ool o))

<> )

(5 oo o)
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772—771
1_,
<[ (5 )
4(s—1)en@ +5+5 1 , i
X{s+1)(s+2)(s+3)25 nl))q+(s+2)(s+3)25 UZ)V}
1\
+(§)
21- ss+2 In(2)s 1) pis
X{ s+1 (s+2)(s+3) T T DG+ (643 }}
1y
(3
g AG-1)e@ 4545 oq
X{ S+2)(s+3)25 "l + G+D)G+2)G+3)2 7 (r2) }
1\
+(3)
ol-s ) 21=s ((szs + 2) en@s — 1) 1
><{(s+1)(s+2)(s+3) T TG+ D642 G+3) }}]

Thus, the proof is completed. [

Theorem 2.9. Suppose a mapping ¢ : I C [0, 00] — R is differentiable on (1, 1m2) with n, > 1. If " € L[n1, n2],
[n1, n2] for some fixed s € (0,1], g > 1, then the following inequality holds

‘(p(m) +e(n) M@

a(nz—m)
< (10) 0+ (Mg ) 0 + (o) 0+ (TTop) 0
4(1-a)
=)
m—m 1 1
2 [p(p+1)+q(s+l)( q)]’ (23)

where k € [m, 2] and M (a) > 0 is a normalization function, p™ =1—q7%.

q
'I", we have

‘@(771) +e(n) M)
a(n2—m)

x{(F10) 0+ (1) 0) 0+ (e 10) 0+ (130) 0

4(1-a)
a(ﬁz—ﬂl)(p(k)‘

< M —1m

- 4
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1
d)(+f X d)(}.
0

/(1_)( +1+X)
o (—"m+—"m

/(1+X +]-_X)
¢'(—"m+—"m

X{fol(—x)

By using the Young’s inequality as

1 1
uov < —uf + =of.
q

‘@(Th) +e(n) M@

a(n—m)
x {(gfza )+ (CFI‘(*W )qo) W) + ( N )(k) +(TE.0) (0 }
4(1-a)
a(n—m) ® ‘

1+ 1- 1
o (S 5 )

o]

(52
(5
q)]

_ 1 1
< 2 m[{lfx”dx+1f
4 P Jo qJo

1 ! 1 ! 1-x 1+x
L[ [ e St
{pf(;)( X+q£<P 5 m+ 5 M2

< n2;n1[{%j:xpdx+$j; {(1+x)

s [emeed (55
- 1 1

= m[p(p+1)+q(s+1)(

i)

+

Jo)

o o

+
—_——
< |

Thus, the proof is completed.
O

3. Applications to matrix and special means

Consider that s € (0,1] and u, v, w € R. We define a mapping ¢ : [0,c0) — R as

_ u, x=0
() _{ v +w, x>0.
vaZOandOSwSu,then(perin[5]. Thus, foru = w= 0,andv =1, we have ¢ : [a,b] = R ¢(x) = x°
with ¢ € K2.
In [24], the following resultis mentioned. Suppose ¢ : I; — R, beanon-decreasing and s-convex function
onljand ¢ : ] = I C I; is a non-negative convex function on J, then o is s-convex on I;.

Corollary 3.1. Suppose y : I — I; C [0, 00) is a non-negative convex function on I, then Y°(x) is s-convex on [0, o),
0<s<l.

Example 3.2. We denote by C" the set of nxXn complex matrices, My, the algebra of nXn complex matrices, and by M,
the strictly positive matrices in M. That is, A € M, if (Ax,x) > 0 for all nonzero x € C". In [23], Sababheh proved
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that the function  (0) = ||A°XB'~0 + A-0XBO
Then by using Theorem 2.1, we have

, A,B eM;, X e€M,,is convex for all 0 € [0,1],s € (0,1).

2| AT xE T + A F X
< M(O() { )(;FICK ||ﬂkX31_k + ﬂl_kXBk” + CFILY Hﬂk(\’Bl_k + ﬂl_kXBk”
ay—x) !

21-a) - -
- Sy lrxs s A

< | Axs s AKX + | xsy - Axs| )
s+1

Now for arbitrary real numbers c, d(c # d), let us consider the following means:

Ale,d) = € er 4
2cd
H(C,d) - C+d,
dr+1 _ Cr+1 %
L) =[5 g -

Proposition 3.3. Supposec,d € R*,0<c<d,s e (0,1). Then

25e"2() 4 1 (2,5s+1) 1 e
EE 2 DA (e ).

|A(Cs,ds)—Lz (c,d)| < S(d_c){(s+1)(s—+-2)25 2

Proof. In Theorem 2.4, if we set p(z) = z°,z € Rand s € (0,1),« = 1, and M(0) = M(1) = 1, then we obtain the
result immediately. [

Proposition 3.4. Supposec,d € R*,0<c<d,s € (0,1). Then

|H (¢, ) = L= (c, d)|
- s(d—c){ 2seln26) 4 1 . B(2,5+1)
=2 G+ (s+2)2 25

VA (et ).

Proof. In Theorem 2.4, if we set p(z) =z 5,z € Rand s € (0,1),a =1, and M(0) = M(1) = 1, then we obtain the
result immediately. [

4. Conclusion

This article, we have generated and explored some new Hermite-Hadamard’s type inequalities via Capu-
to-Fabrizio(CF) fractional integral for s-convex function. New bounds and novel connections are developed
of Hermite-Hadamard’s type inequalities for differentiable mappings whose derivatives in absolute value
at certain powers are s-convex. In the second last section, we have also developed some new Holder
Iscan and Improved power mean integral inequalities(For detailed see [21]). We hope that the strategies of
this paper will motivate the researchers working in functional analysis, information theory and statistical
theory.
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