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Abstract. We consider Aichinger’s equation

f (x1 + · · · + xm+1) =
m+1∑
i=1

1i(x1, x2, · · · , x̂i, · · · , xm+1)

for functions defined on commutative semigroups which take values on commutative groups. The solutions
of this equation are, under very mild hypotheses, generalized polynomials. We use the canonical form of
generalized polynomials to prove that compositions and products of generalized polynomials are again
generalized polynomials and that the bounds for the degrees are, in this new context, the natural ones. In
some cases, we also show that a polynomial function defined on a semigroup can uniquely be extended to
a polynomial function defined on a larger group. For example, if f solves Aichinger’s equation under the
additional restriction that x1, · · · , xm+1 ∈ R

p
+, then there exists a unique polynomial function F defined onRp

such that F
|R

p
+
= f . In particular, if f is also bounded on a set A ⊆ Rp

+ with positive Lebesgue measure then
its unique polynomial extension F is an ordinary polynomial in p variables with total degree ≤ m, and the
functions 1i are also restrictions to Rpm

+ of ordinary polynomials of total degree ≤ m defined on Rpm.

1. Introduction

Compositions and products of generalized polynomials defined on commutative groups are again
generalized polynomials, and the proper bounds for their degrees are known. This is not trivial (although
it may be not impossible) if you deal with a definition based on Fréchet’s unmixed differences functional
equation. Things become easier if we consider Fréchet’s mixed differences functional equation, which is, in
quite general cases, equivalent to the unmixed equation (see, e.g., [2], [3], [4], [5], [6], [7], [10], [12], [15]). The
proof recently appeared in a paper by Aichinger and Moosbauer [1]. In their paper, the authors introduced
the following wonderful functional equation, that characterizes generalized polynomials of degree ≤ m on
commutative groups:

f (x1 + · · · + xm+1) =
m+1∑
i=1

1i(x1, x2, · · · , x̂i, · · · , xm+1), (1)

where x̂i means that the function 1i does not depend on xi, and they used this equation to prove that the
composition f ◦ 1 of the generalized polynomials (defined on commutative groups) f , 1 is a generalized
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polynomial and deg( f ◦ 1) ≤ deg( f ) · deg(1). This same result, with a different proof that does not use
(1), had already been proved by Leibman in [16], but the authors of [1] were unaware of that paper.
Moreover, in his paper Leibman also proved that if we consider a composition of several polynomial
functions fi : Gi−1 → Gi, i = 1, 2, ..., k, and Gk is nilpotent (with no other extra hypotheses on the first groups
G0,G1, ...,Gk−1, that may be non-commutative and quite general, indeed), the composition fk ◦ fk−1 ◦ · · · ◦ f1
is also a polynomial function, but no precise estimation of its degree was given. Indeed, the question if
compositions of polynomial functions defined on arbitrary groups are again polynomial functions was
posed by Leibman in [16] and is still open.

The new equation (1) was -as the authors confirmed me- proposed by Aichinger and motivated by some
algebraic problems that are solved in [17]. I was delighted since I find this equation so nice and natural
(e.g., note that (x + y + z)2 = [2yz + z2] + [2xz + x2] + [2xy + y2] = 11(y, z) + 12(x, z) + 13(x, y) and, in general,
if you take f (x) = xm evaluated on x1 + .... + xm+1, you get a sum of monomials, each one depending on at
most m variables) but I never had seen it anywhere before. On the other hand, it is also clear that under
strong regularity assumptions on f , ordinary polynomials are the only solutions of Aichinger’s equation.
For example, if we assume that f : R → R belongs to C(m+1)(R), 1i : Rm

→ R belongs to C(m+1)(Rm) for
i = 1, · · · ,m + 1, and these functions satisfy (1), then G(x1, · · · , xm+1) = f (x1 + · · · + xm+1) satisfies that

∂m+1G
∂x1∂x2 · · · ∂xm+1

= f (m+1)(x1 + · · · + xm+1) = 0

which implies that f (m) = 0, and henceforth f (t) = a0 + a1t + · · · + amtm is an ordinary polynomial of degree
≤ m .

A similar result can be demonstrated for smooth functions defined on Rp for each p > 1. In that case,
the space of solutions is

Π
p
m,tot = {

∑
i1+···+ip≤m

ai1,··· ,ip ti1
1 ti2

2 · · · t
ip
p : ai1,··· ,ip ∈ R for all (i1, · · · , ip) ∈Np

},

the set of ordinary polynomials in p variables with total degree ≤ m. We prove this result as a corollary of
the following surprising theorem (for the proof, see [18, Theorem 14]):

Theorem 1.1 (Prager and Schwaiger). If K is a field and f : Kp
→ K is an ordinary polynomial separately in

each variable (which means that for any 1 ≤ k ≤ p and any point (a1, · · · , ak−1, ak+1, · · · , ap) ∈ Kp−1, the function
f (a1, · · · , ak−1, xk, ak+1, · · · , ap) is an ordinary algebraic polynomial in xk) then f is an ordinary polynomial in p
variables provided that K is finite or uncountable. Furthermore, for every countable infinite field K there exists a
function f : K2

→ K which is an ordinary polynomial separately in each variable and is not an ordinary polynomial
in both variables jointly.

In fact, if we assume that f : Rp
→ R belongs to C(m+1)(Rp) and satisfies (1) with x j = (x1 j, · · · , xpj) ∈ Rp,

j = 1, · · · ,m + 1, for certain smooth functions 1i ∈ C(m+1)(Rpm), i = 1, · · · ,m + 1, then for any 1 ≤ k ≤ p
and any point (a1, · · · , ak−1, ak+1, · · · , ap) ∈ Rp−1, the function h(t) = f (a1, · · · , ak−1, t, ak+1, · · · , ap) is an ordinary
algebraic polynomial in t of degree at most m since

h(t1 + · · · + tm+1) = f (a1, · · · , ak−1, t1 + · · · + tm+1, ak+1, · · · , ap)

= f

m+1∑
i=1

(
a1

m + 1
, · · · ,

ak−1

m + 1
, ti,

ak+1

m + 1
, · · · ,

ap

m + 1
)


=

m+1∑
i=1

gi(t1, t2, · · · , t̂i, · · · , tm+1),
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where

gi(t1, t2, · · · , t̂i, · · · , tm+1)

= 1i(
a1

m + 1
, · · · ,

ak−1

m + 1
, t1,

ak+1

m + 1
, · · · ,

ap

m + 1
, · · · ,

a1

m + 1
, · · · ,

ak−1

m + 1
, ti−1,

ak+1

m + 1
, · · · ,

ap

m + 1
,

a1

m + 1
, · · · ,

ak−1

m + 1
, ti+1,

ak+1

m + 1
, · · · ,

ap

m + 1
, · · · ,

a1

m + 1
, · · · ,

ak−1

m + 1
, tm+1,

ak+1

m + 1
, · · · ,

ap

m + 1
)

which means that h and gi, i = 1, · · · ,m + 1 (that are smooth functions) solve Aichinger’s equation in the
one-dimensional setting. Then, using Theorem 1.1, we conclude that f is an ordinary polynomial of p real
variables. Once this is known, it is easy to check that the total degree of f is at most m.

It follows that Aichinger’s equation is of interest when the regularity assumptions on f are impossible
(because we do not have any topology) or are weak.

Remark 1.2. In their paper [18, Theorem 14], Prager and Schwaiger construct, for every countable infinite field
K = {x0, x1, · · · , xn, · · · }, a function f : K2

→ K of the form

f (xi, x j) =
i∑

k=0

ai,kxk
j =

j∑
k=0

b j,kxk
i

with ai,i = 1 for all i ∈ N. Obviously, this function is an ordinary polynomial separately in each variable, and they
demonstrate that it is not an ordinary polynomial in both variables jointly. We claim that, ifK has characteristic zero,
char(K) = 0, then f is not a generalized polynomial, which is a stronger statement (the question is still open for fields
with positive characteristic). The proof depends on Aichinger and Moosbauer’s bound on the degree of a composition
of polynomial functions. Indeed, if f were a generalized polynomial with deg( f ) = m < ∞, then given i > m we
would have that 1i(y) = f (xi, y) =

∑i
k=0 ai,kyk is a polynomial of degree i (it is at this point that use that char(K) = 0).

Now, 1i = f ◦ Ei, where Ei : K→ K2 , Ei(y) = (xi, y) is a polynomial function of degree deg(Ei) = 1. Hence

i = deg(1i) = deg( f ◦ Ei) ≤ deg( f ) · deg(Ei) = deg( f ) = m,

which contradicts i > m.

In this paper we consider Aichinger’s equation for functions defined on commutative semigroups which
take values on commutative groups. In section 2 we prove that, when the domain of the function is a
commutative unital semigroup, Aichinger equation characterizes polynomial functions. In section 3 we
introduce the canonical form of generalized polynomials and we use it to prove that a polynomial function
defined on a cancellative commutative semigroup can uniquely be extended to a polynomial function
defined on a larger group. For example, if f solves Aichinger’s equation under the additional restriction
that x1, · · · , xm+1 ∈ R

p
+, then there exists a unique polynomial function F defined on Rp such that F

|R
p
+
= f .

Here, R+ =]0,∞[ is the set of strictly positive real numbers. Finally, we devote section 4 to prove that
compositions and products of generalized polynomials defined on commutative semigroups are again
generalized polynomials, and that the bounds for the degrees are, in this new context, the natural ones.

Just to fix some notation, we recall that (S,+) is a semigroup if + : S× S→ S given by +(a, b) = a+ b is an
associative binary law, which means that a+ (b+ c) = (a+ b)+ c for all a, b, c ∈ S. Moreover, S is unital if there
exists 0 ∈ S such that 0 + a = a + 0 = a for all a ∈ S, it is abelian (also named commutative) if a + b = b + a
for all a, b ∈ S, and it is cancellative if a + c = b + c implies a = b for all a, b, c ∈ S. It is well known that every
cancellative semigroup S can be extended to a group G such that G = S−S = {x− y : x, y ∈ S} and that, if S is
commutative, G = S− S is also commutative. We say that G = S− S is a natural extension of the semigroup
S (see [9, p. 34]).

2. Aichinger equation on commutative semigroups

Given (S,+) a commutative semigroup and (H,+) a commutative group, we say that f : S → H is a
polynomial function (also named generalized polynomial) of degree ≤ m − 1 if f solves Fréchet’s mixed



J. M. Almira / Filomat 37:16 (2023), 5301–5311 5304

differences functional equation:

∆h1∆h2 · · ·∆hm f (x) = 0 for all h1, · · · , hm, x ∈ G.

A simple statement and proof of the characterization of generalized polynomials as solutions of
Aichinger’s equation is as follows:

Theorem 2.1. Let (S,+) be a commutative semigroup, and (H,+) be a commutative group. Let f : S→ H be a map
and let m ∈ {2, 3, · · · }. Consider the claims:

(a) There are functions 1i : Sm−1
→ H, i = 1, 2, · · · ,m such that f satisfies

f (x1 + x2 + · · · + xm) =
m∑

i=1

1i(x1, x2, · · · , x̂i, · · · , xm) (2)

for all x1, · · · , xm ∈ S, where x̂i means that 1i does not depend on xi.

(b) f satisfies:

∆h1∆h2 · · ·∆hm f (x1 + x2 + · · · + xm) = 0 (3)

for all x1, · · · , xm, h1, · · · , hm ∈ S.

(c) f satisfies Fréchet’s mixed functional equation:

∆h1∆h2 · · ·∆hm f (x) = 0 (4)

for all x, h1, · · · , hm ∈ S.

Then (a)⇒ (b). Furthermore:

• If S + S = S, then (a)⇒ (c).

• If S is unital, then (a)⇔ (b)⇔ (c).

Proof. Let us prove (a)⇒ (b). For m = 1, (2) means that f (x1) is a constant and, of course, this implies that
∆h1 f (x1) = 0 for all x1, h1 ∈ S. Assume that f satisfies (2) with m > 1, which means that

f (x1 + x2 + · · · + xm) =
m∑

i=1

1i,0(x1, x2, · · · , x̂i, · · · , xm)

for certain functions 1i,0, i = 1, · · · ,m. Let h1 ∈ S and define F1(x) = f (x + h1) − f (x). Then

F1(x1 + x2 + · · · + xm) = ∆h1 f (x1 + · · · + xm)
= f ((x1 + h1) + x2 + · · · + xm) − f (x1 + x2 + · · · + xm)

= 11,0(x2, x3, · · · , xm) +
m∑

i=2

1i,0(x1 + h1, x2, · · · , x̂i, · · · , xm)

−11,0(x2, x3, · · · , xm) −
m∑

i=2

1i,0(x1, x2, · · · , x̂i, · · · , xm)

=

m∑
i=2

(1i,0(x1 + h1, x2, · · · , x̂i, · · · , xm) − 1i,0(x1, x2, · · · , x̂i, · · · , xm))

=

m∑
i=2

1i,1(x1, x2, · · · , x̂i, · · · , xm)
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where

1i,1(x1, x2, · · · , x̂i, · · · , xm) = 1i,0(x1 + h1, x2, · · · , x̂i, · · · , xm) − 1i,0(x1, x2, · · · , x̂i, · · · , xm), i = 2, 3, · · · ,m.

We can repeat the argument as follows: take h2 ∈ S and define F2(x) = ∆h2 F1(x) = F1(x + h2) − F1(x). Then

F2(x1 + x2 + · · · + xm) = ∆h2 F1(x1 + · · · + xm)
= ∆h2∆h1 f (x1 + · · · + xm)
= F1(x1 + (x2 + h2) + · · · + xm) − F1(x1 + x2 + · · · + xm)

= 12,1(x1, x3, · · · , xm) +
m∑

i=3

1i,1(x1, x2 + h2, · · · , x̂i, · · · , xm)

−12,1(x1, x3, · · · , xm) −
m∑

i=3

1i,1(x1, x2, · · · , x̂i, · · · , xm)

=

m∑
i=3

(1i,1(x1, x2 + h2, · · · , x̂i, · · · , xm) − 1i,1(x1, x2, · · · , x̂i, · · · , xm))

=

m∑
i=3

1i,2(x1, x2, · · · , x̂i, · · · , xm)

where

1i,2(x1, x2, · · · , x̂i, · · · , xm) = 1i,1(x1, x2 + h2, · · · , x̂i, · · · , xm) − 1i,1(x1, x2, · · · , x̂i, · · · , xm), i = 3, · · · ,m.

If we repeat this argument m times, we obtain that

∆hm∆hm−1 · · ·∆h1 f (x1 + x2 + · · · + xm) = 0

for all x1, · · · , xm, h1, · · · , hm ∈ S, and (b) holds true. This proves (a)⇒ (b).
If S + S = S, then (b)⇒ (c) is trivial and, henceforth, (a)⇒ (c) also holds true.
Let us now assume (c). Then for each z ∈ S we have that

0 = ∆x1∆x2 · · ·∆xm f (z) =
1∑

ε1,ε2,··· ,εm=0

(−1)m−(ε1+ε2+···+εm) f (z + ε1x1 + ε2x2 + · · · + εmxm).

Now, if we consider z as a constant, there is only one term, f (z + x1 + x2 + · · · + xm), in the sum that appears
at the third member of this formula, that depends on all variables x1, · · · , xm. Thus, adding the reciprocal of
f (z + x1 + x2 + · · · + xm) to both sides of the equality and taking reciprocals again, we get an expression of
the form

f (z + x1 + · · · + xm) =
m∑

i=1

1i(z, x1, x2, · · · , x̂i, · · · , xm)

This means that, if f is a polynomial function of degree ≤ m − 1 defined on the commutative semigroup S,
then all the translations (τz f )(x) = f (x + z) with z ∈ S satisfy Aichinger’s equation (2). In particular, when
z = 0 ∈ S we get that f satisfies Aichinger’s equation. This proves (c)⇒ (a) when 0 ∈ S. □

Remark 2.2. Theorem 2.1 above generalizes Lemma 4.1 of [1].
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3. Polynomial functions and an extension theorem

Given (S,+) a commutative semigroup and (H,+) a commutative group, a map A : Sk
→ H is k-additive

if

Ak(x1, · · · , xs−1, x + y, xs+1, · · · , xk) = Ak(x1, · · · , xs−1, x, xs+1, · · · , xk)

+Ak(x1, · · · , xs−1, y, xs+1, · · · , xk)

for all s ∈ {1, · · · , k} and x1, · · · , xk, x, y ∈ S. In other words, Ak is k-additive if it is additive in each one of its
variables. These maps are natural generalizations of additive functions and they are named multiadditive
functions as soon as k > 1. By convention, we call 0-additive map to any constant function A0 : S → H.
Finally, A : Sk

→ H is symmetric if

A(x1, · · · , xk) = A(xσ(1), · · · , xσ(k))

for every permutation σ of {1, · · · , k}. For example, A(x, y) = x + y and B(x, y, z) = xy + xz + yz, where
x, y, z ∈ R, are symmetric maps.

Associated to any multiadditive function A : Sk
→ H, we can consider its diagonalization dia1(A)(x) =

A(x, · · · , x), which is a map defined on S. It is well known that if multiplication by m! is bijective on H then
every polynomial function f : S→ H has a unique representation of the form

f (x) = A0 + dia1(A1)(x) + · · · + dia1(Am)(x) (5)

where Ak : Sk
→ H is a symmetric k-additive function for k = 1, · · · ,m and m is the degree of the polynomial

function f . Moreover, every function of the form (5) is a polynomial function of degree at most m. The
term Ak(x) = dia1(Ak)(x) is called monomial (of degree k) . Hence, if multiplication by m! is bijective on H,
every polynomial function of degree ≤ m is a sum of monomials of degrees ≤ m. We include a draft of the
proof of these results, just for the sake of completeness. The main idea of the proof is to use the following
technical result (whose proof can be found, e.g., in [8] for the case that S,H areQ-vector spaces, but that can
be easily adapted to the case that S is a commutative semigroup and H is a commutative group):

Theorem 3.1 (Polarization formula). Let A : Sm
→ H be a symmetric m-additive function, and let A∗(x) =

dia1(A)(x) be its diagonalization. Then for all x, h1, · · · , hk ∈ S we have that:

∆h1∆h2 · · ·∆hk A
∗(x) =

{
0 if k > m
m!A(h1, · · · , hm) if k = m (6)

In particular, if H allows division by m!, we have that

1
m!
∆m

h A∗(x) = A∗(h) for all x, h ∈ S. (7)

Note that (6) implies that, if multiplication by m! is either surjective in S or injective in H, any symmetric
m-additive function A is completely determined by its diagonalization dia1(A) since m!A(h1, · · · , hm) =
A(m!h1, · · · , hm). In particular, dia1(A) = 0 implies A = 0.

The following theorem is well known (see, e.g., [14]):

Theorem 3.2 (Canonical representation of polynomial functions). Let S be a commutative semigroup and H
be a commutative group. Assume that multiplication by m! is bijective on H. Let f : S→ H be a polynomial function
of degree at most m. Then there exist k-additive symmetric functions Ak : Sk

→ H, k = 0, 1, 2, · · · ,m, such that

f (x) = A0 + diag(A1)(x) + · · · + diag(Am)(x) for all x ∈ S (8)

Moreover, all these functions are polynomial functions of degree ≤ m and the representation (8) is unique.
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Proof. The second claim follows from the polarization formula. To prove the first claim, we proceed by
induction on m. For m = 0 is clear that∆x1 f = 0 implies that f (x) = A0 for a certain constant A0

∈ H. Assume
the result holds true for polynomial functions of degree ≤ m− 1 and let f : S→ H be a polynomial function
of degree at most m. Then ∆x1∆x2 · · ·∆xm f (x) does not depend on x since ∆xm+1∆x1∆x2 · · ·∆xm f (x) = 0 for all
xm+1, x ∈ S. Hence

A(x1, · · · , xm) = ∆x1∆x2 · · ·∆xm f (x)

is well defined as a function A : Sm
→ H, and is symmetric since the operators ∆xk are pairwise commuting.

Moreover, A is m-additive since ∆x+y = ∆x∆y + ∆x + ∆y implies that

A(x1 + y1, x2, · · · , xm) = ∆x1+y1∆x2 · · ·∆xm f
= ∆y1∆x1∆x2 · · ·∆xm f + ∆x1∆x2 · · ·∆xm f + ∆y1∆x2 · · ·∆xm f
= ∆x1∆x2 · · ·∆xm f + ∆y1∆x2 · · ·∆xm f
= A(x1, x2, · · · , xm) + A(y1, x2, · · · , xm).

and the symmetry gives the additivity with respect to the other variables. Our assumption that multi-
plication by m! is bijective on H implies that the operation y → 1

m! y is well defined on H. Thus, we can
define Am(x1, · · · , xm) = 1

m! A(x1, · · · , xm) -which is also m-additive- and fm(x) = dia1(Am)(x). The polarization
formula implies that

∆x1∆x2 · · ·∆xm fm(x) = m!Am(x1, · · · , xm) = A(x1, · · · , xm) = ∆x1∆x2 · · ·∆xm f (x)

Hence

∆x1∆x2 · · ·∆xm ( f − fm)(x) = 0

and we can apply the induction hypothesis (note that, if the operation y → 1
m! y is well defined on H, the

same holds with the operation y→ 1
k! y = ( m!

k! ) 1
m! y for 1 ≤ k ≤ m − 1) to claim that f − fm = f − dia1(Am) is of

the form A0 + dia1(A1) · · · + dia1(Am−1) for certain k-additive functions Ak : Sk
→ H, k = 0, 1, · · · ,m − 1.

The uniqueness of the representation (8) also follows by induction using the polarization formula.
Indeed, if

f (x) = A0 + dia1(A1)(x) · · · + dia1(Am)(x) = B0 + dia1(B1)(x) · · · + dia1(Bm)(x) for all x ∈ G,

where Ak,Bk : Gk
→ H are k-additive symmetric functions, k = 0, 1, · · · ,m, then

∆x1∆x2 · · ·∆xm f (x) = m!Am(x1, · · · , xm) = m!B(x1, · · · , xm) for all x1, · · · , xm ∈ G.

Hence Am = Bm and we can apply the induction step to the polynomial function

f (x) − dia1(Am)(x) = A0 + dia1(A1)(x) · · · + dia1(Am−1)(x) = B0 + dia1(B1)(x) · · · + dia1(Bm−1)(x).

Hence Ak = Bk for k = 0, 1, · · · ,m. This ends the proof. □
Now we can use a recent result by Kurcharski and Lukasik [11, Theorem 6] to prove that polynomial

functions defined on cancellative semigroups can (uniquely) be extended to polynomial functions defined
on the natural extension of their domain.

Theorem 3.3 (Kurcharski and Lukasik). Let S be a cancellative commutative semigroup, H be a commutative
group, n ∈N. Furthermore, let An : Sn

→ H be an n-additive symmetric function. Then, for any commutative group
G such that S ≤ G and G = S − S, the function An can be uniquely extended to an n-additive symmetric mapping of
Gn into H. That is, there exists a unique n-additive symmetric functionAn : Gn

→ H such that

An(x1, · · · , xn) = An(x1, · · · , xn) for all x1, · · · , xn ∈ S
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Corollary 3.4. Let S be a cancellative commutative semigroup and H be a commutative group. Let G = S − S be a
natural extension of S. Assume that multiplication by m! is bijective on H. Let f : S→ H be a polynomial function of
degree at most m. Then there exists a unique polynomial function of degree at most m, F : G→ H, such that F|S = f .

Proof. It is a direct consequence of Theorems 3.2, 3.3. □

Corollary 3.5. Let S be a cancellative commutative semigroup and H be a commutative group. Let G = S − S be a
natural extension of S. Assume that multiplication by m! is bijective on H. Let f : S→ H be a solution of Aichinger
equation

f (x1 + · · · + xm+1) =
m+1∑
i=1

1i(x1, x2, · · · , x̂i, · · · , xm+1), x1, · · · , xm+1 ∈ S

for certain functions 1i : Sm
→ H. Then there exists a polynomial function of degree at most m, F : G → H, such

that F|S = f . Moreover, the functions 1i are also polynomial functions of degrees at most m.

Proof. It is a direct consequence of Theorem 2.1 and Corollary 3.4. □

When we apply Corollary 3.5 to functions defined on S = Rp
+ with values on H = K (with, e.g., K = R

orK = C), we conclude that, if f : Rp
+ → K satisfies

f (x1 + · · · + xm+1) =
m+1∑
i=1

1i(x1, x2, · · · , x̂i, · · · , xm+1) for all x1, · · · , xm+1 ∈ R
p
+ (9)

then f is the restriction toRp
+ of a unique polynomial function F : Rp

→ K of degree at most m. In particular,
we can use the regularity properties of polynomial functions defined on the ordinary Euclidean space Rp

(see, e.g., [13], [14]) to conclude that, if f is bounded on a set A ⊆ Rp
+ with positive Lebesgue measure and is

a solution of Aichinger’s equation (9), there exists a unique ordinary polynomial F of p variables and total
degree ≤ m (which is of course defined on the whole space Rp) such that F

|R
p
+
= f , and the functions 1i are

also restrictions to Rpm
+ of ordinary polynomials of total degree ≤ m defined on Rpm.

4. Degree of the composition and product of polynomial functions

As we have already noticed, Aichinger equation was introduced in [1] to demonstrate, for commutative
groups, that compositions (and products) of polynomial functions are again polynomial functions, and to
obtain the natural bounds for their degrees. In this section, we present an alternative approach. Concretely,
we use Theorem 3.2, the canonical representation of polynomial functions, to prove the same result for
commutative semigroups.

If we assume that S is a commutative semigroup, G,H are commutative groups, f = f0+· · ·+ fn, f : S→ G
and 1 = 10 + · · ·+ 1m, 1 : G→ H are polynomial functions with fi = dia1(Ai) and 1 j = dia1(B j) for all i, j with
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Ai : Si
→ G and B j : G j

→ H symmetric multiadditive functions, then

(1 ◦ f )(x) =

m∑
j=0

1 j(
n∑

i=0

fi(x))

=

m∑
j=0

B j(
n∑

i=0

fi(x),
n∑

i=0

fi(x), · · · ,
n∑

i=0

fi(x))

=

m∑
j=0

n∑
h1,h2,··· ,h j=0

B j( fh1 (x), fh2 (x), · · · , fh j (x))

=

m∑
j=0

n∑
h1,h2,··· ,h j=0

B j(Ah1 (x, · · · , x),Ah2 (x, · · · , x), · · · ,Ah j (x, · · · , x))

=

m∑
j=0

n∑
h1,h2,··· ,h j=0

dia1(Ch1,··· ,h j

j )(x)

where
Ch1,··· ,h j

j (x1,h1 , · · · , xh j,h j ) = B j(Ah1 (x1,h1 , · · · , xh1,h1 ), · · · ,Ah j (x1,h j , · · · , xh j,h j ))

is (h1 + h2 + · · · + h j)-additive. Obviously, it could be the case that Ch1,··· ,h j

j is not symmetric, but this is not a
problem since, if d(x) = dia1(A)(x) for a certain k-additive map A, then d = dia1(Asim)(x), where Asim is the
symmetrization of A:

Asim(x1, · · · , xk) =
1
k!

∑
σ∈Sk

A(xσ(1), xσ(2), · · · , xσ(k)),

which is k-additive and symmetric. It follows that 1 ◦ f is a sum of monomials of degree at most nm, since
the maximum value of the sums h1 + · · · + h j with 0 ≤ hi ≤ n and 0 ≤ j ≤ m is nm. Hence 1 ◦ f : S→ H is a
polynomial function of degree at most nm.

With respect to the product of polynomial functions, things are easier since, if fi = dia1(Ai) and 1 j =

dia1(B j) are monomials defined on S with values in C (or any other field extensionK ofQ), then fi(x)1 j(x) =
dia1(Ci, j)(x), where

Ci, j(x1, · · · , xi, y1, · · · , y j) = Ai(x1, · · · , xi)B j(y1, · · · , y j)

is (i + j)-additive. Hence, if f , 1 : S→ K are polynomial functions , f = f0 + · · · + fn, 1 = 10 + · · · + 1m, then

( f · 1)(x) =
n+m∑
k=0

∑
i+ j=k

fi(x)1 j(x) =
n+m∑
k=0

∑
i+ j=k

dia1((Ci, j)sym)(x)

is a polynomial function of degree at most n +m. Thus, we have proved the following:

Theorem 4.1. Assume that S is a commutative semigroup, G,H are commutative groups, andK is a field extension
ofQ. Assume that f , 1 : S→ K and f : S→ G, g : G→ H are polynomial functions. Assume also that multiplication
by (deg f)! is bijective on G and multiplication by (deg g)! is bijective on H. Then f · 1 and g ◦ f are polynomial
functions. Furthermore,

deg( f · 1) ≤ deg( f ) + deg(1)

and
deg(g ◦ f) ≤ deg g · deg f.
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If, for functions f : S→ Kwhere S is a commutative semigroup andK is a field, we use ∆m+1
h f = 0 as the

definition of polynomial function of degree ≤ m, then we can demonstrate (by induction on m) the formula

∆m
h ( f · 1)(x) =

m∑
i=0

(
m
i

)
∆i

h f (x) · ∆m−i
h 1(x + ih)

and, as a corollary, we get that deg( f · 1) ≤ deg( f ) + deg(1). Indeed, if deg( f ) = n, deg(1) = m, then

∆n+m+1
h ( f · 1)(x) =

n+m+1∑
i=0

(
n +m + 1

i

)
∆i

h f (x) · ∆n+m+1−i
h 1(x + ih) = 0

since i ≤ n implies m + 1 ≤ n + m + 1 − i, which implies that all summands in the second member of the
equality above vanish. Morevoer, if we use 1

n!∆
n
h f (x) = f (h) as a definition of generalized monomial of

degree n, the same idea can be used to demonstrate the following result:

Theorem 4.2. Let S,R be commutative semigroups and K be a field, char(K) = 0. Assume that f , 1 : S → K are
generalized monomials of degrees n,m, respectively. Then their product is a generalized monomial of degree n + m,
and the same holds with products of the form f (x)1(y) with f : S→ K and 1 : R→ K generalized monomials.

Proof. A direct computation shows that

∆n+m
h ( f · 1)(x) =

n+m∑
i=0

(
n +m

i

)
∆i

h f (x) · ∆n+m−i
h 1(x + ih)

=

n−1∑
i=0

(
n +m

i

)
∆i

h f (x) · ∆n+m−i
h 1(x + ih) +

(
n +m

n

)
∆n

h f (x) · ∆m
h 1(x + nh)

+

n+m∑
i=n+1

(
n +m

i

)
∆i

h f (x) · ∆n+m−i
h 1(x + ih)

=

(
n +m

n

)
∆n

h f (x) · ∆m
h 1(x + nh)

=
(n +m)!

n!m!
n! f (h) ·m!1(h) = (n +m)!( f · 1)(h),

which proves that f · 1 is a generalized monomial of degree n+m. For the second claim, it is enough to take
into account that ϕ(x, y) = f (x)1(y) can be written as ϕ = ϕ1 · ϕ2 where ϕ1(x, y) = f (x) and ϕ2(x, y) = 1(y),
and that, under this notation, we have that

∆s
(h,k)ϕ1(x, y) = ∆s

h f (x) and ∆s
(h,k)ϕ2(x, y) = ∆s

h1(y)

and use Leibniz’s formula for ϕ1 · ϕ2:

∆n+m
(h,k) (ϕ)(x, y) =

n+m∑
i=0

(
n +m

i

)
∆i

(h,k)ϕ1(x, y) · ∆n+m−i
(h,k) ϕ2((x, y) + i(h, k))

=

n+m∑
i=0

(
n +m

i

)
∆i

h f (x) · ∆n+m−i
k 1(x + ik)

=

(
n +m

n

)
∆n

h f (x) · ∆m
k 1(x + nk)

=
(n +m)!

n!m!
n! f (h) ·m!1(k) = (n +m)! f (h)1(k)

= (n +m)!ϕ(h, k).

□
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