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A Littlewood-type theorem for random weighted Bergman functions
and random power series in .ES’A spaces

Cui Wang?

*Guangdong University of Technology, Faculty of Mathematics and Statistics, Guangzhou

Abstract. The paper obtained some results about Littlewood-Type Theorem for random weighted Bergman
functions and studied random power series in Lé”‘ spaces based on Cheng, Fang, and Liu’s work [4] and
Li, Wu’s work [11] respectively.

1. Introduction

Let ID and H(ID) denote the open unit disk and the set of all analytic functions on D respectively.
For -1 <y,0 < p < o0, an analytic function f in ID is said to be in the weighted Bergman spaces Af/ if

Iflly; = ( fD P - |z|2>ydA<z>)p <,

where dA(z) = Ldxdy denotes the Lebesgue area measure on D.

For0 <p <o0,0<g < 0,0 < a < oo, the mixed norm spaces H(p, g, ) consists of these analytic
functions f € H(ID) satisfying

1
1 7
1/ 1lE g0 = ( f My(r, )1 = V)qudf) < oo,
0
1
where M, (r, f) = (% fozn If(reie)lpde)p and M (7, f) = Supg(oom If (7¢?)]. Moreover,

1 f1lE(p,00,0) = sup (1 = 7)*My(r, f).

0<r<1
Clearly, the weighted Bergman norm ||f]| A is comparable to [|f]| Hip,p, 221

p5)"
Assume that all random variables {X,,} ;>0 are defined on a probabilfty space (QQ, ¥, IP) and the expectation
denoted by [E(-). We shall consider sequences of random variables {X,},>0, where {X,},>0 are independent
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identically distributed symmetric random variables. Then, we introduce

0o

Rf(z) = Z a, X, z"

n=0

if f(z) = Y.pop 2" € H(D).
Let X be a Banach space of analytic functions over the unit disk. We introduce another analytic function
space (X). by
(X). ={f e HD) : P(Rf € X) = 1}.

This notion has been justified in [4, Lemma 4].
The coefficient multiplier spaces (X, Y) are our key tool in our arguments. Given two analytic function
spaces X and Y, the coefficient multiplier space (X, V) consists of all complex sequences {A,},50 such that

(o)
Z Az € Y
n=0

holds forall f(z) = ¥.,2,2,2" € X. The coefficient multiplier space (X, %) has an obvious but useful property:
Xc Y= 11, -)e(XY).

The sequential version of the mixed norm space ¢(p,q) with 0 < p, g < oo consists of complex sequences

{4 }us0 such that

n=0 \ keI,
For 0 < p < o0, q = oo, the mixed norm space £(p, o) contains of these sequences {a,},5o satisfying

1

IHanlegreo) = sup [Z |ak|PJ <o,
kel

n=0

where we recall that Iy = {0} and I, = {k € N : 2""! < k < 2"} when 1 > 1. When p = g, we use " for {(p, p)
for convenience.
Define

[

D(f)2) =) (n+ 12", teR
n=0
for f(z) = Y., gasz" € H(ID). Also, the definition of D*{(p, q) is given in the similar method by identifying
an analytic function with its Taylor coefficient sequences.

Recall that, a functional || - || : X — [0, o) is called a p—norm with 0 < p < 1, if X is a complex vector
space and for any f,g € X,

@ IIfll > 0if f #0;

(i) IA Il = AlLfNl for A € €

(iid) [|f + gll” < [IfIIP + llgllP.

If (X, d) with d(f, g) = || f —glI is complete, then it is called a p—Banach space. Banach spaces are p—Banach
spaces for each 0 < p < 1. If p € (0,1) or q € (0,1), H(p, 9, @) is an s—Banach space with s = min{p, g} [14,
p-83], that is,

1f + W00 < Wiy 0.00 + 1911210 0,00
In particular, the weighted Bergman space A), with -1 <y, 0 < p < 1is a p—Banach space.

The abbreviation ”a.s.” means “almost surely” and the symbol ” & ” denotes ”if and only if”. In
addition, A =~ B stands that there exist positive constants C;, C; > 0 such that AC; < B < GA.
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2. Some results about Littlewood-Type Theorem for generalized mixed norm functions by randomiza-
tion

2.1 An improvement of Littlewood’s Theorem
First, we need some auxiliary lemmas which will be used in the desired results.

Lemma 2.1. ([15]) Let 0 < g < oo, a > 0. Then, f(z) = Yoo a,2" € H(2,q, a) if and only if {n™%a,}us1 € €(2,9).

Lemma 2.2. ([7, Theorem 12.3.1, p.253]) Let 0 < p <1, p<u<o00,0<g,v < ocoand 0 < a,f < oo. Then

(H(p,q,@), H(u,v,p)) = {g € H(D) : D""7"'g € H(u, g &0, )} .
Here,

. 1 1 1.
aOb=oc0ifa<b, and m—z—azfu>b. (1)

Lemma 2.3. ([7, Theorem 12.4.2, p.259]) If2 < p < coand 0 < u < 2, then
(H(p,q,), H(u,v,p)) = DF*¢(co, § ©0). 2)

Lemma 2 and Lemma 3 are the useful coefficient multiplier results provided by Jevti¢, Vukoti¢, and
Arsenovic [7].
The classical Littlewood theorem is reformulated as

(HP). = H?

for 0 < p < oo. For p = oo, Marcus and Pisier [13] give a description about (H*).. Recently, Cheng,
Fang and Liu [4] provided the following profound lemma, which indicates that the circular p—norm can be
transformed into an orthogonal 2-norm and the radial parameter g matters nothing. Also, the randomization
R() can be seen as an operation of circular orthogonalization.

IPX=1)=PX=-1) = %, the random variable X is called Bernoulli; If it is uniformly distributed
on the unit circle, it is called Steinhaus, and denoted by N(0, 1), as well as the Gaussian variable law with
zero mean and unit variance. A standard sequence is a sequence of independent, identically distributed
variables. {X,},s0 is said to be a standard random sequence, if it is either a standard Bernoulli, Steinhaus,
or Gaussian sequence.

Lemma 2.4. ([4, Theorem 6]) Let 0 < p,q, @ < oo and {X,,} be a standard random sequence. Then (H(p,q,at)), =
HQ2,q,a).

By Lemma 2.4, the embedding H(p, 9, @) into H(u, v, §) via R can be reduced to be the inclusion of H(p, 9, @)
to H(2, v, 5), which is characterized in [3].

Lemma 2.5. ([4, Lemma 11]) Let {e,},»1 be a sequence of elements in a p—Banach space X and {X,,}n»0 be a standard
random sequence. Let S = Y"1 Xye, be an a.s. convergent series in X. Then, S € L1(C; X) for all 0 < g < oo, and
moreover,

ISIlLn :x) = (IS]lze @ux)

forany 0 < g1,q, < oo, where ||S||'ZL](Q;X) = E(IISIIf\,).
Proposition 2.6. Let 0 < p,q < oo, =1 < a, and {X,}ns0 be a standard random sequence. Then, the following
conditions hold:

(i) (A}). = HQ,p, 52,

(ii) the map R : H(2,p, 7%1) — L1(Q; A’;) is continuous.
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Proof. Statement (i) follows from Lemma 2.4. By Lemma 2.5, it is sufficient to prove (ii) with 4 = p. Then,
one gets that

1Y 0%l =| [ [
kz_‘(; L/(QAY) b Jo
LU
1( o 5
= f{ZlakIZer] A =7)'rdr
0

1

4 P

(1 - |2 dPdA(z)

[se]
Z llkaZk
k=0

(e8]

Z {ZkaZk

k=0

1

4 »

2 2
d]P] (1 - |zP)dA(z)

1
v

k=0
o ¢ '
< f {Z Iaklerk] A =rydr
0 (k=0
= Wfllyy, 1y
O
Lemma 2.7. ([5, p.87]) (Hardy-Littlewood) If0 <p <g< oo, feH, A2 p, a = ;17 - %, then

1
fo M (r, /(1 = 1) Ndr < co.
The following lemma is a special case of Theorem 11.2.2 in [7, p.240].

Lemma 2.8. Let 0 < p < 1. Then, (H?,{(u,v)) = Dl_%f(u,p o).
The following Hardy-Littlewood in [5] will be used later.

Lemma29. Let0<p<g<oo,A>p,anda= —%,then

1

P
1

fo A ="My, f)dr < oo

for every f € HP.

Theorem 2.10. Let 0 < p,u,v,B < oo, and (X, },»0 be a standard random sequence. Then, Rf € H(u,v,B) a.s. for
all f € H? if and only if p, B satisfy one of the following conditions:

(1) 2 < p < oo

(i) 0<p<2,p—1+5>0.

Proof. Since Ny»oH? C H(u, v, ), the case 2 < p < oo holds by an application of Lemma 2.9.

Now, we consider 0 < p < 2. Employing Proposition 2.6, we have that Rf € H(u,v,f) a.s. for all
f € HP is equivalent to H? ¢ (H(u,v,B)). = H(2,v,8). By Lemma 2.1, )7, a,z" € H(2,v,p) if and only if
{n"Pay}us1 € €(2,0). So, the problem is reduced to characterize the pairs p, v such that

DPHP c £€(2,v). 3)

Next, we recast this problem as a coefficient multiplier problem.
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Case 1: 0 < p < 1. By Lemma 2.8, (3) can be reformulated as to characterizing the pairs p, v such that

{ﬁ} € 5(2,;9 9'0)
n v

When v > p, thenp©v = o0, and
‘ { 1 }
n+ 1))

If v < p, then

_1
(n+1)F 150

1

1 2
= sup Z — ]
e "0 [kEIn (k+ %757

1
~ _ 4
Snlig 2@p-2+1)4 @)

pev

pov 5

Zo [kd,i (k + 1)25‘*2]

5
) Mo ©)

n=0

{2,pev)

Inequalities (4) and (5) together imply that {ﬁ} € {(2,pev)ifand only if  — % + ; 0.
(n+1)" 7 >0

Case 2: 1 < p < 2. The necessity is ensured by [4, Lemma 26, (iii.2), p23].
For sufficiency, by the Hausdorff-Young theorem in [5, Theorem 6.1], the inequality (3) are reduced to

find the proper p, v such that
1
— tp',p) t2,v).
(o} cwwn o

Also, (C(p',p"), €(2,v)) = €(p’ ©2,0) by [7, Lemma 11.1.1].
Forp’ <v,wehave {(p’ ©2,p" 6v) = {(p’ ©2,). So

(rd ~sup Y G <
4D ) sollipene  ns0 &t (k+1FPED 2ByeR)n
11
~ —_ - — > .
popra>0 (6)

For p’ > v, consider

plev

pe o p'ez
< o0
H (7’l + 1) n201l¢(pre2,pe0) HZ:O ;‘: (k + 1 p62)
0 e
~ <
; (2(/50’ o) ) -
1
~fB—= 4= 7
Bl +3> 7)

The sufficiency is finished by (6) and (7). O
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2.2 Hadamard lacunary series
A Hadamard lacunary sequence is a subsequence {n}i>1 of IN such that

RS
inf
k>1 Ny

> 1.

Jevti¢, Vukoti¢, and Arsenovi¢ [7, p.192] give the fact that, the Hadamard lacunary series in mixed norm
space H(p, q, &) can be characterized by Taylor coefficients.

Lemma 2.11. Let f(z) = Y12, axz" € H(D), for which {ny}>1 is a Hadamard lacunary sequence. Then the following
statements are equivalent:

(i) f€H(p,q,a);

(ii){n;“ak}bl e .

Theorem 2.12. Suppose {nili>1 is a Hadamard lacunary sequence, 0 < p,q, a, u, v, < oo, and {X, },»1 is a sequence
of independent, identically distributed symmetric random variables with X, € L*>(Q). Then Rf € H(p,q, @) a.s. for
each Hadamard lacunary series f(z) = Y.ooq mz™ € H(u,v,B) if and only if v,q, o, B satisfy one of the following
conditions:

Hv>qg a>p;

(i)v<qg a>p.

Proof. Note that {n, “ail¢>1 € {7 is independent of p, and M, (7, f) is comparable to Mx(r, f) for any Hadamard

q
lacunary series by [7, Theorem 6.2.2]. Lemma 9 implies that Rf € H(p, q, a) a.s. if and only if Y2, l”k:li’;k | < o0
k

a.s. ,which is equivalent to ), 'Zﬁf < 00 by [8, Theorem 5].
k
By Lemma 9, it follows that f(z) = Y.;2; mz™ € H(u, v, B) if and only if
- v
{nk ak}m e’
Thus, we need to consider p, g, a satisfying {n;‘wﬁ }k>1 € (¢°,£7), which is equal to £°*7 by [7, Lemma 11.1.1].
If v > g, then

(o]

{veq Z (a— [3) veq

k=1 My

H{n—a+ﬁ

holds if and only if a > B.
If o < g, (%9 = ¢, then {n, """} € (¢~ ifand onlyifa > p. O

In view of Theorem 2.12, there is an interesting corollary.

Corollary 2.13. Let {nili>1 be a Hadamard lacunary sequence. Let —1 < a,f, 0 < p,q < oo, and {Xy}u»1 be a
sequence of independent, identically distributed symmetric random variables with X,, € L*(Q). Then, Rf € Al, as.

for each Hadamard lacunary series f(z) = Y, ;oq € Aq ifand only if p <
2.3 Decreasing Taylor coefficients

Theorem 2.14. Let 1 < u < 00, 0 < p,q,v,a,p < oo, and {X,}us0 be a standard random sequence. Then
Rf € H(p,q,a) a.s. for each f(z) = Y.,_oan2" € H(u,v,B) with a, being a sequence of real numbers decreasing to
zero if and only if p, q,u,v,a, B satisfy one of the following conditions:

Ho<qp+i-a-3>0;

(i)o>qp+i-a-1>0
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Proof. Based on [7, Theorem 8.1.2], f(z) = Yoo a,2" € H(u,v,p) if and only if {a,},s0 € DB*i=1¢(c0, v), and
f(2) = Yoo anz" € H(2,q, ) if and only if {a,},50 € D2 £(c0, ).
Then, we only need to consider the embedding problem Df*i~~2{(co, v) C £(co,4). By [7, Lemma 11.1.1],

we have
(€(°°/ 0), (o, Q)) = (0,00 ‘1)

If v < g, then £(c0, v 0 q) = £=. Also,

1 1 1
—_— <ooif andonlyi +—-—-a-=-20.
‘{<n+ 1)ﬁ+l-a-%}n>o Fod Py

[oo
Ifv > g, so
1 veq 00 1 g
‘ {(n +1)ftimas }M Heon) Z::g (kely, (k + 1)pri—o-z )
I
~ — < ®
2n([§+%—a—%)veq

]
o

n

ifandonlyif f+1-a-1>0.
This theorem is completed. [

3. Random Power Series on L(Z)’A Spaces

The Carleson type measure is an useful tool in the process of studying function space theory. Suppose
lisan arcon T = JD and || is the normalized length of I. Based on I, the Carleson box is defined by

SH=fz=re? :1-|l|<r<1,¢%ell.

For 0 < s < oo, suppose p defined on ID is a positive Borel measure, y is said to be a bounded s—Carleson
measure, if there is a C > 0 satisfying
u(SM) < P

u is called a vanishing s—Carleson measure, if the following

u(SM) = o(l11")
holds as [I| = 0. When s = 1, we obtain the classical Carleson measure.
Let f € H(D). It is well-known that f € £*" if and only if du(z) = |f'(z)*(1 - |z/*)dxdy is a bounded
A—Carleson measure, and f € Lé’A if and only if du(z) = |f'()*(1 — |z]*)dxdy is a vanishing A—Carleson
measure [12]. Remark that a bounded A—Carleson measure is a finite measure; so for 0 < A < 1, one has

1
sup(1 — |a?)!™* f (1= P)M3(r, f)dr < 00,0 < g < 2. (8)
aeD 0

On the reverse, if f € H(D), then the argument

1
sup(1 = )" [ (1= M0, oy < o ©)
aeD 0

implies that f € L2 for0 < A <1, and

1
fo (1 = r)M2(r, f)dr < oo (10)



C. Wang / Filomat 37:16 (2023), 5215-5224 5222

implies that f € BMOA [1].
The following lemma generalizes the general case for 0 < A < 1 of random power series in £>*. For
A =1, itis given by Li and Wu [11].

Lemma 3.1. Let f(z) e HID)and 0 < A < 1. If

1
sup(1 — |a?)!™* f (1 = r)M2,(r, f')dr < co. (11)
0

aeD
Then f € Lg’A.

Proof. For any I C JID, one has
f | (re®)Pd0 < M(r, ).
I

Letdu(z) = |f’(z)|2(1 - Izlz)dxdy.
Consider

1
sup(1 — |a*) u(S(1)) < sup(1 — |a?)'=* f f(l — )| f' (re®)[dodr
aelD aelD 1-I JI

1

<sup(1— )M | (1 =AM, f)dr.
a€D 1-|

As we know, the inequality (11) implies that, for arbitrary ¢ > 0, there exists a 6,0 < 6 < 1 such that
1
(1= r)M2,(r, f)dr < e.
1-6
Thus,

sup(1 = [aP)'*u(S(1) < e < |II*e
acD

holds for any subarc I on dID with |I| < 6.
This indicates that the measure du(z) = |f'(z)|*(1 — |z]*)dxdy is a vanishing A—Carleson measure, so we

getfe L. O
When MZ,(r, f') was replaced by M(r, f') for 2 < q < co, we have the following implication.

Lemma3.2. Let0<A<1,2<g<o0,and]l— % > A. For any f(z) € H{D), if

1
sup(1 — |a?)!™* f (1= P)M3(r, f)dr < oo, (12)
0

aeD
Then f € L.

Proof. For any I C dD, employing Holder’s inequality, it follows that

oy
j; f’(reie))2d6<( j; f'(ref9)|"de) ( fl d@)

_2
< M2(r, I
for2 < g < oo.
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Let du(z) = |f'(z)P(1 — |zI*)dxdy.

f’(re"g)|2 dodr

1
sup(1 — |a*)* u(SD)) < sup(1 — |a?)'=* f f(l —-1?)
1-11 JI

acD acD
1

<sup(l —aP)MIE [ (@ - AM, £
aeD 11

The inequality (12) holds implies that there exists a positive number 6,0 < 6 < 1 satisfying

1
sup(1 — |a*)'™* fl 76(1 - P)Ma(r, fydr < e.

acD

for any € > 0. Hence, we get

sup(1 — |a®)*u(S(I) < I 7e < [I'e
acD

where 1 - % > A and the subarc I on JD with [I| < § is arbitrary. We proof that the measure du(z) =
(1 - |zP)|f'(z)Pdxdy is a vanishing A—Carleson measure, so f € L. [
remark. We must point out that the proof skills and methods of Propositions 4,6 of [11] are used in

Lemmas 10 and 11.
The random power series in LgA for 0 < A <1 are discussed in Theorem 3.1.

Theorem 3.3. Let 0 < A < 1. If Yo" |an[*> < oo, then

(o]

(R)(2) = ) anX2" € L as.

n=0
where f(z) = Yo an2" € H(D), the standard random sequence {X,,},0 is a standard Bernoulli.

Proof. Assume that Y., la,[> < co for any 2 < g < oo, using Fubini’s theorem, Jensen’s inequality and
Khintchine’s inequality, it follows that

1
E (sup(l — |a)t f M2 (1, (RF)) (1 — rz)dr)
0

acD
2
7 2

1 27 | ) d6 q
= sup(1 — |a*)'~* f E f 2 na, X,r" e = | (1 - r)dr
aeD 0 (VI b 2n

q q
d—e] (1 -r)dr
27

[e9]

1 27
< sup(1 — |aP) f E f Z
aelD 0 0 n=0
1 o
< f Z n?la,Pr¥ 2 (1 = r*)dr
0 =0
o0 1
= Z n2|an|2f an—Z(l - rz)dr.
n=0 0

By [11, Lemma 3], one gets
1 1
f 21 = r?)dr = f Y1 = r)dr < lz
0 0 n

nanxnrn—lei(n—l)ﬁ
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for any n > 1. Thus,

1 0
E (sup(l — |a?)tA f(; M (1, (Rf)') (1 - r2)dr) < Z la,* < co.
n=0

acD

This implies that

1
sup(1 — [a*)!™* f M? (1, (Rf)) (1 = r*)dr < o0, as.
0

aeD

By Lemma 3.2, the implication Rf € Lg’A a.s. follows for fixed g > %. O
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