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Abstract. Let G be finite Jordan domain bounded a Dini smoth curve T in the complex plane C. We
investigate the approximation properties of the partial sums of the Fourier series and prove direct theorem
for approximation by polynomials in the subspace of Morrey spaces associated with grand Lebesgue
spaces. Also, approximation properties of the Faber-Laurent rational series expansions in spaces L"* (I')

are studied. Direct theorems of approximation theory in grand Morrey-Smirnov classes, defined in domains
with a Dini- smooth boundary, are proved.

1. Introduction and main results

Let T denotes the interval [0,27]. Let LF(T), 1 < p < oo be the Lebesgue space of all measurable
2n—periodic functions defined on T such that

P

I, = f ) dx| < co.

The Morrey spaces Lg’A (T) foragiven 0 <A <1andp > 1, we define as the set of functions f € Lfa ()
such that

r

1
”fHLg"‘(T) = Slllp mﬂ f’f (t)‘p dt} < oo,
1

where the supremum is taken over all intervals I C [0,27]. Note that LS’A (T) becomes a Banach spaces,
A = 1 coincides with L? (T) and for A = 0 with L* (T).If 0< A; < A, <1, then LI () c L) (T).. Also, if
fe LS’A (T), then f € L? (T) and hence f € L! (T). The Morrey spaces, were introduced by C. B. Morrey in
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1938. The properties of these spaces have been investigated intensively by various authors and together
with Lebesgue spaces L? play an important role in the theory of partial equations, especially in the study of
local behavior of the solutions of elliptic differential equations and describe local reqularity more precisely
than Lebesgue spaces L?. The properties of the Morrey spaces have been investigated by several authors
(see, for example, [13], [22], [24], [35], [44 ], [45], [46], [51] and [56]).

We denote by LP9(T), 6 > 0, the Lebesgue space of all measurable functions f on T, that is, the space
of all such functions for which

=
€

o —&
”fHLn),@(T) = Oiﬂf_l ET‘/‘V‘(X)F dx < 00,

The space LP?( T), 6 > 0 is called the generalized grand Lebesgue space. LP9(T)is Banach function
space, nonreflexive and nonseparable. Note that if 6 = 0 then LP?(T) turns into the grand Lebesgue space
LP(T).If 6 = 1 then we obtain grand Lebesgue space [”)( T): = LP!(T). The grand and generalized
grand Lebesgue space were introduceed in the works [27] and [23], respectively. Note that the space
LP)(T) is a rearrangement invariant Banach function space, but is not reflexive. We can write the following
embeddings:

P(T) cIP(T)cLF(T), 1<p< o

If 61 < 6;then for 0 < € < p —1 the embeddings

LF (T) c IPOY(T) c LPO(T) c P (T), 1 <p < o0

hold.Note that the space L7 (T) isnot densein LP)(T) [18].The informations about properties and applications
of the grand Lebesgue spaces can be found in [18], [23], [27], [39], [53] and [54].

We denote by LP/(T) , 1 < p < o0, 0 < A < 1 the Lebesgue space of all measurable functions f on
T, that is, the space of all such functions for which

1
—c

P
|If Hmw\(qr) = sup sup% f | f(x)|p Tdx| <o,
o<e<p-1| 1 [ -

where the supremum is taken over all intervals I C [0, 27t]. The space LP}( T) is called grand Morrey space .
It is easy to verify that the following embeddings are hold:

P cIPMT) cLPFS(T), 0<e<p-1.

Denote by C* (T) the set of all functions that are realized as the restriction to T of elements in C* (R) . We
define LP* (T) as the closure of C® (T) in LPA( T).

Let Wf)’/\ (T) (r=1,2,...) (resp. Wf A (T) (r =1,2,...) be the linear space of functions for which f*~V is
absolutely continuous and f ® eTpA (T) ) be the linear space of functions for which f =1 jg absolutely
continuous and f ) € LV (T)

Let G be a finite domain in the complex plane C, bounded by the rectifiable Jordan curve I Without
loss of generality we assume 0 € Int I. Let G™: =ExtI'. Letalso T := {weC: |w/=1}, D = Int T
and ID~ = Ext T. We recall that if for a given analytic function f on G, there exists a sequence of rectifiable
Jordan curves (I';) in G tending to the boundary I' in the sense that I', eventually surrounds each compact
subdomain of G such that

f [f@ Mzl < M < o0,

Ty
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then we say that f belongs to the Smirnov class EP(G), 1 < p < co. Each function f € E? (G) hasnon-tangential
limit almost everywhere (a.e.) on I' and the boundary function belongs to L (') .
We denote by ¢ the conformal mapping of G~ onto D normalized by

@ (c0) =00, lim@>0.
o0 Z

Let 1 be the inverse of . The function ¢ and 1) have continuous extensions to I' and T, their derivatives
¢’ and ¢y’ have definite non-tangential limit values on I'and T a.e., and they are integrable with respect to
the Lebesgue measure on on I' and T, respectively. It is known that ¢’ € E! (G) and ¢’ € E! (D"). Note
that the general information about Smirnov classes can be found in [19, pp. 168-185] and [ 26 pp. 438-453].

LetT' ¢ C be a rectifiable Jordan curve in the complex plane . We denote I' (t,r) =I'NB(t,r), tcI,r >
0, where B(t,r) = {z € C : |z — t| < r}. The Morrey spaces LP"* (T') for a given 0 < A < 1and p > 1, are defined
as the set of functions f € Lfoc (T") such that

”f Hm«\(r) = zers,l;EKLr% ”f ||LP(F(t,r)) < %,

where L is the length of the curve I

Note that LP?(I') = LP ('), and if A < 0 or A > 1, then LP* (T) = ®, where ® is the set of all functions
equivalenttoOon T.

We define also the Morrey— Smirnov classes EP* (G),0 < A < 1,and p > 1, of analytic functions in G as

EPMG) = {f e EN(G): f e VM (D).
If we define the norm of f € EP4(G), 0<A <1 andp>1by

”fHEM(G) = Hf“ml\(r)’

then the class EP* (G), 0 < A <1 and p > 1 will be a Banach space. Note that for A = 1 the class EF* (G)
coincides with the classical Smirnov class E* (G) and for A = 0 with E*(G).If G = D := {z: |z] < 1}, then
we have Morrey- Hardy space HP* (D) := EP} (D) on the unit disk D.

Let I' ¢ C be a rectifiable curve and let v be arc-length measure on I. Let 1 < p < co and let
0 < A < 1. We say that a measurable locally integrable function f on I belongs to the class LP* (T) if the
following condition holds:

1
p-¢

f lfof " dv)| <o

B(z,r)nT'

€
LSS SU _

||me‘(r) 0<a<;17371 zeIP v(B(zr)NT)*
0<r<L

We define also the grand Morrey— Smirnov classes EP*(G),0 < A < 1,and 1 < p < oo, of analytic
functions f in G as

EPAG) ={f € E'(G) : f e P (D).
We define the norm of f € EPA(G), 0<A<1 and1<p<co by

”fHEF)//\(G) = “f”LVM(I“)'

The closure of Smirnov class E? (G) in the space EP*(G),0<A <1 and1 < p < o we denote by
EPAG),1<p<oo and 0<A<1.
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Letl <p<oo and0< A <1, and let

T

ATF (x) = Z (-1)’*5“( ; )f(x +st), £>0,

s=0
for a given r € N. For f € LPA(T), we define the operator

h

(vif) (@) = }11 f A7 £ (x)| .

0

The function

Qs (f,8) = sup (AR

7 > OI
LPA(T)

is called the rth mean modulus of f € LPMT),1<p<oo, 0<A<1.

5228

It can easily be shown that Q); (f, ), , is a continuous, nonnegative and nondecreasing function satisfying

the conditions

yj}% Q- (f,0)1 =0, Qr (f +9,0),) 4 < Qr(f,0)) 1 + 2 (9,0),,, 0>0

for f, g € LPA(T).

Let f € L'(T) and let fbe its conjugate function , with Fourier series

(o] (o]

fx) ~ Z (ax cos kx + by sinkx), f(x) ~ Z (ay sinkx — by cos kx) .
k=1 k=1

LetS, (-, f) (n=1,2,..) be the nth partial sum of the Fourier series of f € L'(T), i.e.

n

Su(x, f) = Y (@ccoskx + by sinkx) .

k=1

Using the method of proof of [17,Theorem 2.1 and Proposition 2.2 ] one can shown that

||S" (.’ f)“U’)r"(T) <a ||fHLP)ﬂ"(T) 4 ||f”Lp),A(T) <6 ”f”LV)/A(T) 4

an as a corollary we obtain

”f -S, (’ff)”LW(T) < c3E, (f)p),A , E, (f)p),/\ <ok, (f)p),/\ .

Let f € TP (T) and r € N . We define K—functional as

KV (f’ 6)p),/\ = ll’lf{”f - IP”LP),/\ +0 ||llb(r)“U’),)\(T) : l)lj € W]Vp),/\ (T)/ o> 0} .

We denote by [], the class of trigonometric polynomials of degree not exceeding n € IN. The best

approximation of f € [P ,1<p<oo, 0 <A <1intheclass [], is defined by

En (f)p),/\ = inf{”f - T”“Ln)ff‘ar) tTu € Hn}
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We denote by w = ¢ (z) the conformal mapping of G~ onto domain D := {w € C: |w| > 1} normalized
by the conditions

gb(oo):oo, lim M>O

z—00  Z

and let ¢ be the inverse mapping of ¢.
We denote by w = ¢ (z) the conformal mapping of G onto the domain D™ := {weC: |w|>1}
normalized by the conditions

$1(0) = o0, lim(zn (2)) > 0,
and let 11 be the inverse mapping of ¢; .

The functions ¢ and P1have in some deleted neighborhood of the point w = co the following represen-
tations

_ n, rn
Y (w) =yw+yo+ ” +w2+...,y>0,
and
a1 (0%} (2973
¢1(W):;+ﬁ+'..+ﬁ+ml ap > 0.

The following expansions hold [14], [19] and [57] :

Y (w) i O (2)

w(w)—z_ wk+1,z€Gandw61D, 2)

k=0

and

zeG and we D™ 3)

¥/ @) _i_P(%)
‘Pl(w)_‘z_k:o wkl’

where @y (z) and Fy (%) are the Faber polynomials of degree k with respect to zand 1 for the continuums

G and C\G, respectively. Also, for the Faber polynomials @ (z) and rational functions Fy (%) the integral
representations

C n
o) = [p)] + ﬁ f [gz(f)zldc, k=0,1,2,.,2€G, )
T
C n
F(3)= [0 0] -5 f [qbgfi] dC, k=0,12,..,2€G (5)
T

hold [14], [57].
Let also x be a continuous function on 27. Its modulus of continuity is defined by

w(t, x) = sup Ix (t1) = x (t2)I, £ > 0.
t,t€[0,27], |t —to|<t

The curve I' is called Dini-smooth curve if it has the parametrization

T:x@®),0<t<2m,
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such that y’ (t) satisfied the Dini-continuous, i.e.

T

f—a) (t’X/)dt < o0
X t
and
X' #0
[50, p.48].
Let f € L1 (I'). Then the functions f* and f~ defined by
f (C) f@ @)y @) ,
f ()_me 27'(1 v(w) -z dw, z€G ©)
T
and
£Q 4 f @ @)y @) .
f@= 2711[ 2711 U1 (w) —z w, z2€G )
T

are analytic in G and G~, respectively, and f~ (c0) = 0. Thus the limit

5t (F) @) = lim —= f 1

NCIC-zl>¢}

exists and is finite for almost all z € T.

The quantity Sr(f)(z) is called the Cauchy singular integral of f atz € I".

According to the Privalov theorem [26, p.431] if one of the functions f* or f~ has the non-tangential
limits a.e. on I, then Sr(f)(z) exists a.e. on I' and also the other one has the non-tangential limits a.e. on I'.
Conversely, if Sr(f)(z) exists a.e. on T, then the functions f* (z) and f~ (z) have non-tangential limits a.e. on
I'. In both cases, the formulas

@)= SHN@ + 3@, F@) =5 - 5 ®)
and hence
f@Q=f@-f ©)

holds a.e. on I'. From the results in [47], it follows that if T is a Dini-smooth curve Sr is bounded on
LPYM(T). Note that some properties of the Cauchy singular integral in the different spaces were investigated
in [12], [17], [20], [24], [38], [40], [41 ], [43] and [ 47] .

Let f e POANT). Using (3), (4), (7), (8) and (9) we can associate Faber- Laurent series

) - ga@k (2)+ ki‘ ek ().

where the coefficients a; and by are defined by

1 (flr@)

27t wktl
T

ay ;= dw, k=0,1,2,...
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and

1 f i (w)] _
= % de, k= 0, 1,2,...
T

b

The coefficients a; and by are said to be the Faber- Laurent coefficients of f.
If T is a Dini-smooth curve, then from the results in [59], it follows that

0<es< qb’(w)|<c6<oo, 0<ecr< ¢;(w)|<c8<oo; (10)
0<c9<|¢’(w))<c10<oo, 0<611<|1,b1(a))|<612<oo

where the constants cs, ¢g, ¢7, cg and ¢y, 19, €11, €12 are independent of z € G and |w| > 1, respectively.

Let T be a Dini-smooth curve and let fy (w) := f[¢ (w)] for f € LPAT) and let fi (w) := f[1 (w)]
for f e LP(I). Then using (10) and the method, applied for the proof of the similar result in [33, Lemma
1], we obtain fy € LP"(T) and f; € LPA(T).

Moreover, f; () = f () = 0 and by (10)

fow) = fy @) - fo @),  A@w) = fw) - f; (w) (11)

a.e.onT.
We set

n

Ri(f,2):= ) axu(2) + ) bka(%).

k=0 k=0

The rational function R, (f, z) is called the Faber-Laurent rational function of degree n of f .

Note that, in this paper we study the problems of approximation theory in space L"* (T), the closure
of the set of the trigonometric polynomials in LP* (T), with1 <p <oco and 0< A < 1.

The problems of approximation of the functions in classical Morrey spaces and variable exponent
Morrey spaces were investigated in [10], [11], [12[, [14], [15], [21], [26], [27]. In this work we invwestigate
the approximation properties of the partial sums of the Fourier series and some direct theorems for
approximation by trigonometric polynomials in the subspace grand Morrey spaces. Similar results in
different spaces have been investigated by several authors (see. for example, [1]-[4], [8] -[11], [15], [16], [15]-
[17], [25], [30]-[35], [42]). Also, approximation of the functions by Faber-Laurent rational functions in the
grand Morrey spaces defined on the Dini-smooth curve are investigated.. Direct theorems of approximation
theory in grand Morrey- Smirnov classes, defined in domains with a Dini-smooth boundary, are proved.
Similar problems of approximation of the functions by Faber polynomials and Faber- Laurent rational
functions in different spaces were studied in [5]-[7], [28]-[33], [36], [37], [49], [58], [60] .

Our main results are as follows. _

Theoem 1.1. Let 1 < p < 00, 0 < A < 1and r € IN. Then for every f € Wf)’A (T) the inequality

c v
Ev(Hy 5%]5" ( Ii >)m (12)

holds with a constant c13 > 0 independent of n.
From Theorem 1.1 we obtain the following Corollary.

Corollary 1.1. Let 1 <p < oo, 0 <A < landr e N. If f € WP (T) then

E (P < 1y

with a constant c14 > 0, independent of n.
Theoem 1.2. Let 1 <p < 00, 0 < A < 1 and r € N. Then for every f € LV} (T) the inequality

E. (f)p),/\ <150 (f, 6);;),}\
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holds with a constant c15 > 0, independent of n.
Theorem 1.3. Let T be a Dini-smooth curve. If f € LP* (), 1 <p < oo, 0 < A <1, then for every natural
number n_ there are a constant ci¢ > 0 and rational function

n
Ri(zf)=) a7
k=—n

such that
”f - Ry ('/ f)”Lp(.),/\(')(r) < C16 {QV (fO/ 1/n)p),/\ +Q, (fl; ]‘/n)p),/\} ’

where R, (., f) is the n-th partial sum of the Faber-Laurent series of f.

Theorem 1.4. Let T be a Dini-smooth curve. If f € EPA(G), 1 < p < oo, 0 <A <1, then for every natural
number n the inequality

n

f- Z 2 Pi(z

k=0

< 178, (fOr 1/”);,),)\ (13)
LPA(T)

holds with a constant ¢y > 0 independent of n.

Note that the order of polynomial approximation in E (G), p > 1, has been investigated by several
authors. In [58] Walsh an Rusel gave results when I' is an analytic curve. When I is a Dini-smooth curve
direct and inverse theorems were proved by S. Y. Alper [5], These results were later extended to domains
with regular boundary for p > 1 by V.M. Kokilashvili [42] and for p > 1 by J. E. Andersson [6]. The
approximation properties of the p—Faber series expansions in the w—weighted Smirnov class E? (G, w) of
analytic functions in G whose boundary is a regular Jordan curve are investigated in [28].

Theorem 1.5. Let T be a Dini-smooth curve. f € EPA(G™), then for every natural number n the inequality

< c18Q2 (fl/ 1/71);7)1/\ (14)
LPA(T)

f-F )= Y bEG).

k=0

holds, with a constant c1g > 0, independent of n.

2. Auxiliary results

In the proof of Theorem 1.2 we use the following theorem.
Theorem 2.1. Let 1 <p < 00, 0 < A < 1 and r € N. Then for every f € LP"} (T) the inequality

K: (f,0) < 10 (f, 0)) 1

holds, where the constant c19 independent of O.
Proof of Theorem 2.1. Let ¥ > 1 and 6 > 0. We define the function

By 5 . b ol
fro(x) - —56/[ ﬁof---of;(_l) 1(5)
x f(x I t,))dtl...dt,}dh (15)

It is clear that
Atpys.ayrf )

r—

1
) (_1)r+s+1( ' )f(x + 2 ke 1) - f ). (16)

s=
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Use of (15) and (16) we obtain

“frb () f( )“Lv )A(T)

5 Kok
2 1 .
< 5 Ff fA(t1+,..t,)/rf(‘)dtl-"dtr dh
5/2 0 0 LPA(T)
B ook
2 1 .
= S sup W A(t1+ t)/rf(')dtlmdtr dh
S<h<
0/2 2<hso 0 0 LPA(T)
Bk
1
= sup —rff ety Cdbdy
S <h<6 h
== 0 0 1PA(T)
h h ( ta+..+t+h
1
= sup ||— f f f |AL f ()t |dta...dt,
S<p<h hr
2=31= 0 0 ty+...+t, IMA(T)
ho b rh
1
< ¢y sup = ff f|A§/rf(-)dt| dty...dt,
2<h<s 0 0 5
r L}’)/‘(T)
< .= sup hf'Af/’ -)|dt
<h<b
LPAA(T)
1 r
= Cpr sup EfAtf()dt =C23QV(f’6)p),/\ (17)
0<h<o
0 LPA(T)
It is clear that for the function fr(? (-) the eguality
) 5 1 r—1
r r+s r r "
960 = SI[WZHV ( S )(:) A(,S)h/yf(x)]dh (18)
5/2 5=
holds. Then from (18), we have
2 )
2 0 o r—1
r r
<[5 ( )(—) [ -ef ()
7 = r—s
5/2
- r Y1 6
< 20 (D)) [ ol |
< 2% S_O( S) — ) 5 | oy f 0] di (19)

0
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From (19), we get:

(r)
T -
o
r—1
r+lc—r r r r 1 .
=20 Z‘(S)(V—s) 5[|A(r—s)h/rf()|dh
B 0 U’),H,«\(T)

(r—s)o/r

)(ris)y (r—i)é/r ‘of |ALf (x)| dt

r—1
— 2r+l 6—/‘ r
S

Lp),s,,\ (']I‘)

v —

A
N
2
3
£
(e%)
1
.
|
XL
——

) oo
2767 (f,0),) 1 (20)
Taking into account the relations (17) and (20) we have
K; (f,0),1
”f“S -f “LPM(T) +0|1f, r(,g) LPA(T)
2710, (f, ), + 2267Q, (f,0), 4 < €4 (£,0), -

The proof of Theorem 2.1 is completed.

In the proof of Theorem 1.3 we use the following Lemmas.

Using Theorem 1.2 and the method applied for the proof of a similar result in [14] we can prove the
following Lemma:

n
Lemma2.1. Let g€ EPAN(D), 1<p<oo, 0<A<LIf Y di(g)w" is the nth partial sum of the Taylor series
k=0

IN

IA

of g at the origin, then

SC25Q(9,%) )A,Vn €N,
p),

g(w) — Z dyw*
=0

LPM(T)

holds with some constant co5 > 0, independent of n.
Lemma22. Let g€ LPOAN(T), 1<p<oo, 0<A<1 Then the inequality

Q" ')p(.m(.) < 262 (g, ')p<.m<~> (21)
holds, with some constant ¢y > 0, independent of n.
Proof of Lemma 2.2. It is clear that the equality
. 1
g =51(9)+59 (22)

holds a.e. on T. Using the method of proof of [14, Lemma 3.3] (see also, [33, Lemma 2]) and the
boundedness of the singular operator St (g) in LP}(T) [47] we can prove that

Q: (57 (9) ')p),A < cr (g, ’)p),A- (23)

Then using the subadditivity of the modulus of smoothness Q, (g%, ')p), 1 (22) and (23) we obtain inequality
(21) of Lemma 2.1.
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3. Proof of the main results

Proof of Theorem 1.1. Let f € WP (T) and let Y. (ay cos kx) + by sin kx) be the Fourier series of f and
k=0

Su(x, f)= Z (ax cos kx) + by sin kx)
k=0

be its nth partial sum. Note that for the conjugate fungtion f the Foruer expansion
Su(x, f)= Z (ay sin kx) — by cos kx)
k=1

holds. We set
Bk (x, f) := ax cos kx + by sin kx.

It is clear that
F) =Y Be(x, f) (24)
k=0

Note that, fork =1,2, ..., we can write the following equalities:

Bk(x,f) : =agcoskx + bysinkx
= a cosk(x+r—n—r—n)+b sink(x+r—n—r—n)
- 2k 2k) K 2k 2%
T Irm . T
= akcos(kx+7—7)+bksm(kx+?—7)
= a [cos (kx + E)cos m_ sin(kx + T)sin T]
- 2 2 2 2
+by [sin (kx + r—n)cos m_ cos (kx + r—n)sin 1’_7'(]
2 2 2 2

T T . T
= cos? [akcosk(x+ 7)+bks1nk(x+ 7)]
. I . M T
+s1n? [aksmk(x + 7) - bkcosk(x + ?)]

rTt rTt rTt . It
= Bk(x+ ﬁ, f)COS? +Bk(x+ ﬂ, _]’C—)Sll’l?, (25)

By (x, £) = KBy (x s ) (26)
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From (25) and (26), we obtain:

- T\ T
ZBk(x,f) = Bo(x, f)+co TZB"(JH_ﬂ’ f)
k=0 k=1
T T
+S 72-12: Bk(kf+-zg—, }j
k=1
mxe 1 T
= Bo(x, f)+co Tkz_;r—kr Bk(x+ 2k'f)
myx 1, m
+sm7;ﬁ;’Bk(x+ﬁ,f)
iy 1
— [ il (r)
= By (x, f)+ cos > kzz;rkBk(x f )
[ee) 1 —
+smr§Zr—kBk X, (7))
k=1

Then, from equalities, (24) and (27), we have:

i By (x, f)

k=n+1

[ =Su(x f)

m oy 1

i - (1)

Ccos > rkBk(x, f )
k=n+1

moe 1 —
i — il (r)
+ sin > E rkBk(x,f’).

k=n+1

On the other hand the following equalities hold:

(o)

Y, ol 1) = B glsslo 1) =i (o, )

k=n+1 k=n+1

= Y el 1) - @] [Siaa (o 1) - £ @)

k=n+1

- Y (F- iy lskla ) - @)
k=n+1
e KA GCRAURIA I

Y enle @) = X (gl 7)- 7

k=n+1 k=n+1
7 [Sn(“r ﬁ;))_]?(wr)(a)l

(n+1)

5236

(27)

(28)

(29)

(30)
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Use of (28), (29), (30) and (1), we get:
”f = Sn ("f)”Lm,/\ar)

n 1 1 r |
kgl(P ok 1)r) ‘Sk(', £O) = £
: 718 f(r)) — £

S (1
. Z (¢~ 52

(ﬂﬂ—ﬁ3

IA

LPA(T)

LPA(T)

Sk(v Fr’)— £

LPA(T)

LPM(T)

: 1 )
{k - ( (k+1) ) (f( ))rf),/\ - (n+ 1)’Lp>,A(T)E” (f( ))p),/\}
+cz9 ( k+1) ) (f(r))pm .

e E, ( <r>) (31)
» (TH' D oy f A

Note that the sequence {E,, ( f* is desreasing. Then using (31) and (1) we have
q A & &

1F =50 C Al
e (7)), {anl (klr - (k-:l)’) T i 1)’}
7, {5 (- ) o)

2C33

ERCED) Er (f(y))pm ’ 2

IA

IN

IA

On the other hand the inequality

E" (f)p),/\ < “f - 57’! ('/ f)”LP),/\(T) (33)

holds. According to (32) and (33), we have inequality (12) . The proof of Theorem 1.1 is completed.

Proof of Theorem 1.2. Let f € LP*(T) and h € V~Vf)’A. According to Theorem 1.1 and Corollary 1.1, we
obtain:

Ev (N

IA

E.(f-h+ h)m <E,(f- h)p),x\ +En (M)

1
C34 {”f - h”LPM(']I‘) + W ”h(r)”Lp),/\(qr)} (34)

Using (34) and definition of the K—functional we have

IA

En (f)p)) < c3sKe (f 1)

)/\
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The last inequality and Theorem 2.1 imply that:

Ev (N < 360 (f,0)) 1 -

The proof of Theorem 1.2 is completed.
Proof of Theorem 1.3. Let f € LP*}(T). Then, from (11) we have fy € LPX(T), f; € LP(T). According to
(12), we obtain

f© = f5 (@) = f5 @), f(&) = £ (@1(E) = fi (¢1()). (35)

a.e.onl.
We prove that the rational function

(]

Ry (f,2) = Z 2Py (z) + i bxFr (%)
=1

k=0

satisfies the condition of Theorem 1.3 .
Letz* € G™. Using the method of proof in [32 ], we can prove that f; (qb (C)) € EN*(G™) € E(G™). Then
it is clear that

1 £ (90) o
i | Tor A=Ay (0)).

r

Then last equality, (5) and (15) imply that

. . ¥ afo]
Z akCDk(z*) = kZO Ak [(P (Z*)]k + ﬁ f = C-z*
= r

k=0

\ > afo©] - £ [6©]
=Y 4 [¢(z*)]k+2ini f - d

k=0 T

1 f(©) T
+ﬁf—c_z*d(:—fo o] (36)
T
Using (7) and (36), we find:
éﬂak[q)«:)]"

Z qDr(z) = éo 03 [CP (Z*)]k + % Ff -z

k=0

) > afo©] - £ [6©]
=Y a [¢(z*)]k+ﬁ f S dc

k=0 v

+f @) - fi [0 @)]. (37)
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Taking the limit as z* — z € I along all non-tangential paths outside I'and considering (8),(9), (35) and (37),
we have

n

ﬁ@—Zw@@)=4ﬁM@ﬂ3§Mmmﬂ

k=0
+Sr [

By [47] the singular operator Sy : LP* (I) — LP* (T') is bounded. Then using (35), Minkowski’s inequality,
Lemma 2.1 and 2.2, we have:

ﬂhmﬂ—Z@wwﬁn 38)

k=0

n

Fr@ =) ad()

k=0

Lp),/\ (r)

5[5 o) - Y afo]

k=0

+
k=0

&WHmﬂ—i@Mmﬂ}

PAT) A T)

n

% fof (w) - Z awk

k=0

n

fi @)=Y awt

k=0

IA

+ C37

PA(T) IPA ()

n
@) -y gt
k=0

IN

C3g <39

fi @)=Y o (fir) of
k=0

A A

cao (fif 1 /n)pm <canQ (fo, 1/m),) ;- (39)

IN

Let z* € G. Using the method of proofin [32] we can prove that f~ (q51 (C)) € EN*(G™) € E} (G) . Therefore,

1 fi (qbl (C)) _ .
Py 1(;_—TdC = f1 ((Pl (z )),
r

Then the last equality, (5) and (35) imply that

kil by Fy (Zl) Z by [qbl (z" )] = lgll)kg[%fé)]dé
= r

£, (kilbk[qn(é)] —f [(7)1(9)])

= él bk I:(Pl (Z*)] 27':1 - E-z*
_ﬁ i-f = dé 2mi f fl ((PI(C))

P [¢1 (z¥ ) 2}71' / (kgl bk[qbl(iz]_;ﬁ [9’)1(<E)])d5

f@)ﬂwﬂﬂ

Taking the limit as z* — z along all nontangential paths inside of I' we have

éb"F" (%) - éb" [(Pl (Z)]k -3 (é by [qbl (z)]k ~ fr [¢1 (z)])
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~5¢ ( Lofon @] - [ (z)]) —f @~ f; [0 )]

a.e.on I'. Consideration of (9) and (35) gives us

Fe+Y bE(1) = %[Zbk[qx @] - £ [¢n <z)]J—sr[Zbk[¢1 @] - £ [¢n <z>]J (40)
k=1 k=1 k=1

Using (40), Minkowski’s inequality and the boundedness of St in LPYM(T) [47], Lemma 2.1 and 2.2, we
obtain:

w_ (2) + Zn: biFk (%)
k=1

LP-A(I)
1 -

<|3 [Z bifon @] - £ [0 <z>]] +sr [Z e[ @ - £ [on <z>]]

k=1 A1) k=1 LPA(T)
< % b — fi (w* 4 Z bew — fir w)

k=1 LPA(T) k=1 LPY(T)

< C43 Z bkwk — f1+ (w{

k=1 LPA(T)

=C44 ,Bk(ffr)wk_ffr (w*

k=1 LPA(T)

< cy5Q), (f1+, l/l’l)p)’/\ < 462, (fl, 1/n)p),}l . (41)

Now combining (8), (39) and (41) we obtain

”f - Ru (., f)”m/\(r) < cur(p) {Qr (fo, 1/”)p),/\ +0Q, (fr, 1/”)p),A}

The proof of Theorem 1.3 is completed.
Proof of Theorem 1.4. Letz* € G™If f € EP*(G), then f € EP(G) and gf—cz) € EP (G) . Therefore,
f L9 ~ 0. That is f~(z) =0a.e. onTI. Then taking into account (11), we have:
r

—z*

n

fo (w) — Z awk

k=0

1
< C4gQ,/ (fo, —) ,VTI € N,
: 1/p),A
LPOAO(T)

n

fo @ - ) mP(2)
=0

n

fo (w) - Z awk

k=0

< Cy9
A T

LPA(T)

we have the inequality (13) of Theorem 1.4.
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Proof of Theorem 1.5. Let z* € G and f € EP* (G™). It is clear that f gf—cz) = f(c0). Then we obtain
r

f*(z) = f(o0) a.e. onT. Now combining (11), we get:

n
1
fr @)=Y bt < o (fur) neN,
- n/p)A
k=0 LPA(T)
_ - 1 3
f (Z)_Zbkpk(g) < ¢s51 ff(w)—Zbkwk
k=0 LPAT) k=0 LPA(T)

we obtain the inequality (14) of Theorem 1.5.
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