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Abstract. In this paper we prove new relations between the comparative index and the Hörmander index
(and the Maslov index) in the finite dimensional case. As a main result we derive an algebraic formula
for calculating the Hörmander index of four given Lagrangian planes as a difference of two comparative
indices involving certain transformed Lagrangian planes, or as a combination of four comparative indices.
This result is based on a generalization of the comparison theorem for the Maslov index involving three
Lagrangian paths. In this way we contribute to the recent efforts in the literature (by Zhou, Wu, Zhu in
2018 and by Howard in 2021) devoted to an efficient calculation of the Hörmander index in this finite
dimensional case.

1. Introduction

Recently, there has been an intensive research activity in the study of the Maslov index Mas(Y, Ŷ, [a, b])
of two Lagrangian paths Y and Ŷ or in the study of the Hörmander index s(Y1,Y2, Ỹ1, Ỹ2) associated with
four Lagrangian planes Y1,Y2, Ỹ1, Ỹ2 ∈ Λ(n), see [2, 16, 17, 19, 20, 23, 30] and the references given therein.
Recall that for a fixed dimension n ∈N the space of Lagrangian planes is defined as

Λ(n) := {Y ∈ R2n×n, W(Y,Y) = 0, rank Y = n},

where W(Y, Ŷ) ∈ Rn×n denotes the Wronskian of the two Lagrangian planes Y and Ŷ, i.e.,

W(Y, Ŷ) := YT
J Ŷ, J :=

(
0 I
−I 0

)
. (1.1)

Here I and 0 denote the identity and zero matrices and J ∈ R2n×2n is the canonical skew-symmetric
matrix. Each matrix Y ∈ Λ(n) can be identified via its image with a Lagrangian subspace of R2n, which
is spanned by the columns of Y. The matrix Y is then sometimes referred to as a frame of the Lagrangian
subspace generated by Y, or as a conjoined or isotropic basis, see [5, 24]. Furthermore, a continuous function
Y : [a, b]→ Λ(n) is called a Lagrangian path.
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The Maslov index for the Lagrangian paths and the Hörmander index s(Y1,Y2, Ỹ1, Ỹ2) are defined in
a geometric way (see below), with the Hörmander index given as a difference of two Maslov indices
involving a Lagrangian path Y(t) connecting Y1 and Y2, which intersects with Ỹ1 or with Ỹ2. The efforts
in the recent papers [16, 30] are directed to an efficient calculation of the Hörmander index in this finite
dimensional case. In particular, in [30, Theorem 1.1] the authors present the Hörmander index, denoted
here by sZ(Y1,Y2, Ỹ1, Ỹ2), in terms of the triple index defined by [6, Eq. (5)], as

sZ(Y1,Y2, Ỹ1, Ỹ2) = i(Y1,Y2, Ỹ2) − i(Y1,Y2, Ỹ1) = i(Y1, Ỹ1, Ỹ2) − i(Y2, Ỹ1, Ỹ2). (1.2)

Recall (see [6]) that the definition of the triple index i(α, β, γ) with α, β, γ ⊆ R2n being Lagrangian subspaces
uses the bilinear form Q(α, β, γ) defined on the subspace α∩ (β+ γ), as well as it uses the information about
the dimensions of the intersections α ∩ γ and α ∩ β ∩ γ, see [30, Lemma 3.13] for more details. However,
taking in mind the recent applications of the Maslov index in the oscillation and spectral theory of linear
Hamiltonian differential systems (see [11, 15, 16, 18–20]), where the main results are formulated in terms
of the frames of Lagrangian paths, it seems natural to present connections between the Maslov indices for
different paths, and in particular the Hörmander index, in terms of the frames Y1, Y2, Ỹ1, Ỹ2. According to
our knowledge, the representations of the Hörmander index in terms of the frames Y1, Y2, Ỹ1, Ỹ2 are known
in this situation only for special cases associated with different transversality conditions for the Lagrangian
planes, meaning that some blocks of Y1, Y2, Ỹ1, Ỹ2 or/and their Wronskians (1.1) are nonsingular, see [20,
Lemma 2.3, Corollary 1] and [16, Section 3].

The aim of this paper is to offer a convenient algebraic tool, which we call the comparative index (see [9]
or [7, Chapter 3]), presenting connections between the Maslov indices for three Lagrangian paths Y1, Y2,
Y3 in terms of the frames Y1(a), Y2(a), Y3(a) and Y1(b), Y2(b), Y3(b) defined by their endpoint values. More
precisely, for the Lagrangian paths Y1, Y2, Y3 on [a, b] we consider a continuous symplectic matrix Z1(t)
satisfying Y1(t) = Z1(t) (0 I)T on [a, b]. Then we prove the formula, see Theorem 2.2,

Mas(Y1,Y2, [a, b]) +Mas(Y2,Y3, [a, b]) −Mas(Y1,Y3, [a, b])

= µ
(
Z−1

1 (a)Y3(a), Z−1
1 (a)Y2(a)

)
− µ

(
Z−1

1 (b)Y3(b), Z−1
1 (b)Y2(b)

)
.

The numbersµ
(
Z−1

1 (t)Y3(t), Z−1
1 (t)Y2(t)

)
for t ∈ {a, b} are defined by the Wronskians involving Y1(t),Y2(t),Y3(t)

for t ∈ {a, b} and they do not depend on the choice of the matrix Z1(t), for which Y1(t) forms its second block
column according to the above definition. The number µ(Y, Ŷ) is defined for arbitrary Lagrangian planes Y
and Ŷ and it is called the comparative index, see [9] or [7, Chapter 3] and Section 2.1 for more details. It has
useful applications in the oscillation and spectral theory of linear Hamiltonian systems and their discrete
analogs – symplectic difference systems, see [7, 10–12, 26, 27] and the references therein.

For the special case when Y1(t) := Y(t), Y2(t) := Ỹ(b), Y3(t) := Ỹ(a) and using the formula for the
Hörmander index s(Y(a),Y(b), Ỹ(a), Ỹ(b)) as the difference of the Maslov indices Mas(Y, Ỹ(b), [a, b]) and
Mas(Y, Ỹ(a), [a, b]) (see [16, Section 3], [30, Section 3], and equation (3.5) below) we derive from Theorem 2.2
the representation of the Hörmander index in terms of the frames Y(a), Y(b), Ỹ(a), Ỹ(b) as

s(Y(a),Y(b), Ỹ(a), Ỹ(b)) = µ
(
Z−1(a)Ỹ(a), Z−1(a)Ỹ(b)

)
− µ

(
Z−1(b)Ỹ(a), Z−1(b)Ỹ(b)

)
,

where Z(t) is a continuous symplectic matrix on [a, b] having Y(t) as its second block column (see Theo-
rem 3.2). Alternatively, we obtain the formula

s(Y(a),Y(b), Ỹ(a), Ỹ(b)) = µ(Ỹ(b),Y(a)) − µ(Ỹ(b),Y(b)) − µ(Ỹ(a),Y(a)) + µ(Ỹ(a),Y(b)).

We also consider several applications of Theorem 3.2, which are based on the properties of the comparative
index. These include general estimates for the Hörmander index, explicit conditions for its extreme values
or its sign, or connections of the comparative index with the triple index (Corollaries 3.7, 3.9, and 3.13).
Therefore, we trust that these results are a useful complement to the geometric approach to the Hörmander
index in [6, 16, 30].
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The organization of the paper is the following. In Section 2 we present the connections of the comparative
index with the Maslov index, including the proof of the above mentioned Theorem 2.2. In Section 3 we study
the relations between the comparative index and the Hörmander index and present several applications
of Theorem 3.2, including a connection between the comparative index and the triple index. Finally, in
Section 4 we make some additional comments about the results of this paper and their further development.

2. Comparative index and Maslov index in finite dimension

2.1. Comparative index

By [8, 9] or [7, Chapter 3], for two Lagrangian planes Y1,Y2 ∈ Λ(n) we define their comparative index
µ(Y1,Y2) and the dual comparative index µ∗(Y1,Y2) by

µ(Y1,Y2) := rankM + indP, 0 ≤ µ(Y1,Y2) ≤ n, (2.1)
µ∗(Y1,Y2) := rankM + ind(−P), 0 ≤ µ∗(Y1,Y2) ≤ n, (2.2)

where the matricesM and P are defined by

M := (I − X†1X1) W(Y1,Y2), P := V [W(Y1,Y2)]TX†1X2 V, V := I −M†
M, (2.3)

and where X1 and X2 are the upper n × n blocks of Y1 and Y2. Here we use the partitions

Y1 = (XT
1, UT

1 )T, Y2 = (XT
2, UT

2 )T. (2.4)

Note that the matrix P is symmetric according to [9, Theorem 2.1] or [7, Theorem 3.2(iii)]. The dagger in
(2.3) denotes the Moore–Penrose pseudoinverse, see e.g. [1, 3].

The comparative index and the dual comparative index defined in (2.1) and (2.2) satisfy, among other
properties, the relations

µ(Y1,Y2) + µ(Y2,Y1) = rank W(Y1,Y2) = µ∗(Y1,Y2) + µ∗(Y2,Y1), (2.5)
µ(Y1,Y2) + µ∗(Y1,Y2) = rank W(Y1,Y2) − rank X1 + rank X2, (2.6)

µ(Z1(0 I)T,Z2(0 I)T) = µ∗(Z−1
1 (0 I)T,Z−1

1 Z2(0 I)T), (2.7)

where Z1 and Z2 are arbitrary 2n× 2n symplectic matrices. These properties are proven in [9, pg. 448] or in
[7, Theorem 3.5]. In addition, if the upper blocks in (2.4) are invertible, then the comparative index of Y1
and Y2 reduces to the index of the difference of the associated Riccati quotients, i.e.,

µ(Y1,Y2) = ind(Q2 −Q1), µ∗(Y1,Y2) = ind(Q1 −Q2), Q j := U jX−1
j . (2.8)

These formulas are easily obtained from (2.1), (2.2), and (2.3).
If we denote the vertical Lagrangian plane (also called the Dirichlet Lagrangian plane) and the horizontal

Lagrangian plane (also called the Neuman Lagrangian plane) by

E :=
(
0 I

)T
, N :=

(
I 0

)T
, (2.9)

then we obtain for every Lagrangian plane Y ∈ Λ(n) the expressions

µ(Y,E) = 0, µ∗(Y,E) = 0, (2.10)

µ(Y,N) = n − rank X + ind(−XTU), µ∗(Y,N) = n − rank X + ind(XTU), (2.11)

which are easily obtained from (2.1), (2.2), (2.5), and (2.6).
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2.2. Maslov index
For the definition of the Maslov index of two Lagrangian paths Y and Ŷ on [a, b] we will utilize the

continuous angles φ j(t) of the eigenvalues γ j(t) = exp(iφ j(t)) for j ∈ {1, . . . ,n} of the unitary matrix

Γ(t) := [X(t) + iU(t)] [X(t) − iU(t)]−1 [X̂(t) − iÛ(t)] [X̂(t) + iÛ(t)]−1

for t ∈ [a, b]. The matrices X, U and X̂, Û are the n×n blocks of Y and Ŷ, which are defined on [a, b] according
to the notation introduced in (2.4). This approach to the Maslov index is known e.g. in [2, 16, 18, 19, 30],
see also [22, 23, 25]. Equivalently we may use the Lidskii angles of the symplectic orthogonal matrix
S(t) := ZT

Y(t) ZŶ(t), where ZY(t) and ZŶ(t) are the symplectic and orthogonal matrices associated with Y(t)
and Ŷ(t) through the formula

ZY(t) :=
(
JY(t)KY(t) Y(t)KY(t)

)
, KY(t) := [YT(t)Y(t)]−1/2, t ∈ [a, b], (2.12)

see [28, 29] for the notion of Lidskii angles of a symplectic matrix. In particular, we know that the numbers
γ j(t) = exp(iφ j(t)) are equal to the eigenvalues of the unitary matrix

W(t) := K−1
Ŷ

(t) [YT(t)Ŷ(t) + iW(Y(t), Ŷ(t))]−1 [YT(t)Ŷ(t) − iW(Y(t), Ŷ(t))] KŶ(t),

as the matrices Γ(t) and W(t) are similar by [15, Lemma 4.1]. Then the Maslov index of the Lagrangian paths
Y and Ŷ is defined by

Mas(Y, Ŷ, [a, b]) :=
n∑

j=1

(⌊φ j(b)
2π

⌋
−

⌊φ j(a)
2π

⌋)
, (2.13)

where for x ∈ R the notation ⌊x⌋ stands for the greatest integer which is smaller or equal to x (the floor
function), see [2, Section 2.2], [30, Definition 2.2], and [15, Theorem 4.2]. Similarly, the dual Maslov index of
the Lagrangian paths Y and Ŷ is defined by

Mas∗(Y, Ŷ, [a, b]) :=
n∑

j=1

(⌈φ j(b)
2π

⌉
−

⌈φ j(a)
2π

⌉)
, (2.14)

where ⌈x⌉ stands for the smallest integer which is greater or equal to x (the ceiling function), see also [15,
Remark 4.5]. Moreover, by [15, Eq. (4.21)] we have the duality relation

Mas∗(Y, Ŷ, [a, b]) = −Mas(Ŷ,Y, [a, b]). (2.15)

We note that the Maslov indices Mas and Mas∗ in (2.13) and (2.14) coincide, respectively, with the Maslov
indices Mas− and Mas+ considered in [30, Definition 2.2] and [2, Section 2.2].

In the special case, when the Lagrangian path Y is constant and equal to the vertical plane E defined
in (2.9), the above Maslov index Mas(E, Ŷ, [a, b]) and the dual Maslov index Mas∗(E, Ŷ, [a, b]) reduce respec-
tively to the oscillation number N(Ŷ, [a, b]) and the dual oscillation number N ∗(Ŷ, [a, b]) of the Lagrangian
path Ŷ. These notions are developed in [11–13] and in [15, Sections 3 and 4] by means of the comparative
index theory. Consequently, we derived in [15, Corollary 5.4 and Remark 5.5] the following comparison
results for the Maslov index of two Lagrangian paths Y and Ŷ, which involve the comparative index of Y
and Ŷ evaluated at the endpoints of the interval [a, b].

Proposition 2.1. Let Y and Ŷ be given Lagrangian paths on [a, b]. Then we have

Mas(Y, Ŷ, [a, b]) =Mas(E, Ŷ, [a, b]) −Mas(E,Y, [a, b])

+µ(Ŷ(a),Y(a)) − µ(Ŷ(b),Y(b)),

 (2.16)

Mas∗(Y, Ŷ, [a, b]) =Mas∗(E, Ŷ, [a, b]) −Mas∗(E,Y, [a, b])

+µ∗(Ŷ(b),Y(b)) − µ∗(Ŷ(a),Y(a)).

 (2.17)
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By the symplectic invariance of the Maslov index, see e.g. [4, Property V in Section 1], for an arbitrary
continuous symplectic matrix-valued function S on [a, b] we have the relation

Mas(SY,SŶ, [a, b]) =Mas(Y, Ŷ, [a, b]),

Mas∗(SY,SŶ, [a, b]) =Mas∗(Y, Ŷ, [a, b]).

 (2.18)

By using identity (2.18) we derive the following generalization of Proposition 2.1 to three Lagrangian paths
Y1,Y2,Y3 on [a, b]. For a given Lagrangian path Y j on [a, b] we consider a continuous symplectic matrix
Z j defined on [a, b] with the property Y j(t) = Z j(t)E on [a, b], i.e., the matrix Y j(t) forms the second blocks
column of Z j(t). Such a matrix function Z = (Ȳ, Y) always exists, in particular we can complete any
Lagrangian path Y by another Lagrangian path Ȳ := JYK2

Y to the so-called normalized pair of Lagrangian
paths satisfying W(Ȳ(t),Y(t)) = I on [a, b], where the invertible matrix KY(t) is defined in (2.12). In this way
the continuous symplectic matrix

Z(t) =
(
JY(t)K2

Y(t), Y(t)
)
, t ∈ [a, b], (2.19)

can be determined only by the Lagrangian path Y, see e.g. [21, Corollary 3.3.9]. Moreover, by (2.19) and
the formula for the inverse of a symplectic matrix we obtain for another Lagrangian path Ŷ that

Z−1(t)Ŷ(t) = −JZT(t)J Ŷ(t)
(2.19)
=

−W(Y(t), Ŷ(t))

K2
Y(t)YT(t)Ŷ(t)

 , t ∈ [a, b]. (2.20)

It can be shown (see [15, Remark 2.2 and Theorem 3.12]) that the results below are invariant with respect
to the choices of the matrices Z j(t) satisfying Y j(t) = Z j(t)E for j ∈ {1, 2, 3}. In particular, the matrices Z j(t)
can be chosen in the form of (2.19). Expressions of the form (2.20) can be used in the following comparison
result.

Proposition 2.2. Let Y1,Y2,Y3 be given Lagrangian paths on [a, b], with their associated continuous symplectic
matrices Z j satisfying Y j(t) = Z j(t)E on [a, b] for j ∈ {1, 2, 3}. Then

Mas(Y1,Y2, [a, b]) +Mas(Y2,Y3, [a, b]) −Mas(Y1,Y3, [a, b])

= µ
(
Z−1

1 (a)Y3(a),Z−1
1 (a)Y2(a)

)
− µ

(
Z−1

1 (b)Y3(b),Z−1
1 (b)Y2(b)

)
,

 (2.21)

Mas∗(Y1,Y2, [a, b]) +Mas∗(Y2,Y3, [a, b]) −Mas∗(Y1,Y3, [a, b])

= µ∗
(
Z−1

1 (b)Y3(b),Z−1
1 (b)Y2(b)

)
− µ∗

(
Z−1

1 (a)Y3(a),Z−1
1 (a)Y2(a)

)
.

 (2.22)

Proof. We consider the Lagrangian paths Y := Z−1
1 Y2 and Ŷ := Z−1

1 Y3 on [a, b]. Then by formula (2.16) in
Proposition 2.1 we have

Mas(Z−1
1 Y2,Z−1

1 Y3, [a, b]) =Mas(E,Z−1
1 Y3, [a, b]) −Mas(E,Z−1

1 Y2, [a, b])

+ µ
(
Z−1

1 (a)Y3(a),Z−1
1 (a)Y2(a)

)
− µ

(
Z−1

1 (b)Y3(b),Z−1
1 (b)Y2(b)

)
.

Applying the symplectic invariance, i.e., formula (2.18) with the matrix S := Z−1
1 , to all Maslov indices in

the above formula and incorporating that Y1(t) = Z1(t)E on [a, b] we derive equation (2.21). The proof of
equation (2.22) is based on formulas (2.17) and (2.18) in a similar way.

Remark 2.3. (i) The comparative indices on the right-hand sides of (2.21) and (2.22) are uniquely defined
by the Wronskians W(Y1,Y2), W(Y1,Y3), and W(Y2,Y3) and they do not depend on the choice of the matrices
Z j(t) with Y j(t) = Z j(t)E for j ∈ {1, 2, 3}. Indeed, by using the representation (compare with (2.20))

W(Yk,Y j) = −(I, 0)Z−1
k Y j, Yk = Zk E,
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and by (2.1), (2.2), and (2.3) we have (suppressing the argument t ∈ {a, b})

µ(Z−1
1 Y3,Z−1

1 Y2) = µ1 + µ2, µ
∗(Z−1

1 Y3,Z−1
1 Y2) = µ1 + µ

∗

2,

where

µ1 = µ1(Z−1
1 Y3,Z−1

1 Y2) := rankM, M =
(
I − [W(Y1,Y3)]†W(Y1,Y3)

)
W(Y3,Y2),

while with V = I −M†
Mwe have

µ2 = µ2(Z−1
1 Y3,Z−1

1 Y2) := indP, µ∗2 = µ
∗

2(Z−1
1 Y3,Z−1

1 Y2) := ind(−P),

P = V [W(Y3,Y2)]T [W(Y1,Y3)]†W(Y1,Y2)V.

In the above expressions we also simplified the Wronskian W(Z−1
1 Y3,Z−1

1 Y2) =W(Y3,Y2).
(ii) The comparative indices on the right-hand sides of (2.21) and (2.22) can be presented respectively in

terms ofµ(Y3,Y2),µ(Y2,Y1),µ(Y3,Y1) andµ∗(Y3,Y2),µ∗(Y2,Y1),µ∗(Y3,Y1) by the main theorem of the compar-
ative index theory, see [9, Theorem 2.2, Eq. (2.14), (2.15)] or [7, Theorem 3.5, Corollary 3.12, Eq. (3.17), (3.26)]).
More precisely, for an arbitrary 2n×2n symplectic matrix S and for any Lagrangian planes Y and Ŷ we have

µ(S−1Y, S−1Ŷ) = µ(Y, Ŷ) + µ(Ŷ,SE) − µ(Y,SE), (2.23)

µ∗(S−1Y, S−1Ŷ) = µ∗(Y, Ŷ) + µ∗(Ŷ,SE) − µ∗(Y,SE). (2.24)

For example, by taking Y := Y3, Ŷ := Y2, and S := Z1 in (2.23) and (2.24) we deduce that

µ(Z−1
1 Y3,Z−1

1 Y2) = µ(Y3,Y2) + µ(Y2,Y1) − µ(Y3,Y1), (2.25)

µ∗(Z−1
1 Y3,Z−1

1 Y2) = µ∗(Y3,Y2) + µ∗(Y2,Y1) − µ∗(Y3,Y1). (2.26)

The sums of the comparative indices on the right-hand sides of (2.25) and (2.26) are special cases of cyclic sums
of comparative indices (of the second kind). Such cyclic sums are investigated in the recent paper [14], where
they are denoted by ν−c (Y3,Y2,Y1) for (2.25), resp. by ν+c (Y3,Y2,Y1) for (2.26). We can see from (2.25) and
(2.26) that these cyclic sums possess the symplectic invariance property ν∓c (SY3,SY2,SY1) = ν∓c (Y3,Y2,Y1),
compare with (2.18).

The results in Propositions 2.1 and 2.2 are fundamental for the connections of the comparative index with
the Maslov index and with the Hörmander index presented below and in the next section. Observe that if
Y1 := E is the constant vertical Lagrangian path (i.e., the matrix Z1(t) ≡ I), then the result in Proposition 2.2
reduces exactly to that in Proposition 2.1.

Remark 2.4. Based on Proposition 2.2 we can provide useful estimates of the expressions on left-hand side
of (2.21) and (2.22), namely∣∣∣ Mas(Y1,Y2, [a, b]) +Mas(Y2,Y3, [a, b]) −Mas(Y1,Y3, [a, b])

∣∣∣ ≤ n, (2.27)∣∣∣ Mas∗(Y1,Y2, [a, b]) +Mas∗(Y2,Y3, [a, b]) −Mas∗(Y1,Y3, [a, b])
∣∣∣ ≤ n. (2.28)

These general estimates are based on the simplest bounds for the comparative index and the dual compara-
tive index shown in (2.1) and (2.2), and they are independent on the chosen Lagrangian paths Y1,Y2,Y3. We
note that more precise estimates for the lower and upper bounds for µ(Y1,Y2) and µ∗(Y1,Y2) are presented
in [9, Property 7, pg. 449] and [7, Theorem 3.5(vii) and Remark 3.10] in terms of the quantities rank X1,
rank X2, and rank W(Y1,Y2). Therefore, the estimates in (2.27) and (2.28) can be improved in the same spirit.
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3. Comparative index and Hörmander index in finite dimension

3.1. Hörmander index
The following definition of the Hörmander index is motivated by [16, Section 3] and [30, Section 3]. Let

us fix four Lagrangian planes Y1,Y2, Ỹ1, Ỹ2 ∈ Λ(n). We consider two Lagrangian paths Y and Ỹ on [a, b]
connecting the Lagrangian plane Y1 with Y2, and the Lagrangian plane Ỹ1 with Ỹ2. That is, we have

Y(a) = Y1, Y(b) = Y2, Ỹ(a) = Ỹ1, Ỹ(b) = Ỹ2. (3.1)

Then, by using formula (2.16), we can easily derive the relation

Mas(Y, Ỹ1, [a, b]) +Mas(Y2, Ỹ, [a, b]) −Mas(Y, Ỹ2, [a, b]) −Mas(Y1, Ỹ, [a, b]) = 0, (3.2)

where we used that Mas(E,C, [a, b]) = 0 for every C ∈ Λ(n), as the Maslov index of two constant Lagrangian
paths (i.e., of two Lagrangian planes) is zero. Formula (3.2) can be interpreted by two combined Lagrangian
paths in the arguments t ∈ [a, b] and t̃ ∈ [a, b], whose Maslov index is zero by the homotopy invariance, see
e.g. the Maslov box in [16, Figure 2]. Equation (3.2) implies that

Mas(Y, Ỹ2, [a, b]) −Mas(Y, Ỹ1, [a, b]) =Mas(Y2, Ỹ, [a, b]) −Mas(Y1, Ỹ, [a, b]), (3.3)

where the left-hand side depends on the endpoint values of Ỹ (but not on Ỹ itself) and the right-hand side
depends on the endpoint values of Y (but not on Y itself). Equation (3.3) then shows that the difference
Mas(Y, Ỹ2, [a, b]) −Mas(Y, Ỹ1, [a, b]) does not depend on the choice of the Lagrangian path Y with Y(a) = Y1
and Y(b) = Y2, and at the same time the difference Mas(Y2, Ỹ, [a, b]) −Mas(Y1, Ỹ, [a, b]) does not depend on
the choice of the Lagrangian path Ỹ with Ỹ(a) = Ỹ1 and Ỹ(b) = Ỹ2, and that these two differences are equal.

The Hörmander index of the Lagrangian planes Y1,Y2, Ỹ1, Ỹ2 is now defined as the integer

s(Y1,Y2, Ỹ1, Ỹ2) :=Mas(Y, Ỹ2, [a, b]) −Mas(Y, Ỹ1, [a, b]) (3.4)

=Mas(Y2, Ỹ, [a, b]) −Mas(Y1, Ỹ, [a, b]), (3.5)

where the definitions in (3.4) and (3.5) do not depend on the choice of the Lagrangian paths Y and Ỹ with
(3.1), as we discussed above. Similarly, by using formula (2.17) for the dual Maslov index and the dual
comparative index we easily obtain the equality

Mas∗(Y, Ỹ2, [a, b]) −Mas∗(Y, Ỹ1, [a, b]) =Mas∗(Y2, Ỹ, [a, b]) −Mas∗(Y1, Ỹ, [a, b]),

which leads to the definition of the dual Hörmander index as the integer

s∗(Y1,Y2, Ỹ1, Ỹ2) :=Mas∗(Y, Ỹ2, [a, b]) −Mas∗(Y, Ỹ1, [a, b]) (3.6)

=Mas∗(Y2, Ỹ, [a, b]) −Mas∗(Y1, Ỹ, [a, b]). (3.7)

We note that it may seem artificial to introduce two Hörmander indices by the above equations. But in
some situations we will take advantage of working with both Hörmander index s(Y1,Y2, Ỹ1, Ỹ2) and dual
Hörmander index s∗(Y1,Y2, Ỹ1, Ỹ2), see e.g. the proof of Corollary 3.13.

Remark 3.1. Observe that the Hörmander index considered in [30, Definition 3.9], denote it by sZ, is equal
to the dual Hörmander index s∗ defined in (3.6) and (3.7), since the ceiling function is used in the definition
of the corresponding dual Maslov index in (2.14) as well as in [30, Definition 3.9] with the same angles
φ j(t). On the other hand, the Hörmander index considered in [16, Section 3], denote it by sH, is equal to −s∗,
since it is defined by the Maslov index in (2.13) with roles of the pairs Y1,Y2 and Ỹ1, Ỹ2 interchanged. More
precisely, according to [16, Eq. (3.2)–(3.3)] we have

sH(Y1,Y2, Ỹ1, Ỹ2) :=Mas(Ỹ,Y2, [a, b])) −Mas(Ỹ,Y1, [a, b])
(2.15)
= −Mas∗(Y2, Ỹ, [a, b]) +Mas∗(Y1, Ỹ, [a, b])

(3.7)
= −s∗(Y1,Y2, Ỹ1, Ỹ2),

that is, the Hörmander index sH from [16, Section 3] satisfies sH = −s∗ = −sZ.
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Formulas (3.4) and (3.6), resp. (3.5) and (3.7), suggest the interpretation the Hörmander index as the
correction term in the target exchange on the second position in the Maslov index, resp. on the first position
in the Maslov index. Moreover, the symplectic invariance of the Maslov index in (2.18) implies the same
property for the Hörmander index, i.e., for any 2n × 2n symplectic matrix S we have

s(SY1,SY2,SỸ1,SỸ2) = s(Y1,Y2, Ỹ1, Ỹ2),
s∗(SY1,SY2,SỸ1,SỸ2) = s∗(Y1,Y2, Ỹ1, Ỹ2).

}
(3.8)

In the following theorem we show that the Hörmander index and the dual Hörmander index can be
calculated from the data Y1,Y2, Ỹ1, Ỹ2 by means of linear algebra (matrix analysis) by evaluating the involved
comparative indices and the dual comparative indices through (2.1) and (2.2) with the corresponding
matrices in (2.3). It is the main result of this section.

Theorem 3.2. Let Y1,Y2, Ỹ1, Ỹ2 ∈ Λ(n) be given Lagrangian planes with the associated symplectic matrices Z1,Z2
such that Y j = Z jE for j ∈ {1, 2}. Then the Hörmander index defined in (3.4)– (3.5) is equal to

s(Y1,Y2, Ỹ1, Ỹ2) = µ(Z−1
1 Ỹ1, Z−1

1 Ỹ2) − µ(Z−1
2 Ỹ1, Z−1

2 Ỹ2), (3.9)

s(Y1,Y2, Ỹ1, Ỹ2) = µ(Z−1
2 Ỹ2, Z−1

2 Ỹ1) − µ(Z−1
1 Ỹ2, Z−1

1 Ỹ1), (3.10)

s(Y1,Y2, Ỹ1, Ỹ2) = µ(Ỹ2,Y1) − µ(Ỹ2,Y2) − µ(Ỹ1,Y1) + µ(Ỹ1,Y2), (3.11)

and the dual Hörmander index defined in (3.6)– (3.7) is equal to

s∗(Y1,Y2, Ỹ1, Ỹ2) = µ∗(Z−1
2 Ỹ1, Z−1

2 Ỹ2) − µ∗(Z−1
1 Ỹ1, Z−1

1 Ỹ2), (3.12)

s∗(Y1,Y2, Ỹ1, Ỹ2) = µ∗(Z−1
1 Ỹ2, Z−1

1 Ỹ1) − µ∗(Z−1
2 Ỹ2, Z−1

2 Ỹ1), (3.13)

s∗(Y1,Y2, Ỹ1, Ỹ2) = µ∗(Ỹ2,Y2) − µ∗(Ỹ2,Y1) − µ∗(Ỹ1,Y2) + µ∗(Ỹ1,Y1). (3.14)

Moreover, the Hörmander index and the dual Hörmander index are related by the formula

s∗(Y1,Y2, Ỹ1, Ỹ2) = −s(Ỹ1, Ỹ2,Y1,Y2). (3.15)

Proof. Let the matrices Y1,Y2, Ỹ1, Ỹ2 and Z1,Z2 be as in the theorem. Let Z(t) be a continuous symplectic
matrix on [a, b] connecting the matrices Z1 and Z2, i.e., Z(a) = Z1 and Z(b) = Z2. Then we set Y(t) := Z(t)E on
[a, b], so that Y(a) = Y1 and Y(b) = Y2. We now apply Proposition 2.2 with the Lagrangian paths Y1(t) := Y(t),
Y2(t) ≡ Ỹ2, and Y3(t) ≡ Ỹ1. Then by using that Y2(t) and Y3(t) are constant on [a, b] we obtain that

Mas(Y, Ỹ2, [a, b]) −Mas(Y, Ỹ1, [a, b])
(2.21)
= µ(Z−1

1 Ỹ1, Z−1
1 Ỹ2) − µ(Z−1

2 Ỹ1, Z−1
2 Ỹ2),

where we also used that Mas(Ỹ2, Ỹ1, [a, b]) = 0. By the definition of s(Y1,Y2, Ỹ1, Ỹ2) in (3.4) we now obtain
formula (3.9). For the proof of (3.10) we apply the first formula in (2.5) to the two comparative indices on
the right-hand side of (3.9). Then by using that the Wronskians W(Z−1

j Ỹ1, Z−1
j Ỹ2) = W(Ỹ1, Ỹ2) for j ∈ {1, 2}

for both terms are the same we derive from (3.9) the formula in (3.10). Equation (3.11) follows from the
definition in (3.4) by expanding the two Maslov indices with the comparison formula (2.16). In more details,
we have

s(Y1,Y2, Ỹ1, Ỹ2)
(3.4)
= Mas(Y, Ỹ2, [a, b]) −Mas(Y, Ỹ1, [a, b])

(2.16)
=

{
Mas(E, Ỹ2, [a, b]) −Mas(E,Y, [a, b]) + µ(Ỹ2,Y(a)) − µ(Ỹ2,Y(b))

}
−

{
Mas(E, Ỹ1, [a, b]) −Mas(E,Y, [a, b]) + µ(Ỹ1,Y(a)) − µ(Ỹ1,Y(b))

}
(3.1)
= µ(Ỹ2,Y1) − µ(Ỹ2,Y2) − µ(Ỹ1,Y1) + µ(Ỹ1,Y2),
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where we used that Mas(E, Ỹ j, [a, b]) = 0. The proof of (3.12) follows from equation (2.22) in Proposition 2.2
(with the Lagrangian paths Y1 := Y, Y2 := Ỹ2, and Y3 := Ỹ1) and from the definition of s∗(Y1,Y2, Ỹ1, Ỹ2) in
(3.6). For the proof of (3.13) we apply the second formula in (2.5) to the two comparative indices on the
right-hand side of (3.12). Equation (3.14) follows by expanding the two Maslov indices in (3.6) with the
comparison formula (2.17) for the dual Maslov index. Finally, by using the relationship between the Maslov
index and the dual Maslov index in (2.15) we get

s∗(Y1,Y2, Ỹ1, Ỹ2)
(3.6)
= Mas∗(Y, Ỹ2, [a, b]) −Mas∗(Y, Ỹ1, [a, b])

(2.15)
= −Mas(Ỹ2,Y, [a, b]) +Mas(Ỹ1,Y, [a, b])

(3.5)
= −s(Ỹ1, Ỹ2,Y1,Y2),

which proves formula (3.15). The proof is complete.

Remark 3.3. (i) Recall that by Remark 2.3(i) the comparative indices on the right-hand sides of (3.9)–(3.10)
and (3.12)–(3.13) are uniquely defined by the Wronskians W(Y j, Ỹ1), W(Y j, Ỹ2), and W(Ỹ1, Ỹ2) for j ∈ {1, 2},
and then these comparative indices do not depend on the choice of the matrices Z j. In particular, in view
of (2.20) the transformed Lagrangian planes appearing in (3.9)–(3.10) and (3.12)–(3.13) can be taken in the
form (for j, k ∈ {1, 2})

Z−1
j Ỹk = −JZT

jJ Ỹk
(2.20)
=

−W(Y j, Ỹk)
K2

j YT
j Ỹk

 , K j := KY j = (YT
j Y j)−1/2. (3.16)

(ii) By using the duality relation in (3.15) we can derive from equations (3.12)–(3.14) alternative expres-
sions for the Hörmander index s(Y1,Y2, Ỹ1, Ỹ2) in terms of the dual comparative index in the form

s(Y1,Y2, Ỹ1, Ỹ2) = µ∗(Z̃−1
1 Y1, Z̃−1

1 Y2) − µ∗(Z̃−1
2 Y1, Z̃−1

2 Y2), (3.17)

s(Y1,Y2, Ỹ1, Ỹ2) = µ∗(Z̃−1
2 Y2, Z̃−1

2 Y1) − µ∗(Z̃−1
1 Y2, Z̃−1

1 Y1), (3.18)

s(Y1,Y2, Ỹ1, Ỹ2) = µ∗(Y2, Ỹ1) − µ∗(Y2, Ỹ2) − µ∗(Y1, Ỹ1) + µ∗(Y1, Ỹ2), (3.19)

where Z̃1, Z̃2 are symplectic matrices such that Ỹ j = Z̃ jE for j ∈ {1, 2}. Similarly, from equations (3.9)–
(3.11) we can derive alternative expressions for the dual Hörmander index s∗(Y1,Y2, Ỹ1, Ỹ2) in terms of the
comparative index in the form

s∗(Y1,Y2, Ỹ1, Ỹ2) = µ(Z̃−1
2 Y1, Z̃−1

2 Y2) − µ(Z̃−1
1 Y1, Z̃−1

1 Y2), (3.20)

s∗(Y1,Y2, Ỹ1, Ỹ2) = µ(Z̃−1
1 Y2, Z̃−1

1 Y1) − µ(Z̃−1
2 Y2, Z̃−1

2 Y1), (3.21)

s∗(Y1,Y2, Ỹ1, Ỹ2) = µ(Y2, Ỹ2) − µ(Y2, Ỹ1) − µ(Y1, Ỹ2) + µ(Y1, Ỹ1). (3.22)

(iii) We note that equalities (3.11) and (3.14) also follow from Remark 2.3(ii) by applying formulas (2.25)
and (2.26) to the comparative indices on the right-hand sides of (3.9)–(3.10) and (3.12)–(3.13).

As an application of Theorem 3.2 we derive a simple geometric interpretation of the comparative index
of two Lagrangian planes Y1 and Y2. Namely, it is the difference of the Maslov indices (i.e., the intersection
numbers) of an arbitrarily chosen Lagrangian path Y connecting Y1 and Y2 with the Lagrangian planes
Y2 and E. In other words, the comparative index is a special Hörmander index involving the Lagrangian
planes Y1, Y2, and E.

Theorem 3.4. Let Y1,Y2 ∈ Λ(n) be given Lagrangian planes. Then we have the formulas

µ(Y1,Y2) = s(E,Y2,Y1,Y2) =Mas(Y2,Y, [a, b]) −Mas(E,Y, [a, b]), (3.23)
µ∗(Y1,Y2) = −s∗(E,Y2,Y1,Y2) =Mas∗(E,Y, [a, b]) −Mas∗(Y2,Y, [a, b]), (3.24)

where Y is an arbitrary Lagrangian path on [a, b] with Y(a) = Y1 and Y(b) = Y2. Alternatively,

µ(Y1,Y2) = −s∗(Y1,Y2,E,Y2), µ∗(Y1,Y2) = s(Y1,Y2,E,Y2). (3.25)
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Proof. By calculating the values s(E,Y2,Y1,Y2) and s∗(E,Y2,Y1,Y2) according to equations (3.11) and (3.14)
we obtain

s(E,Y2,Y1,Y2) = µ(Y2,E) − µ(Y2,Y2) − µ(Y1,E) + µ(Y1,Y2) = µ(Y1,Y2),
s∗(E,Y2,Y1,Y2) = µ∗(Y2,Y2) − µ∗(Y2,E) − µ∗(Y1,Y2) + µ∗(Y1,E) = −µ∗(Y1,Y2),

where we used the basic properties in (2.10) of the comparative index. This proves the first equations in
(3.23) and (3.24). The second equations in (3.23) and (3.24) then follow from the definition of the Hörmander
index and the dual Hörmander index in (3.5) and (3.7). Finally, the equalities in (3.25) follow from (3.23)
and (3.24) by the relationship between the Hörmander index and the dual Hörmander index in (3.15).

3.2. Several applications

Next we present several applications of Theorem 3.2. First we consider the special case when the upper
blocks of the Lagrangian planes in (3.9)–(3.14) or in (3.17)–(3.22) are invertible matrices. In this case we can
calculate the Hörmander index by using formula (2.8).

Remark 3.5. (i) Let Y1,Y2, Ỹ1, Ỹ2 ∈ Λ(n) be given Lagrangian planes with the associated symplectic matrices
Z1,Z2 in (3.16) such that Y j = Z jE for j ∈ {1, 2}. Assume that the Wronskians W(Y j, Ỹk) are invertible for
j, k ∈ {1, 2}, i.e., the subspaces generated by Y j and Ỹk are transversal. Such an assumption is common in
some references, such as in [30, Corollary 3.11]. Then we have the equality

s(Y1,Y2, Ỹ1, Ỹ2) = ind(M11 −M12) − ind(M21 −M22),
s∗(Y1,Y2, Ỹ1, Ỹ2) = s(Y1,Y2, Ỹ1, Ỹ2),

M jk := K2
j YT

j Ỹk [W(Y j, Ỹk)]−1,

 (3.26)

where we applied formula (2.8) to the comparative indices in (3.9) and to the the dual comparative indices
in (3.12). Analogous results can be obtained by applying formula (2.8) to the other comparative indices and
dual comparative indices appearing in Theorem 3.2 or in Remark 3.3(ii). Formulas of the type (3.26) were
derived in [16, pp. 23–24]. Note also that the second formula in (3.26) is consistent with [30, Corollary 3.11].

(ii) Let Y1,Y2, Ỹ1, Ỹ2 ∈ Λ(n) be given Lagrangian planes, whose upper blocks X j and X̃k are invertible
matrices for j, k ∈ {1, 2}, i.e., the Lagrangian planes Y j and Ỹk do not intersect the vertical plane E. Then we
have the equalities

s(Y1,Y2, Ỹ1, Ỹ2) = ind(Q1 − Q̃2) − ind(Q2 − Q̃2) − ind(Q1 − Q̃1) + ind(Q2 − Q̃1), (3.27)

s∗(Y1,Y2, Ỹ1, Ỹ2) = ind(Q̃2 −Q2) − ind(Q̃2 −Q1) − ind(Q̃1 −Q2) + ind(Q̃1 −Q1), (3.28)

where for j, k ∈ {1, 2}we have

Q j := U jX−1
j , Q̃k := ŨkX̃−1

k , Q j − Q̃k = −XT−1
j W(Y j, Ỹk)X̃−1

k . (3.29)

For equality (3.27) we applied formula (2.8) to the comparative indices appearing in (3.11) or equivalently
in (3.19), while for equality (3.28) we applied formula (2.8) to the dual comparative indices appearing in
(3.14) or equivalently in (3.22).

The result in Remark 3.5(ii) can be generalized by using the symplectic invariance of the Hörmander
index as follows. Note that with the choice of the symplectic matrix R = I the equalities in (3.30)–(3.32)
below reduce to (3.27)–(3.29).

Corollary 3.6. Let Y1,Y2, Ỹ1, Ỹ2 ∈ Λ(n) be given Lagrangian planes. Let R be an arbitrary symplectic matrix, i.e.,
R =

(
R1, R2

)
with R1,R2 ∈ Λ(n) and W(R1,R2) = I. Assume that the Lagrangian plane R2 = RE is transversal
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to Y1,Y2, Ỹ1, Ỹ2, i.e., the Wronskians W(R2,Y j) and W(R2, Ỹk) are invertible for j, k ∈ {1, 2}. Then we have the
equalities

s(Y1,Y2, Ỹ1, Ỹ2) = ind(Ñ2 −N1) − ind(Ñ2 −N2) − ind(Ñ1 −N1) + ind(Ñ1 −N2), (3.30)

s∗(Y1,Y2, Ỹ1, Ỹ2) = ind(N2 − Ñ2) − ind(N1 − Ñ2) − ind(N2 − Ñ1) + ind(N1 − Ñ1), (3.31)

where for j, k ∈ {1, 2} the Riccati quotients N j and Ñk are defined by

N j :=W(R1,Y j) [W(R2,Y j)]−1, Ñ j :=W(R1, Ỹ j) [W(R2, Ỹ j)]−1. (3.32)

Proof. By the symplectic invariance of the Hörmander index, i.e., equation (3.8) with the symplectic matrix
S := R−1, we know that

s(Y1,Y2, Ỹ1, Ỹ2) = s(R−1Y1,R−1Y2,R−1Ỹ1,R−1Ỹ2), (3.33)

s∗(Y1,Y2, Ỹ1, Ỹ2) = s∗(R−1Y1,R−1Y2,R−1Ỹ1,R−1Ỹ2), (3.34)

where the upper blocks of the transformed Lagrangian planes R−1Y j and R−1Ỹk are equal respectively to the
Wronskians −W(R2,Y j) and −W(R2, Ỹk), i.e., they are invertible by our assumptions. Therefore, equations
(3.30) and (3.31) follow by the application of (3.27) and (3.28) to the right-hand side of (3.33) and (3.34), i.e.,
we take Q j := −N j and Q̃k := −Ñk.

Next we obtain the following universal estimates for the values of the Hörmander index of four arbitrary
Lagrangian planes. This result also implies that for a given Lagrangian path on [a, b] its Maslov indices (i.e.,
the intersection numbers) with respect to any two fixed Lagrangian planes can differ by at most n.

Corollary 3.7. Let Y1,Y2, Ỹ1, Ỹ2 ∈ Λ(n) be given Lagrangian planes. Then we have∣∣∣s(Y1,Y2, Ỹ1, Ỹ2)
∣∣∣ ≤ n,

∣∣∣s∗(Y1,Y2, Ỹ1, Ỹ2)
∣∣∣ ≤ n. (3.35)

In addition, the Hörmander index attains its maximal value s(Y1,Y2, Ỹ1, Ỹ2) = n if and only if

µ(Z−1
1 Ỹ1, Z−1

1 Ỹ2) = n and µ(Z−1
2 Ỹ1, Z−1

2 Ỹ2) = 0, (3.36)

while the Hörmander index attains its minimal value s(Y1,Y2, Ỹ1, Ỹ2) = −n if and only if

µ(Z−1
1 Ỹ1, Z−1

1 Ỹ2) = 0 and µ(Z−1
2 Ỹ1, Z−1

2 Ỹ2) = n, (3.37)

where Z1,Z2 are associated symplectic matrices such that Y j = Z jE for j ∈ {1, 2}.

Proof. The proof of the estimates in (3.35) follows from (3.9) and (3.12) by using the lower and upper bounds
for the comparative index in (2.1) and (2.2). The statements in (3.36) and (3.37) about the maximal and
minimal values of s(Y1,Y2, Ỹ1, Ỹ2) follow from equation (3.9).

Remark 3.8. (i) Further equivalent conditions for the extreme value s(Y1,Y2, Ỹ1, Ỹ2) = n or for the extreme
value s(Y1,Y2, Ỹ1, Ỹ2) = −n in the spirit of (3.36) and (3.37) can be obtained from equations (3.10), (3.17), and
(3.18). Similarly, we may formulate equivalent conditions for the extreme values of the dual Hörmander
index s∗(Y1,Y2, Ỹ1, Ỹ2) = n or for s∗(Y1,Y2, Ỹ1, Ỹ2) = −n via equations (3.12), (3.13), (3.20), and (3.21).

(ii) The conditions on µ(Y, Ŷ) = 0 in (3.36) and (3.37) or in part (i) of this remark can be efficiently
verified by checking the validity of the equivalent conditions presented in [9, Eq. (1.13), (1.14)] or [7,
Theorem 3.14(iv)]. For this purpose we recall that the transformed Lagrangian planes appearing in (3.36)
and (3.37) can have the form (3.16).

The third application of Theorem 3.2 is based on the additional assumptions on the Wronskians
W(Y j, Ỹk) = 0, or equivalently on dim(Im Y j ∩ Im Ỹk) = n for the associated Lagrangian subspaces. In
this case we can investigate the sign of the Hörmander index and the dual Hörmander index.
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Corollary 3.9. Let Y1,Y2, Ỹ1, Ỹ2 ∈ Λ(n) be given Lagrangian planes with the associated symplectic matrices Z1,Z2
such that Y j = Z jE for j ∈ {1, 2}. If W(Y1, Ỹ1) = 0, then

s(Y1,Y2, Ỹ1, Ỹ2) = µ(Z−1
2 Ỹ2,Z−1

2 Ỹ1) ≥ 0,
s∗(Y1,Y2, Ỹ1, Ỹ2) = −µ∗(Z−1

2 Ỹ2,Z−1
2 Ỹ1) ≤ 0.

}
(3.38)

Similarly, if W(Y2, Ỹ2) = 0, then

s(Y1,Y2, Ỹ1, Ỹ2) = µ(Z−1
1 Ỹ1,Z−1

1 Ỹ2) ≥ 0,
s∗(Y1,Y2, Ỹ1, Ỹ2) = −µ∗(Z−1

1 Ỹ1,Z−1
1 Ỹ2) ≤ 0.

}
(3.39)

Moreover, if W(Y2, Ỹ1) = 0, then

s(Y1,Y2, Ỹ1, Ỹ2) = −µ(Z−1
1 Ỹ2,Z−1

1 Ỹ1) ≤ 0,
s∗(Y1,Y2, Ỹ1, Ỹ2) = µ∗(Z−1

1 Ỹ2,Z−1
1 Ỹ1) ≥ 0.

}
(3.40)

Similarly, if W(Y1, Ỹ2) = 0, then

s(Y1,Y2, Ỹ1, Ỹ2) = −µ(Z−1
2 Ỹ1,Z−1

2 Ỹ2) ≤ 0,
s∗(Y1,Y2, Ỹ1, Ỹ2) = µ∗(Z−1

2 Ỹ1,Z−1
2 Ỹ2) ≥ 0.

}
(3.41)

Proof. The proof is based on the fact that µ(Y1,Y2) = 0 = µ∗(Y1,Y2) under the assumption that the upper
block of Y2 satisfies X2 = 0, see (2.3) or (2.10). In our case the upper block of Z−1

j Ỹk is equal to −W(Y j, Ỹk)

according to (3.16). Then (3.38) follows from (3.10) and (3.13) under the assumption W(Y1, Ỹ1) = 0, while
(3.39) follows from (3.9) and (3.12) under the assumption W(Y2, Ỹ2) = 0. And similarly, (3.40) follows from
(3.10) and (3.13) under the assumption W(Y2, Ỹ1) = 0, while (3.41) follows from (3.9) and (3.12) under the
assumption W(Y1, Ỹ2) = 0. The proof is complete.

As the fourth application of Theorem 3.2 we obtain the expression of the comparative index of two
Lagrangian planes as a special Hörmandex index, indicating that the Hörmander index plays a balancing
role in exchanging the first Lagrangian plane in the comparative index by the vertical plane E.

Corollary 3.10. Let Y1,Y2 ∈ Λ(n) be given Lagrangian planes with partitions (2.4). Then

µ(Y1,Y2) = µ(E,Y2) − s(E,Y2,E,Y1), µ(E,Y2) = rank X2, (3.42)
µ∗(Y1,Y2) = µ∗(E,Y2) + s∗(E,Y2,E,Y1), µ∗(E,Y2) = rank X2. (3.43)

Proof. Formulas (3.42) and (3.43) follow from (3.11) and (3.14) by using property (2.10) of the comparative
index.

The result in Theorem 3.2 also allows to prove in a direct way the following well known exchange
formulas, see [30, Eq. (18)–(20)] in combination with Remark 3.1.

Proposition 3.11. Let Y1,Y2,Y3, Ỹ1, Ỹ2, Ỹ3 ∈ Λ(n) be given Lagrangian planes. Then we have

s(Y1,Y2, Ỹ1, Ỹ2) = s(Y1,Y3, Ỹ1, Ỹ2) + s(Y3,Y2, Ỹ1, Ỹ2), (3.44)

s(Y1,Y2, Ỹ1, Ỹ2) = s(Y1,Y2, Ỹ1, Ỹ3) + s(Y1,Y2, Ỹ3, Ỹ2), (3.45)

s(Y2,Y1, Ỹ1, Ỹ2) = −s(Y1,Y2, Ỹ1, Ỹ2), (3.46)

s(Y1,Y2, Ỹ2, Ỹ1) = −s(Y1,Y2, Ỹ1, Ỹ2), (3.47)

s(Ỹ1, Ỹ2,Y1,Y2) = −s(Y1,Y2, Ỹ1, Ỹ2) −
∑

j,k∈{1,2}

(−1) j+k rank W(Y j, Ỹk). (3.48)

Formulas (3.44)– (3.47) hold also with the dual Hörmander index s∗, while (3.48) is replaced by

s∗(Ỹ1, Ỹ2,Y1,Y2) = −s∗(Y1,Y2, Ỹ1, Ỹ2) +
∑

j,k∈{1,2}

(−1) j+k rank W(Y j, Ỹk). (3.49)
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Finally, we provide an example illustrating the applicability of Theorem 3.2 for special cases considered
in [16, Section 3.3].

Example 3.12. Let Y1, Ỹ1, Ỹ2 ∈ Λ(n) be given and assume that Y2 = E is the vertical Lagrangian plane. Then
by (3.11) and (3.14) together with (2.10) we derive

s(Y1,E, Ỹ1, Ỹ2) = µ(Ỹ2,Y1) − µ(Ỹ1,Y1), s∗(Y1,E, Ỹ1, Ỹ2) = µ∗(Ỹ1,Y1) − µ∗(Ỹ2,Y1). (3.50)

If in addition Y1 = N is the horizontal Lagrangian plane, then by (2.11) and (3.50) we get

s(N,E, Ỹ1, Ỹ2) = rank X̃1 − rank X̃2 + ind(−X̃T
2 Ũ2) − ind(−X̃T

1 Ũ1), (3.51)

s∗(N,E, Ỹ1, Ỹ2) = rank X̃1 − rank X̃2 + ind(X̃T
2 Ũ2) − ind(X̃T

1 Ũ1), (3.52)

Alternatively, consider another special case of (3.50) when the upper blocks of Y1 and Ỹ1 are invertible,
then the comparative indices µ(Ỹ1,Y1) and µ∗(Ỹ1,Y1) in (3.50) reduce to the index of the difference of the
associated Riccati quotients, as we show in (2.8). We also note that the case Y2 = N = JE can be reduced to
Y1 = E by the symplectic invariance property (3.8) with the matrix S := −J .

3.3. Triple index
As the last result in this section we discuss the connection of the comparative index with the triple

index i(Y1,Y2,Y3), which was first defined in [6, Eq. (2.16)], see also [30, Corollary 3.12]. In the present
discussion we again identify the Lagrangian subspace Im Y j ⊆ R2n with the matrix Y j ∈ Λ(n) itself. For
three Lagrangian planes Y1,Y2,Y3 ∈ Λ(n) the triple index i(Y1,Y2,Y3) is the integer defined as

i(Y1,Y2,Y3) := ind Q(Y1,Y0,Y2) + ind Q(Y2,Y0,Y3) − ind Q(Y1,Y0,Y3), (3.53)

where Y0 ∈ Λ(n) is a Lagrangian plane for which the Wronskians W(Y j,Y0) for j ∈ {1, 2, 3} are invertible.
Here Q(α, β, γ) with α, β, γ ⊆ R2n being Lagrangian subspaces is a bilinear form defined on the subspace
α∩ (β+γ). We refer to [30, Section 3.1] for more details regarding the form Q(α, β, γ). The definition in (3.53)
does not depend on the choice of the Lagrangian plane Y0 ∈ Λ(n), as long at it has the required property
regarding the invertibility of the Wronskians W(Y j,Y0). Note that the number i(Y1,Y2,Y3) is nonnegative,
which follows e.g. from [30, Lemma 3.13].

A difference of two triple indices is used in [30, Theorem 1.1] for the expression of the (dual) Hörmander
index, see Remark 3.1 and equation (1.2), which in our context reads as

s∗(Y1,Y2, Ỹ1, Ỹ2) = i(Y1,Y2, Ỹ2) − i(Y1,Y2, Ỹ1) = i(Y1, Ỹ1, Ỹ2) − i(Y2, Ỹ1, Ỹ2). (3.54)

Note that these results are proven in [30] on the basis of [6, Lemma 2.5]. In addition, by using the duality
principle in (3.15) with the aid of (3.54) we get the alternative formulas

s(Y1,Y2, Ỹ1, Ỹ2) = i(Ỹ1, Ỹ2,Y1) − i(Ỹ1, Ỹ2,Y2) = i(Ỹ2,Y1,Y2) − i(Ỹ1,Y1,Y2). (3.55)

By using Theorem 3.2 we shall connect the triple index with the comparative index. We recall that for the
evaluation of the obtained comparative indices we may use the symplectic matrices Z j considered in (3.16)
in Remark 3.3(i).

Corollary 3.13. Let Y1,Y2,Y3 ∈ Λ(n) be given Lagrangian planes with the associated symplectic matrices Z1,Z2,Z3
such that Y j = Z jE for j ∈ {1, 2, 3}. Then we have

i(Y1,Y2,Y3) = µ(Z−1
3 Y1, Z−1

3 Y2) = µ(Y1,Y2) + µ(Y2,Y3) − µ(Y1,Y3), (3.56)

i(Y1,Y2,Y3) = µ∗(Z−1
1 Y3, Z−1

1 Y2) = µ∗(Y3,Y2) + µ∗(Y2,Y1) − µ∗(Y3,Y1). (3.57)

In particular, we can express the comparative index and the dual comparative index as

µ(Y1,Y2) = i(Y1,Y2,E), µ∗(Y1,Y2) = i(E,Y2,Y1). (3.58)
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Proof. For the proof we utilize [30, Corollary 3.16], where the authors formulate their result in terms of the
endpoint values Y(a) and Y(b) of a Lagrangian path Y on [a, b]. By using the notation with fixed Lagrangian
planes Y1,Y2,Y3 ∈ Λ(n) and taking Remark 3.1 into account, we can reformulate the second equality in [30,
Corollary 3.16] as

i(Y1,Y2,Y3) = s∗(Y1,Y2,Y2,Y3). (3.59)

Then we proceed by applying Theorems 3.2 and 3.4 and Proposition 3.11 together with the symplectic
invariance of the Hörmander index (with the matrix S := Z−1

3 ). Namely, we obtain

i(Y1,Y2,Y3)
(3.59)
= s∗(Y1,Y2,Y2,Y3)

(3.15)
= −s(Y2,Y3,Y1,Y2)

(3.46)
= s(Y3,Y2,Y1,Y2)

(3.8)
= s(Z−1

3 Y3,Z−1
3 Y2,Z−1

3 Y1,Z−1
3 Y2) = s(E,Z−1

3 Y2,Z−1
3 Y1,Z−1

3 Y2)
(3.23)
= µ(Z−1

3 Y1, Z−1
3 Y2),

which proves the first equality in (3.56), and then by Remark 2.3(ii) we get the second equality in (3.56).
The equations in (3.57) follow from (3.56) by using property (2.7) of the comparative index and from (2.26).
Finally, the choice of Y3 = E (i.e., Z3 = I) in (3.56) proves the validity of the first equation in (3.58), while
the choice of Y1 = E (i.e., Z1 = I) in (3.57) yields that µ∗(Y3,Y2) = i(E,Y2,Y3). By relabeling Y3 as Y1 we then
obtain the second equation in (3.58). The proof is complete.

4. Conclusions

In this paper we investigated the relations between the comparative index and the Hörmander index
(including the Maslov index and the triple index) in the finite dimensional case. As a main result we
derived an algebraic expression for the Hörmander index of four given Lagrangian planes as a difference
of two comparative indices involving certain transformed Lagrangian planes, or as a combination of four
comparative indices (Theorem 3.2). This result is based on a generalization of the comparison theorem for
the Maslov index from [15] involving three Lagrangian paths (Proposition 2.2), hence it is based entirely on
the comparative index theory. Our approach allows to present a geometric interpretation of the comparative
index as a special Hörmander index or as a special triple index involving the vertical Lagrangian plane
(Theorem 3.4 and Corollary 3.13). We also derived estimates for the values of the Hörmander index and
presented conditions allowing to determine its extreme values and its sign (Corollaries 3.7 and 3.9). In this
way we contribute to the recent efforts in [16, 30] devoted to efficient calculation of the Hörmander index
in the finite dimensional case.
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[7] O. Došlý, J. V. Elyseeva, R. Šimon Hilscher, Symplectic Difference Systems: Oscillation and Spectral Theory, Pathways in
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