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Abstract. Let ¢ be an analytic self-map on D, n € N and g € H(D). We consider the essential norm of the
generalized integral-type operator Cf, , : Qx (p,q) — Z, that is defined as follows

(Crof) @ = fo Z FP(@(E)g(E) dE,

for all f € Qk (p,g). We give an estimate for the essential norm of the above operator.

1. Introduction

Let D be unit disk {z € C : |z| < 1} and H(ID) be the space of all analytic functions on ID. The Zygmund
space Z consists of all f € H(ID) such that

Illz = 1FO) + 1O+ sup (1 - 2P) @) (1)

With this norm it is a Banach space (see [3] and [6]). For a multidimensional generalization of the space see,
for example, [21]; for the Zygmund-type space on the upper half-plane see [22].

Suppose that u is a normal function on the interval [0,1). Then f € H(ID) is in the Zygmund-space Z,
(see, e.g., [8]), if

sup u(jz)|f” (2)| < co. 2)

zeD

Similar to Z, Z, is a Banach space with the following norm

Ifllz, = 1FO)I +1f(O)] + sup u(zDIf” )1, 3)
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for all f € Z,. Note that if we set u(z) = 1 — 2%, then we obtain Z, = Z. There has been a considerable
interest in studying concrete operators from or to Zygmund type spaces (see, for example, [2-8, 10—
12,16,17,21, 22, 24, 32-35], and the related references therein).

Letp > 0,9 > -2 and K : [0,00) — [0, o) be a nondecreasing continuous function. The space Qx(p, 9)
consists of all f € H(ID) such that

1y = O+ sUP fD I @F (1 - 2R)' K(g(z,©) dAG) < oo, @

éeD

where dA is the normalized Lebesgue area measure in D, g(z, &) = log FP:T)V and @g(z) = f__gzz. Forp>1,
Qx(p,q) with the norm [|fllq,(»,q becomes a Banach space, see [13-15, 28, 29], for more details regarding

Qx(p, 9) spaces. Following [28], we assume that the following condition holds
1
f (1 - rz)q K(—log r)rdr < oo. ®)
0

If f € Qx(p,q) then f € B%Z and
A1l 22 < Cllfllap- ©

where 8%, a > 0, denotes the Bloch type space (or a-Bloch space), see [28]. We need for the following fact
about the functions in 8% (see [30]):

Su]g(l ~ 2R @1 = 1 Q) + -+ f0)] + Su]g(l — [z D), (7)

where n € IN.
For an analytic self-mapping ¢ on D, the composition operator C, is defined as follows:

Co(N)2) = f@2)),
for all f € H(ID). The above operator is generalized by Li and Stevi¢ in [4] as follows:

(Chf) (@) = fo F@(&)g(&) dé, feH(D),zeD,

where g € H(ID). This version of composition operator is widely considered by many researchers, for
example see [5, 9, 18-20]. The operator can be extended in several ways. For the corresponding integral-
type operator on the unit ball in C", see e.g., [23, 26, 31]. The following operator is a generalization of Cg)
on the unit disk

(Chof) @ = fo FOPE)g(E) dE,  f e H(D),zeD,

where n € IN. This integral type operator has been investigated by many authors, see, e.g., [1, 2, 14, 25, 33]
and the references therein. The boundedness and compactness of the above operator from a-Bloch spaces
into Qg spaces were studied by Stevi¢ and Sharma in [25]. The same problems have been studied for
the operator Cj, , from Qx (p,q) and Qko (p,q) to a-Bloch spaces and little a-Bloch spaces in [14]. For the
properties of this operator between H® and Zygmund-type spaces, see [33], and between mixed-norm
space and Zygmund-type space (little Zygmund-type space), see [2] and between Bloch-type spaces and
weighted Dirichlet-type spaces, see [1].

The boundedness and compactness of the operator Cf, , from Qk (p, 9) and Qo (p, ) into Zygmund type
spaces were investigated in [15] and it was proved that Cf ; : Qk (p,q) — Z,; is compact if and only if

y(lzl)lgl(ﬂ,, _ i D@l @)

= =0.
PE1 (1 — @) T @ (1_|(P(Z)|2)$+n+1
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In this paper, we consider this integral type operator and investigate the essential norm of this operator
from Qk (p,q) to Z,. As a result we can obtain the above characterization for the compactness. For any
operator T between two Banach spaces X and Y, the essential norm of T is denoted by ||T]l,x—y and is
defined as follows

IT]le,x—y = inf{||T — S| : S is a compact operator from X to Y}.

The operator is compact if and only if ||T||,x—y = 0.

2. Main results

Throughout this paper, we assume that the following condition holds

1 ) 1 1@
f K(-1logr)(1 - r)mm{_l'q} (log 1 r) rdr < oo, 8)
o _

where o (x) is the characteristic function of the set O and we denote the essential norm of C(’ZW :Qx(p,q) —
Zu by ICG lle @ (p.0) -z,

The following lemma is proved in a standard way (see, e.g., [27]).
Lemma 2.1. Let g € H(D), n € N and ¢ be an analytic self-map of D. Then Cf , : Qk (p,q) — Zy is compact if

and only if Cj, , + Qk (p,q) — L, is bounded and for any bounded sequence {f;}}°, in Qk (p,q) which converges to
zero uniformly on compact subsets of D, as i — oo, we have ||C{, ,fillz, — 0as i — oo.

Lemma2.2. Let p > 0, g > =2, K : [0,00) — [0, 00) be a nondecreasing continuous function, ¢ be an analytic
self-map of D and g be an analytic function on ID. If llpll < 1 and Cj,, : Qx (p,q) — Z is bounded, then

Coq: Qx (p,q) — Zy is compact.
Proof. From [15, Theorem 1], C7, , : Qk (p,q) — Z, is bounded if and only if

Mi = sup p(IzD) g’ (2)] - ©)

2D (1 - |p@)R) T "

and
p(lzDlg@lle’ (2)|

D (1 - |p(z)P)

M, = (10)

Suppose that {fi},. is a bounded sequence in Qx (p, q) such that converges to 0 uniformly on compact
subsets of ID as k — co. This implies that for any n € NN, { k(")}}‘:‘;l
subsets of ID as k — co. We now set p = [|¢ll., where p € (0,1).

Since C§ ; : Qk(p,9) — Z is bounded then there exists a positive constant C such that for
1,0/, < Clifllacw. (11)

for all f € Qk(p, ). Since any polynomial belongs to Qx(p, ), by taking the function fi(z) = Z; in the above
inequality, we obtain

converges uniformly to 0 on compact

Ry = sup p(lz)lg’ ()] < oo, (12)

zeD

Similarly by using fo(z) = (;”TT)!, we get

sup u(lzDle’ (2)9(z) + p(2)g' (2)] < eo. (13)
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According to (12), (13) and boundedness of ¢, we obtain that
Ry = sup pu(lzD)le’ (2)llg(z)] < eo. (14)
zeD

Using the fact that { f]f”)};‘;l, { k("ﬂ)},‘:‘;l converge uniformly to 0 on compact subsets of ID and inequalities

(12) and (14), we have
IG5, fillz, =I(Cq o (fi)) (O)] + sup u(IzDICy 4 (fe))” ()]

<17 ((0))llg(0)] + sup u(lzhle’ @I @E)lIgE)l
+sup w2 (@@)llg @)l

< (@O)llgO) +  sup  u(lzDle’ @I @E)lIgE)

zeD, |p(z)|<p

+ sup  p(EDIE (@9 @) = 0, k — co. (15)

zeD, lp(z)I<p
Thus, Cj, is compact by Lemma 2.1.  [J

Theorem 2.3. Letp > 0, g > =2, K : [0, 00) — [0, 00) be a nondecreasing continuous function, ¢ be an analytic
self-map of D and g be an analytic function on D. If Cf, , : Qx (p,q) — Z is bounded, then

p(zDlg’ )|
MHL

1-lp@)?) P

1(2Dlg@)llg’ (2)

2+q—p
(17|(P(Z)|2) 5 +n+1

4

lim supy, 1

“C&gneﬁx(prq)ﬂzp ~ max (16)

lim SUP| )1

Proof. If ||plls < 1, then by Lemma 2.2 the proof holds, since we can regard that the quantities on the
right-hand side in (16) are automatically equal to zero. So, let ||(pHm = 1. Suppose that w € ID. Define the
functions F,, as follows

(L )

Fw(Z)=Cp — — 2
(1-zw) 7 1-zw)r "

(17)

whereCp:%2+n+1ande:%2andn€]N. Then

n-1
2 q+2
FP@) =Ce [ ] (—q ; + j) @'(1 - )1 - w2 T
j=0

n-1
+2 +2
- Dr H (q— +j+ 1)@“(1 — w21 = zw) T,
o\ P
Choose {z;} C ID such that limy_,«, )(p (zk)| = 1. Define f, for all k € IN as follows:

1-lp@)’l Dy (1 = lp()P)?

q+2 q+

1-p@2)"  (A-gEn)7 ™

Then f; € Qk (p,q) and there exists 0 < C < oo such that sup, H fk” Q(r.g) < C. Moreover, f; converges

fk(z) = F(p(zk)(z) =Cr

to 0 uniformly on compact subsets of ID as k — oo. Also
lp(z)l"
240p
A= lp@E)P) "~

£ (21)) = Fut (18)



A. Manavi et al. / Filomat 37:16 (2023), 5273-5282 5277

and

(@ @) = 0,

where r,,_1 = H]'Z& (% + ]) For any compact operator T : Qk (p,g) — Z,, by Lemma 2.10 [27], we have

limy_, o0 ||Tfk||Z“ = 0. Then

clct , - Tll = limsup I(C,, — T)fillz,
k—oo

> lim sup (“C(y;),gfk”Zy - “Tfk”Zy)

k—oo

= lim sup ||C$/gfk||zﬂ

k—oc0

> lim sup p(|z)I(Cl, ,(f))” (z6) |

k—o0
= limsup u (1zi)) [@” @0 £ (@ @0) 9 &) + £ (9 =) ' (20

k—o0

= lirkn sup 1 (1zxl) |fk(") (@) g (Zk)‘

7 )|

= 11 limsup e

o (1—!<p(zk)|2) ’

w (1ze)) | (zi) "

Therefore

IC gllecpay—z, ZI1Cp,g = Tl

Z "(z
Zr”_—lumsup g (Zl;)l
k—oo 2\~ "
(1 = | @) )
Fut - (2 |y )|
=——-limsup TE

lp(z)|—1 (1 _ ‘(P (Z)lz) P

Now define the function h, (z), for all w € ID, as follows:

hw(z>=(q%2+n+1) (1~ fP” _(q+2+1) (1 - [Py’ )

+2 +2
(1-zm)7 ™ \ P (1-zw)’7

and set hi (z) = hy(,) (z). Then there exists 0 < C < oo such that sup ||hk||Q}((
uniformly on compact subsets of ID as k — co. Moreover

pa) < C and {h} converges to 0

W (¢ (z)) = 0

and

(i)™
(1= lpE)R) 7 *"
n+l (q+2

[l s ]) Suppose that S : Qk (p,q) — Z,. is a compact operator. Thus we have

K (@(210) = ~1ui

where 7,11 = []

lim [1Sh, = 0.
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Then

CliCy,, = Sl = imsup (I iz, — 1Shiliz,)
k—oc0

=limsup [IC, il z,

k—o0

> hm sup y(lzkl) | hk) (Zk)|

zmmwwmem“wmwmwmmWmemn

k—o0

= lir]? sup |y(|zk|)g0'(Zk)h,((n+l)((P(Zk))g(zk)'

=Fps1 lim su ”WWWWW“W&mwaN

(20)
oo (1 - lpR) T

Hence, we have

n Tutl 1. (IzDlg’ (2)llg(=)l
ICo lle@upa—z, = "1 Jim sup £ -
C = +n+1

e (1-|p@)PR)"7

Thus,

u(lzDlg’ @)l

lim supy )1 =~ s
p(IzDlg@)llg’ (2)]

2+g—p .
A-lp@pr) 7

lim SUP| -1

We now obtain the upper bound for ||C$, |

0 .
p |e, Qpa)-Z, The boundedness of Cf; , implies that there exists
0 < C < oo such that

Iy 01, < Cllflay)- 1)

for all f € Qk (p,q). Let {rj} € (0,1) be a sequence such that r; — 1 as j — co. For any j, we have

(2D |y’ @] @) D] @l @l _
sup < sup

< (22)
zeD (1 3 |7’j(P (Z)|2)

2+q-p 2+qn
v +n+1 zEID ( | |) +n+1

and

p (12D 19’ @)l
zeD (1 3 |Tj(P (Z)|2)T+n zeD ( |r]| ) +n

Thus by [12, Theorem 1], C7. , : :Qk (p,q) — Z, is bounded. Since ||r](p|| <1, Lemma 2.2 implies that
: Qk (p,q) — Z,, is compact. Therefore,

(23)

VJ(P g

ICo glle@(pa) -z, < llmsuPIIC = Chpgll
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For any f € Qx (p, q) with [Ifllg,(,,.) < 1 we have
1(Cog = Crp ) fllz, = ((Cqy = Crpp ) ) (O] + SZEHI)? u(zDI(CG 5 = Crp ) ) @)
<1((Cy = Crp ) ) O
£ (@) = rif ) (rip )| 9 )

+sup p (|2)) |¢’ )|
zeD

+sup () | (0 @) = £ (1 @) |9 @
< (9 @) - £ (rjp ©)|]9 O)]
+ |<pleﬁ§m (2D o’ @ |[f" (@ @) = rif ™ (rigp (Z))| |9 )
+ s @l @ @)= (@)l
+ |<;z1>1|§m (2D | (9 @) = f (rip @)| |7 @)
+ m<5|£|<1 (2D [ (9 @) = f* (rip @)| |7 @], (24)

where N € N is large enough such that r; > 1 for all j > N. We set

Fi=[f (0 0) - 1 (i ©)| |7 0)

FrnﬂpyWD¢®UW”@®%WWmGW®mﬂﬁ
p@)|<rN
a=TW|wm¢@UWWmm—wWNwwMMM
v<|p(z)[<1
F4=|51p w2 [f (¢ @) = £ (rip @)| |9’ )]
P@)|srN

Fs= sup u(lzl)

m<|p)|<1

@)= (ri0 @)||9 @)

As j — o0, it is clear that
F, =

£ (@ @) = 1 (rie ©)| [y @) - 0.

For F,, according to (14) and noting that r; fr(]“l) — f*, £, (z) = f(rjz), uniformly on compact subsets of
D, we get

limsup F, =limsup sup  (1z)|¢’ @)|[f"*? (¢ (2)) — r;f™* (rj(p(z))||g(z)|

jeo j=o p@)|<rn

<R, lim sup sup |f(n+1) ((P (z)) _ r]-f(””) (T’j(P (z))| =0.

J= o)<y

Similarly for F4 we have

limsup Fy =limsup sup p(z) |f* (¢ (z)) — f™ (r]-qo (z)) g (z)'

jooo J=o p@)|<n

<R limsup sup |f(n) (¢ (2) - f(") (rj(p (Z))| =0.

j=o )<
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Using (6) and (7) for F3 we obtain

Fs = s|up| (2D e’ @| [ (9 @) = rif "D (rj0 (Z))’ |9 2)
n<|p(z)|<1
< swp uEhlye) (170 |+ i (i @) s @)
rn<|p(z)|<1
< sup p(z)le’ @) (9 @)||g @)
rN<|(p(z)|<1
v s ) o @[ (10 @)l @)
rv<|p(z)[<1
|z]) |’
. w2 |o (Z)M{i)lll| o
mw<|p@)|<1 (1 _ ‘(P (Z)|2) P
+Co L 'ﬂiﬂﬂnfn@(p,q)
n<lp(z)l<1 (1 B )}’](p (Z)|2) »
Caopt (12D ¢’ )] |9 2)] Cop () ¢’ @) |9 )|
B M%MH *oosup hca NPT

nv<lp)<1 (1 ~lo (Z)|2)

Whenever j — oo, we have

(1 poef)

1z]) |@” (z Z
limsup F3 < 2C; lim sup (D) o'« ),JJZ"Z( )| .
joo lp(@)—1 2\ 5l
(1 - e @) )

Moreover,

Fs= sup pu(jzl)

rv<|p@)|<1

f (@) - 1 (rip @) |9’ @)

< oo P‘(IZI)()f(”) (@ @)+ | (rie (Z))D 7 @)
rv<|p(z)|<1
< sup p() | (@ @)y @)
w<|p)|<1
+ sup p(lz) [f™ (”j(P (Z))‘ 7' )|
mw<|p@)|<1
p(lz) |9 (2)
<Cs | q+2|P+n ”fHQK(P'q)
w<|p@)|<1 (1 B |(P (Z)|2) v
(2D g )|
+Cs A llacra)

rv<|p@)|<1 (1 _ |7’j(P (Z)‘Z) P
G (12D |7 )| Csp (12D |9 )|
+ sup PTE=

a+2-p
el (1—fp@) P) T el (1-lre@f) "

<

5280
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Whenever j — oo, we get

2Csu(|z) |19’ (z
limsup F5 < limsup ot (= gq;)' . (25)
j—00 z)|— +n
] lp(z)l—1 (1 _ |§0 (Z)|2) P

Thus, by the obtained inequalities for F3 and F5, we have

Therefore, we have found an upper bound for ”C”

”C%J”eﬂx(p,q) Lz, S limsup 1C6,5 = Crpgll
j—)DO

o 2Cu(D]e @l @] 2Csu (D) |9’ (2)]
< limsup - + lim sup -
lp@] -1 (1 “lp (Z)|z)7+"+1 @] -1 (1 o (Z)lz)TM

2Cu @)’ @)| |7 @)| limsup 2G5 (I2)) |77 2)|

< max lim Sup T2p 1 ’ i q+2-p
N _ 2 —+n+ N
Ot @ lp@R) T O (1)

WHE, Qpa)=Z," This completes the proof. [
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