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Abstract. The leader-following consensus (LFCs) of nonlinear multi-agent systems (NMASs) with Markov
switching topologies (MSTs) subjected to denial-of-service (DoS) attacks under event-triggered (ET) control
is studied. An ET strategy is applied to reduce unnecessary signal transmission among agents, save network
resources, and ensure systems performance. As a result of the open communication network among
agents, it is inevitably subjected to attacks that leads to changing in the communication topologies. The
communication topologies among agents are modeled as MSTs, and the transfer rates (TRs) are assumed to
be partially unknown. DoS attacks are the most common attacks due to their destructive, stealthy, and easy
implementation, so the network attacks considered in this paper are DoS attacks. Based on the distributed
control theory and Lyapunov stability theory, the Lyapunov direct method and stochastic analysis method
are used to explore sufficient conditions for the systems to achieve LFCs. Finally, an example is provided
to verify the effectiveness of the methods and the correctness of the results.

1. Introdution

Multi-agent systems (MASs) have the abilities of autonomy, coordination and reasoning, so they have
been widely used in intelligent traffic control, unmanned aerial vehicle formation control, sensor networks
and other fields [1–3]. As one of the research hotspots in multi-agent cooperative control, the consensus
problem, especially the LFCs, has attracted much attention [4].

Because of the open nature of networks, network attacks have become the main factor affecting systems
security, destroying the stability of the systems, which will inevitably lead to systems paralysis. Among
the common cyber attacks, there are main replay attacks (RAs)[5, 6], deception attacks(DAs)[7, 8] and DoS

2020 Mathematics Subject Classification. Primary 93A16; 93D50
Keywords. MASs; DoS attacks; ET scheme; Consensus; Markov random switching topologies.
Received: 26 October 2022; Accepted: 27 December 2022
Communicated by Miljana Jovanović
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attacks[9–11]. The RAs are that the attacker records a transmitted data sequence and repeatedly transmits this
data to overwrite the new data, thus attacking the systems [5]. DAs degrade the performance of the systems
by tampering with the transmitted data and injecting false data into the systems[7]. DoS attacks mainly
attack the systems by disrupting or interrupting the signal transmission in the communication network [9].
In [6], Wang et al. researched the security consensus issue of discrete MASs under RAs, and gave sufficient
conditions for LFCs of MASs under RAs. Wen et al. [8] investigated the fault-tolerant secure consensus
tracking issue of time-lagged NMASs, which have DAs, parameter uncertainty and actuator failures, and
proposed a distributed impulsive control protocol to obtain sufficient conditions of mean-square bounded
consensus. In [10], Feng et al. researched the consensus among followers and the LFCs of the linear MASs
with DoS attacks. Compared with RAs and DAs, DoS attacks are more destructive, stealthy, simpler and
easier to implement. Therefore, DoS attacks are commonly used in cyber attacks.

Network attacks are inevitable, which leads to randomly changing in communication topologies among
agents, deterministic communication topologies can no longer meet the demand, and random communica-
tion topologies can describe the actual situation more accurately. Markov chains are discrete-time stochastic
processes with Markov properties, which have been widely used in manufacturing, aerospace, and net-
work control [12, 13]. Due to the good properties of the Markov chain, it can model the communication
topologies as MSTs. The LFCs of NMASs with MSTs under DoS attacks have been reported [14–16]. In [14],
Li et al. investigated the LFCs issue of cyber-physical systems under energy-limited DoS attacks, modeled
the irregular communication topologies caused by DoS attacks as MSTs, and proposed a new distributed
resilient control strategy to achieve LFCs. Wang et al. [15] researched the LFCs issue for nonlinear MASs
under uncertain nonhomogeneous MSTs and DoS attacks, and obtained sufficient conditions of LFCs in
mean-square sense. Wang et al. [16] delved into the LFCs issue of NMASs with time delay under uncertain
nonhomogeneous MSTs and DoS attacks. In fact, the TRs in Markov switching are not easily or completely
available when uncertainties and some technical limitations are taken into account. Therefore, suppose that
the TRs are partially unknown in this paper. There were also literature reports that the Markov TRs were
partially unknown [15–18].

In addition, due to the bandwidth of the communication networks among agents and their energy is
limited, in order to reduce the bandwidth pressure and avoid resource waste, ET conditions are designed
to trigger conditions and send data when there is a communication demand among agents, which can
not only ensure systems performance but also save network resources[19]. At present, some researchers
have introduced the ET scheme into the consensus issue of MASs[20, 21]. He et al. [20] studied the security
consensus of MASs under DAs by using static and dynamic ET strategies, respectively, and obtained
consensus sufficient conditions. Chen et al. [21] studied the dynamic ET output feedback control of power
systems load frequency under multiple network attacks, proposed a new dynamic ET load frequency
regulation scheme, and obtained the mean-square exponential stability and robustness conditions of the
systems.

Based on previous works, we study the LFCs problem of NMASs with MSTs subjected to DoS attacks
under ET control. The principal innovations are as bellow:

(1) The communication topologies considered in this paper are random Markov switching, and TRs are
assumed to be partially unknown. In order to reduce bandwidth pressure and saving resources, the ET
scheme is adopted. At the same time, considering the open nature of the network, MASs could suffer from
network attacks, which are assumed to be damaging and easy to implement DoS attacks.

(2) Diverse from the deterministic topologies in literature [9, 14, 20], the communication topologies of
the MASs considered in this paper are random MSTs.

(3) Compared with [15, 16], in this paper, an ET condition is designed, an ET strategy is introduced, and
the data are sent when needed according to the trigger condition rather than transmitting all the data as in
[15, 16]. The introduction of an ET strategy can effectively save network resources.

Notations: Rn is the n-dimensional real vector space. ∗ denotes a block caused by symmetry in the
matrix. In stands for the n order identity matrix. The sign ⊗ indicates the Kronecker product. E(·) is the
expected value for a stochastic variable. The Euclidean vector norm is represented as ∥ · ∥. ι stands for the
time variable.



X. Zhou et al. / Filomat 37:17 (2023), 5567–5580 5569

2. Problem formulations

Graph Theory: G = (ς, χ,C) represents the network communication topology of the agents, where ς is
the nodes set with ς = (ς1, ς2, · · · , ςN), χ is the edges set with χ ⊆ ς × ς, and C = [ai j] ∈ RN×N with aii = 0
stands for the adjacency matrix. It is assumed that a direct edge from agent j to agent i is available, that is,
( j, i) ∈ χ, ai j > 0, otherwise, ai j = 0. L = [li j] ∈ RN×N is the Laplacian matrix and satisfies li j = −ai j( j , i) and
lii =

∑
j=i ai j. In directed graph G, a directed path from node ς j to ςi is a finite ordered sequence of edges

(ς j, ςl1 ), (ςl1 , ςl2 ), · · · , (ςlæ , ς j) with distinct nodes ςl℘ , ℘ = 1, 2, · · · ,æ. A graph is said to include a directed
spanning tree if at least one directed path from one node to all other nodes in the graph.

The communication topologies consist of m graphs,
⋃m

i=1Gi = {ς,
⋃m

i=1 χi,
∑m

i=1 Ci} denote the concatena-
tion of m graphs G1 = {ς, χ1,C1}, · · · , Gm = {ς, χm,Cm}. Let Gν(ι) = (ς, χν(ι),Cν(ι)) be the network commu-
nication topology of the agents at time ι, where the set of edges χν(ι) and the adjacency matrix Cν(ι) are
time-varying. The graph Gν(ι) is stochastic time-varying and is controlled by the Markov process ν(ι).

2.1. System model description

The MASs consist of a leader and N followers. The dynamic model of the ith follower is described as

ẋi(ι) = Axi(ι) + B1(ι, xi(ι)) + Cui(ι), i = 1, 2, · · · ,N, (1)

where xi(ι) ∈ Rn and ui(ι) ∈ Rn stand for the state vector and control input vector of the ith follower,
respectively. A, B and C denote constant matrices of known suitable dimensions. 1(·, ·) is continuous
nonlinear vector function satisfying the Assumption 3.

Accordingly, the dynamic model of the leader is described as

ẋ0(ι) = Ax0(ι) + B1(ι, x0(ι)), (2)

where x0(ι) ∈ Rn represents the state vector of the leader.
To design the conformance control protocol, in what follows, the combination threshold is defined as

follows

wi(ι) =
N∑

j=1

ai j,ν(ι)(x j(ι) − xi(ι)) + di0,ν(ι)(x0(ι) − xi(ι)), (3)

where ν(ι) stands for a discrete-time Markov process, which can be assumed to take value in the finite set
S = {1, 2, · · · ,m}. The switching of the network communication topology is determined by the Markov
process {ν(ι), ι ≥ 0} on the probability space (Ω,F ,P), and the transition probability satisfies

P {ν(ι + ∆) = s|ν(ι) = ν} =
{
πνs(ℓ)∆ + o(∆), ν , s,
1 + πνν(ℓ)∆ + o(∆), ν = s, (4)

whereπνs(ℓ) ≥ 0 represents the TRs from mode ν to mode s. If ν = s, then it satisfiesπνν(ℓ) = −
∑m

s=1,s,ν πνs(ℓ),
then

∑m
s=1 πνs(ℓ) = 0. If πνs(ℓ) is known, πνs(ℓ) and πνs(ℓ) stand for the lower bound and upper bound of

πνs(ℓ), spectively. ℓ denotes the duration between two consecutive jumps. o(∆) denotes an infinitesimal of
higher order than ∆, i.e. lim

∆→0

o(∆)
∆ = 0. Define the TRs matrix of Markov chain as

Π =


π11(ℓ) ? ? · · · π1m(ℓ)

? ? π23(ℓ) · · · ?
π31(ℓ) ? π33(ℓ) · · · ?
...

...
...

. . .
...

? ? ? · · · πmm(ℓ)


,
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where ”?” stands for the unknown element, defining Sνk = {s|πνs(ℓ) is known } and Sνuk = {s|πνs(ℓ) is unknown
}, it is clear that S = Sνk + Sνuk. Also, one obtains Sνk = {k

ν
1, k
ν
2, · · · , k

ν
ℏ
}, where kνϖ(ϖ = 1, · · · , ℏ) denotes the

element of the ϖth column in the νth row of the matrix Π.
The ui(ι) is designed as

ui(ι) = γKν(ι)wi(ιik), ι ∈ [ιik, ι
i
k+1), (5)

where Kν(ι) is the control gain matrix. ιik denotes the kth trigger instant of the ith agent, and the set of trigger
instants is {ιi0, ι

i
1, · · · }. γ > 0 is the coupling strength.

According to the definition of combination threshold, its error is

ξi(ι) = wi(ιik) − wi(ι). (6)

Let w(ι) = [wT
1
(ι1k),wT

2
(ι2k), · · · ,wT

N
(ιNk )]T, x(ι) = [xT

1
(ι), xT

2
(ι), · · · , xT

N
(ι)]T. Substitute (5) into (1), then (1) can be

rewritten as

ẋi(ι) = (IN ⊗ A)xi(ι) + (IN ⊗ B)1(ι, xi(ι)) + γ(IN ⊗ CKν(ι))wi(ιk). (7)

Define the state vector error as ηi(ι) = xi(ι) − x0(ι), and let η(ι) = [ηT
1 (ι), ηT

2 (ι), · · · , ηT
N(ι)], then η(ι) is derived

for time to give

η̇(ι) = (IN ⊗ A)η(ι) + (IN ⊗ B)G(η(ι), ι) + γ(IN ⊗ CKν(ι))w(ιk). (8)

Let ξ(ι) = [ξT
1
(ι), ξT

2
(ι), · · · , ξT

N
(ι)]T, according to (3), (6) and η(ι), then one obtains

w(ι) = −(Hν(ι) ⊗ IN)η(ι), (9)

where Hν(ι) = Lν(ι) +Dν(ι).
Definition 1[15]NMASs (1) and (2) are able to implement LFCs under random MSTs and DoS attacks, if

NMASs satisfy

E{||ηi(ι)||2} ≤ γexp(−ϑι)E{||ηi(0)||2}, (10)

where γ and ϑ > 0 represent the positive scalar and decay rate, respectively.
Assumption 1[16] For MASs (1) and (2), the graphs Gν(ι) are strongly connected.
Assumption 2[16] (A, B) is stabilizable.
Assumption 3[15] For any x1, x2 ∈ Rn, there exists a positive constant ρ such that

∥ 1(x1) − 1(x2) ∥≤ ρ ∥ x1 − x2 ∥ . (11)

2.2. Description of the attack model
Assuming that the attackers have finite amount of energy, the attackers enter the sleep zone after

the last attack to recharge for the next attack. Therefore, the whole time interval can be divided into a
communication interval and an attack interval. During the communication interval, the agent updates the
controller at the trigger instant {ιik}. During the attack interval, communication among agents is interrupted,
and no ET instant.

In Figure 1, {hn}n∈N, h0 ≥ 0 represents the time sequence of attacks, ∂n indicates the duration of the
attacks. From Figure 1, when the DoS attacks stop, the agents need to recover time ∆∗ before it can return
to the control state, so the time period of the nth attack is Ĥn = [hn, hn + ∂n +∆∗). For any time period [ι0, ι),
there is [ι0, ι) = Π̂a(ι0, ι)

⋃
Π̂s(ι0, ι), where Π̂a(ι0, ι) =

⋃
Ĥn

⋂
[ι0, ι] indicates the total time that the systems

are affected by the attacks; Π̂s(ι0, ι) = [ι0, ι]\Π̂a(ι0, ι) stands for the total time that the systems are not affected
by the attacks. Therefore, it can be deduced that

|Π̂s(ι0, ι)| = ι − ι0 − |Π̂a(ι0, ι)|, (12)

|Π̂a(ι0, ι)| ≤ |Πa(ι0, ι)| + (1 +Na(ι0, ι))∆∗, (13)
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Figure 1 Time series of DoS attacks

where Na(ι0, ι) stands for the total number of attacks. Πa(ι0, ι) =
⋃
Hn

⋂
[ι0, ι],Hn = [hn, hn + ∂n).

For the MASs under DoS attacks, the attack frequency and the attack duration are introduced in this
paper to prevent the attackers from launching the attack continuously so as to ensure systems stability.

Assumption 4[22] (Attack Frequency) For any T2 > T1 > t0, the attack frequency Fa(·) within [T1,T2)
satisfies

Fa(T1,T2) ≤
Na(T1,T2)
T2 − T1

, (14)

where Na(T1,T2) denotes the number of DoS attacks on [T1,T2).
Assumption 5[22] (Attack Duration) For any T2 > T1 > t0, let Πa(T1,T2) denote the total time interval

which the systems are subject to DoS attacks in interval [T1,T2), the attack duration over [T1,T2) is defined
as: there exist scalars T0 ≥ 0 and ζa > 1, such that

Πa(T1,T2) ≤ T0 +
T2 − T1

ζa
, (15)

where T0 and ζa represent the energy and attack strategy of attacks, respectively.

3. Main results

Next, the consensus of MASs under the ET strategy will be studied. The ET function is

ξT
i (ι)Λξi(ι) − σwT

i (ι)Λwi(ι) < 0, (16)

where Λ = PνCCTPν, 0 < σ < 1.

Remark 3.1. In ET control, a behavior where numerous triggers occur in a finite time is Zeno behavior. Due to the
time interval between any two adjacent ET considered in this paper being greater than 0, i.e., ιik+1 − ι

i
k > 0. Therefore,

the MASs do not have Zeno behavior under the ET control protocol.

Theorem 3.2. For given positive scalars ρ, ϵ, α1, α2, β, µ and 0 < ℏ1 < ϵ and 0 < σ < 1, the MASs (1) and (2) are
able to achieve LFCs under the control protocol (5), if there exist appropriate dimension positive definite matrices Qν,
Q and X = XT

ν , and the Assumptions 1-5 hold, for any ν ∈ S, satisfying Ξν,11 Qν Ξν,13
∗ −ρ−2IN 0
∗ ∗ Ξν,33

 < 0, ν ∈ Sνk , (17)

 Θν,11 Qν Θν,13
∗ −ρ−2IN 0
∗ ∗ Θν,33

 < 0, ν ∈ Sνuk, (18)
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Xν Qν
∗ −Qs

)
≤ 0, ∀s ∈ Sνuk, s , ν, (19)

Qs +Xν ≥ 0, ∀s ∈ Sνuk, s = ν, (20)

[
QAT + AQ + BBT

−Qβ Q
∗ −ρ−2IN

]
< 0, (21)

Fa =
ϵ + β

ι − ι0
≤

ℏ1

ln(u) + ∆∗(ϵ + β)
, (22)

ζa >
ϵ + β

ϵ + ℏ1
, (23)

where
Ξν,11 =QνAT + AQν + BBT + πνν(ℓ)Qν +

∑
s∈Sνk
πνs(ℓ)Xν +Qνα1

+
(
−2γλmin (Hν) + γ

√
σ (λmin (Hν) + λmax (Hν))

)
CCT,

Ξν,13 =(
√
πνkν1 (ℓ)Qν,

√
πνkν2 (ℓ)Qν, · · · ,

√
πνkνϖ−1

(ℓ)Qν,
√
πνkνϖ+1

(ℓ)Qν, · · · ,
√
πνkν

ℏ
(ℓ)Qν),

Ξν,33 = − diag{Qkν1 ,Qkν2 , · · · ,Qkνϖ−1
,Qkνϖ+1

, · · · ,Qkν
ℏ
},

Θν,11 =QνAT + AQν + BBT +
∑

s∈Sνk
πνs(ℓ)Xν +Qνα2 +

(
−2γλmin (Hν) + γ

√
σ (λmin (Hν) + λmax (Hν))

)
CCT,

Θν,13 =(
√
πνkν1 (ℓ)Qν,

√
πνkν2 (ℓ)Qν, · · · ,

√
πνkν

ℏ
(ℓ)Qν),

Θν,33 = − diag{Qkν1 ,Qkν2 , · · · ,Qkν
ℏ
},

Qν = P−1
ν , Q = P−1, Xν = QνQνQν, Kν = CTPν.

Proof At first, the Lyapunov function is constructed as follows

V(η(ι), ι, ν(ι)) = ηT(ι)(IN ⊗ Pν(ι))η(ι). (24)

An infinitesimal operatorA is defined as below

AV(η(ι), ι, ν(ι)) = lim
△→0+

1
△

{
E[V(η(ι + △), ι + △, ν(ι + △))|η(ι), ι, ν(ι)] −V(η(ι), ι, ν(ι))

}
. (25)

To facilitate the operation, let ν(ι) = ν. Since
∑m

s=1 πνs(ℓ) = 0, for any appropriate dimensions matrices
Qν, ν ∈ S, it can be deduced that

m∑
s=1

πνs(ℓ)ηT(ι)(IN ⊗ Qν)η(ι) = 0. (26)

Applying the Total Probability formula as well as the Conditional expectation formula, one has

E
{
AV(η(ι), ι, ν)

}
= 2ηT(ι)(IN ⊗ PνA)η(ι) + 2ηT(ι)(IN ⊗ PνB)G(η(ι), ι)

+ 2γηT(ι)(IN ⊗ PνCKν)w(ιk) + ηT(ι)
∑

s∈Sνk
πνs(ℓ)(IN ⊗ (Ps + Qν))η(ι)

+ηT(ι)
∑

s∈Sνuk

πνs(ℓ)(IN ⊗ (Ps + Qν))η(ι). (27)
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Based on Assumption 1, it is obtained as

2η(ι)(IN ⊗ PνB)G(η(ι), ι) ≤ ηT(ι)(IN ⊗ (PνBB
T
Pν + ρ2IN))ηT(ι). (28)

Combining (6) and (9), then

2γηT(ι)(IN ⊗ PνCKν)w(ιk) = 2γηT(ι)(IN ⊗ PνCKν)ξ(ι) − 2γηT(ι)(Hν ⊗ PνCKν)η(ι). (29)

Let Kν = CT Pν, based on Young’s inequality: 2ab ≤ εa2 + 1
εb

2, where ε > 0, one gets

2γηT(ι)(IN ⊗ PνCCTPν)ξ(ι) ≤ γεηT(ι)(IN ⊗ PνCCTPν)η(ι) + γ
1
ε
ξT(ι)(IN ⊗ PνCCTPν)ξ(ι). (30)

According to ET strategy (16), one has

ξT
i (ι)Λξi(ι) ≤ σwT

i (ι)Λwi(ι), (31)

therefore, combining (9), (30) and (31), one obtains

2γηT(ι)(IN ⊗ PνCCTPν)ξ(ι) ≤ γ
σ
ε

wT(ι)(IN ⊗ PνCCTPν)w(ι) + γεηT(ι)(IN ⊗ PνCCTPν)η(ι)

= γεηT(ι)(IN ⊗ PνCCTPν)η(ι) + γ
σ
ε
ηT(ι)(HνHν ⊗ PνCCTPν)ηT(ι). (32)

From (27)-(29) and (32), it can be deduced

E
{
AV(η(ι), ι, ν)

}
≤ ηT(ι)[IN ⊗ (ATPν + PνA + PνBBTPν + ρ2IN

+
∑

s∈Sνk
πνs(ℓ)(Ps + Qν)) − 2γ(Hν ⊗ PνCCTPν)

+ γε(IN ⊗ PνCCTPν) + γ
σ
ε

(HνHν ⊗ PνCCTPν)]η(ι)

+ ηT(ι)
∑

s∈Sνuk

πνs(ℓ)(IN ⊗ (Ps + Qν))η(ι). (33)

Since Hν > 0, there exists a nonsingular matrix R satisfying RTHνR = dia1{λmin(Hν), · · · , λmax(Hν)}. Let
η̂(ι) = (R ⊗ I)η(ι), then (33) can become as

E
{
AV(η(ι), ι, ν)

}
≤ η̂T(ι)[IN ⊗ (ATPν + PνA + PνBB

T
Pν + ρ2IN +

∑
s∈Sνk
πνs(ℓ)(Ps + Qν)

+ (Ψ ⊗ PνCCTPν)]η̂(ι) + η̂T(ι)
∑

s∈Sνuk

πνs(ℓ)(IN ⊗ (Ps + Qν))η̂(ι), (34)

whereΨ =
{
−2γλmin(Hν) +

γσ
ε λ

2
min

(Hν), · · · ,−2γλmax(Hν) +
γσ
ε λ

2
max

(Hν)
}
+ γεI.

Let ε =
√
σλmax(Hν), and taking it into (34), one can introduce

E
{
AV(η(ι), ι, ν)

}
≤ η̂T(ι)[IN ⊗ (ATPν + PνA + PνBB

T
Pν + ρ2IN +

∑
s∈Sνk
πνs(ℓ)(Ps + Qν)

+ (−2γλmin(Hν) + γ
√
σ(λmin(Hν) + λmax(Hν)))PνCCTPν)]η̂(ι)

+ η̂T(ι)
∑

s∈Sνuk

πνs(ℓ)(IN ⊗ (Ps + Qν))η̂(ι). (35)

Let Qν = P−1
ν , multiplying the left and right sides of (35) by Qν, one gets

E
{
AV(η(ι), ι, ν)

}
≤ η̂T(ι)[IN ⊗ (QνAT + AQν + BB

T
+ ρ2QνQν +

∑
s∈Sνk
πνs(ℓ)QνPsQν

+
∑

s∈Sνk
πνs(ℓ)QνQνQν + πνν(ℓ)Qν + (−2γλmin(Hν) + γ

√
σ(λmin(Hν)

+ λmax(Hν)))CCT)]η̂(ι) + η̂T(ι)
∑

s∈Sνuk

πνs(ℓ)(IN ⊗ (Ps + Qν))η̂(ι). (36)
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For any ν ∈ Sνk , and according to (17), if the following inequality

Ps + Qν ≤ 0,∀s ∈ Sνuk, s , ν (37)

holds, then it yields

E
{
AV(η(ι), ι, ν)

}
≤ −α1E{V(η(ι), ι, ν)}.

At the same time, for any ν ∈ Sνuk, one gets

E
{
AV(η(ι), ι, ν)

}
≤ η̂T(ι)[IN ⊗ (QνAT + AQν + BB

T
+ ρ2QνQν +

∑
s∈Sνk
πνs(ℓ)QνPsQν

+
∑

s∈Sνk
πνs(ℓ)QνQνQν + πνν(ℓ)Qν + (−2γλmin(Hν) + γ

√
σ(λmin(Hν)

+ λmax(Hν)))CCT)]η̂(ι) + η̂T(ι)
∑

s∈Sνuk

πνs(ℓ)(IN ⊗ (Ps + Qν))η̂(ι). (38)

Combining (18), if the following inequalities

Ps + Qν ≥ 0,∀s ∈ Sνuk, s = ν, (39)

Ps + Qν ≤ 0,∀s ∈ Sνuk, s , ν (40)

hold, therefore one has

E
{
AV(η(ι), ι, ν)

}
≤ −α2E{V(η(ι), ι, ν)}.

Let ϵ = min(α1, α2), one gets

E
{
V(η(ι), ι, ν)

}
≤ exp(−ϵ(ι − hn−1 − ∂n−1))E

{
V(η(hn−1 + ∂n−1), hn−1 + ∂n−1, ν)

}
, ι ∈ [hn−1 + ∂n−1, hn). (41)

In the attack interval, the Lyapunov function is constructed as

V(η(ι), ι, ν(ι)) = ηT(ι)(IN ⊗ P)η(ι). (42)

Due to the communication network among agents suffering from DoS attacks, causing communication to
be interrupted, i.e., control input ui(ι) = 0, then

E
{
AV(η(ι), ι, ν)

}
= 2ηT(ι)(IN ⊗ PA)η(ι) + 2ηT(ι)(IN ⊗ PB)G(η(ι), ι). (43)

According to Assumption 1, one has

2η(ι)(IN ⊗ PB)G(η(ι), ι) ≤ GT(ηi(ι), ι)G(ηi(ι), ι) +
N∑

i=1

ηT
i (ι)PBB

T
Pηi(ι)

≤ ηT(ι)(IN ⊗ (PBB
T
P + ρ2IN))ηT(ι). (44)

Bringing (44) into (43), one gets

E
{
AV(η(ι), ι, ν)

}
= ηT(ι)[IN ⊗ (PA + ATP + PBBTP + ρ2IN)]ηT(ι). (45)

According to the (21), then

E
{
AV(η(ι), ι, ν)

}
≤ βE{V(η(ι), ι, ν)}, (46)
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therefore

E
{
V(η(ι), ι, ν)

}
≤ exp(β(ι − hn))E

{
V(η(hn), hn, ν)

}
, ι ∈ [hn, hn + ∂n + ∆∗). (47)

Assume V(ι) = Vϕ(ι)(ι) are the communication interval and attack interval of the switching systems,
respectively, where ϕ(ι) ∈ {1, 2}, i.e., V1(ι) and V2(ι) corresponding communication interval and attack
interval, then{

E{V(ι)} ≤ exp(−ϵ(ι − hn−1 − ∂n−1))E {V1(hn−1 + ∂n−1)}, ι ∈ [hn−1 + ∂n−1, hn),
E{V(ι)} ≤ exp(β(ι − hn))E {V2(hn)}, ι ∈ [hn, hn + ∂n + ∆∗).

(48)

If ι ∈ [hn−1 + ∂n−1, hn), according to (48), one has

E{V(ι)} ≤ exp(−ϵ(ι − hn−1 − ∂n−1))E {V1(hn−1 + ∂n−1)}
≤ µ exp(−ϵ(ι − hn−1 − ∂n−1))E {V1(hn−1 + ∂n−1)}
≤ µ exp(−ϵ(ι − hn−1 − ∂n−1))

[
exp(β(ι − hn−2 − ∂n−2))E {V1(hn−2 + ∂n−2)}

]
· · ·

≤ µn exp(−ϵ|Π̂s(ι0, ι)|) exp(β|Π̂a(ι0, ι)|)E {V1(ι0)} . (49)

If ι ∈ [hn, hn + ∂n + ∆∗), according to the (48), it can be deduced that

E{V(ι)} ≤ exp(β(ι − hn))E {V2(hn)}
≤ µ exp(β(ι − hn))E

{
V2(h−n )

}
≤ µ exp(β(ι − hn)

[
exp(−ϵ(hn − hn−1 − ∂n−1))E {V2(hn−1 + ∂n−1)}

]
· · ·

≤ µn+1 exp(−ϵ|Π̂s(ι0, ι)|) exp(β|Π̂a(ι0, ι)|)E {V1(ι0)} , (50)

where µ > 0.
Based on Assumptions 4 and 5, when ι ∈ [hn−1 + ∂n−1, hn), Na(t0, ι) = n; when ι ∈ [hn, hn + ∂n + ∆∗),

Na(ι0, ι) = n + 1. According to (49) and (50), the following inequality

E{V(ι)} ≤ µNa(ι0,ι) exp(−ϵ|Π̂s(ι0, ι)|) exp(β|Π̂a(ι0, ι)|)E {V(ι0)} (51)

holds. Taking (12) and (13) into (50), one gets

E {V(ι)} ≤ µNa(ι0,ι) exp(−ϵ(ι − ι0 − Π̂a(ι0, ι)) + (β|Π̂a(ι0, ι)|))E {V(ι0)}

= µNa(ι0,ι) exp(−ϵ(ι − ι0) + (ϵ + β)|Π̂a(ι0, ι)|)E {V(ι0)}

≤ µNa(ι0,ι) exp(−ϵ(ι − ι0) + (ϵ + β)(T0 +
ι − ι0
ζa
+ (1 +Na(ι0, ι))∆∗))E {V(ι0)}

= exp(Na(ι0, ι)(ln(u) + ∆∗(ϵ + β))) exp(−ϵ(ι − ι0)) exp((ϵ + β)(T0 + ∆∗))

× exp(
ϵ + β

ζa
(ι − ι0))E {V(ι0)} . (52)

Let ℏ̂ = ϵ − (ϵ+β)
ζa
− ℏ1, combining (22) and (23), then the following inequality can be derived from (52)

E {V(ι)} ≤ exp((ϵ + β)(T0 + ∆∗)) exp(−ℏ̂(ι − ι0))E {V(ι0)} . (53)

According to Definition 1, the MASs achieve LFCs under DoS attacks. The proof is completed.
Due to there exists time-varying term πνs(ℓ), Theorem 3.2 cannot be solved by LMI. This problem can

be solved by Theorem 3.3.
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Theorem 3.3. For given positive scalars ϵ, α1, α2, β,ρ, µ and 0 < ℏ1 < ϵ and 0 < σ < 1, the MASs (1) and (2) are
able to achieve LFCs under the control protocol (5), if there exist appropriate dimension positive definite matrices Qν,
Q and X = XT

ν , and the Assumptions 1-5 hold, for any ν ∈ S, satisfying

 Ξν,11 Qν Ξν,13
∗ −ρ−2IN 0
∗ ∗ Ξν,33

 < 0, ν ∈ Sνk , (54)

 Θν,11 Qν Θν,13
∗ −ρ−2IN 0
∗ ∗ Θν,33

 < 0, ν ∈ Sνuk, (55)

 Ξν,11 Qν Ξν,13
∗ −ρ−2IN 0
∗ ∗ Ξν,33

 < 0, ν ∈ Sνk , (56)

 Θν,11 Qν Θν,13
∗ −ρ−2IN 0
∗ ∗ Θν,33

 < 0, ν ∈ Sνuk, (57)

(
Xν Qν
∗ −Qs

)
≤ 0, ∀s ∈ Sνuk, s , ν, (58)

Qs +Xν ≥ 0, ∀s ∈ Sνuk, s = ν, (59)

[
QAT + AQ + BBT

−Qβ Q
∗ −ρ−2IN

]
< 0, (60)

Fa =
ϵ + β

t − t0
≤

ℏ1

ln(u) + ∆∗(ϵ + β)
, (61)

ζa >
ϵ + β

ϵ + ℏ1
, (62)

where
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Ξν,11 =QνAT + AQν + BBT + πννQν +
∑

s∈Sνk
πνsXν +Qνα1

+
(
−2γλmin (Hν) + γ

√
σ (λmin (Hν) + λmax (Hν))

)
CCT,

Ξν,13 =(
√
πνkν1

Qν,
√
πνkν2

Qν, · · · ,
√
πνkνϖ−1

Qν,
√
πνkνϖ+1

Qν, · · · ,
√
πνkν

ℏ
Qν),

Ξν,11 =QνAT + AQν + BBT + πννQν +
∑

s∈Sνk
πνsXν +Qνα1

+
(
−2γλmin (Hν) + γ

√
σ (λmin (Hν) + λmax (Hν))

)
CCT,

Ξν,13 =(
√
πνkν1 Qν,

√
πνkν2 Qν, · · · ,

√
πνkνϖ−1

Qν,
√
πνkνϖ+1

Qν, · · · ,
√
πνkν

ℏ
Qν),

Ξν,33 = − diag{Qkν1 ,Qkν2 , · · · ,Qkνϖ−1
,Qkνϖ+1

, · · · ,Qkν
ℏ
},

Θν,11 =QνAT + AQν + BBT +
∑

s∈Sνk
πνsXν +Qνα2 +

(
−2γλmin (Hν) + γ

√
σ (λmin (Hν) + λmax (Hν))

)
CCT,

Θν,13 =(
√
πνkν1

Qν,
√
πνkν2

Qν, · · · ,
√
πνkν

ℏ
Qν),

Θν,11 =QνAT + AQν + BBT +
∑

s∈Sνk
πνsXν +Qνα2 +

(
−2γλmin (Hν) + γ

√
σ (λmin (Hν) + λmax (Hν))

)
CCT,

Θν,13 =(
√
πνkν1 Qν,

√
πνkν2 Qν, · · · ,

√
πνkν

ℏ
Qν),

Θν,33 = − diag{Qkν1 ,Qkν2 , · · · ,Qkν
ℏ
},

Qν = P−1
ν , Q = P−1, Xν = QνQνQν, Kν = CTPν.

Proof Given a particular ℓ, there exist positive scalars θ1, θ2 satisfying θ1 + θ2 = 1 such that πνs(ℓ) =
θ1πνs + θ2 πνs. For any ν ∈ Sνk , according to the formula (35), define

Ξν = (ATPν + PνA + PνBB
T
Pν + ρ2IN +

∑
s∈Sνk

(θ1πνs + θ2πνs)(Ps + Qν)

+ (−2γλmin(Hν) + γ
√
σ(λmin(Hν) + λmax(Hν)))PνCCTPν. (63)

Thus, Ξν = θ1Ξν + θ2Ξν . According to (54) and (56), by applying a similar proof as in Theorem 3.2, it
follows that Ξν < 0. Similarly, for any ν ∈ Sνuk, in accordance to (55) and (57), one has Θν = θ1Θν + θ2Θν < 0.
In summary, by changing the parameters θ1 and θ2, all possible πνs(ℓ) ∈ [ πνs, πνs] can be achieved. The
proof is completed.

4. Numerical example

Consider that MASs have a leader and three followers. The communication topologies without DoS
attacks among agents are shown in Figure 2. The communication topologies with DoS attacks among agents
are shown in Figure 3. Assume that constant coefficient matrices A, B, C and TRs matrix Π are as follows

A =
[
−0.275 1.851
−6.658 −0.673

]
, B =

[
1 0
0 1

]
,

C =
[
−1.104 −0.302
−8.029 −2.046

]
, Π =

 π11(ℓ) ? ?
π21(ℓ) ? π23(ℓ)
π31(ℓ) ? ?

 ,
where π11(ℓ) ∈ [−0.2, 0.8], π21(ℓ) ∈ [0.5, 0.1], π23(ℓ) ∈ [0.7, 0.6], π31(ℓ) ∈ [0.1, 0.4], ”?” denote the unknown
elements.
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Figure 2 Communication topologies without DoS attacks

Figure 3 Communication topologies with DoS attacks

Assume that nonlinear functions 1(ι, xi(ι)) = (0.01 sin(xi1(ι)), 0.01 sin(xi2(ι)))T, i = 0, 1, 2, 3. Choose α1 =
0.89, σ = 0.6, α2 = 0.68, γ = 0.21, ρ = 0.4. By solving the linear matrix inequalities , it is easy to get the
control gain matrices and trigger parameter matrices as below

K1 =

[
−2.4771 −1.8088
−0.6558 −0.4639

]
, K2 =

[
−2.2356 −2.1526
−0.5922 −0.5512

]
, K3 =

[
−0.8709 −1.0974
−0.2320 −0.2805

]
,

Λ1 =

[
6.5660 4.7849
4.7849 3.4871

]
, Λ2 =

[
5.3485 5.1387
5.1387 4.9375

]
, Λ3 =

[
0.8122 1.0208
1.0208 1.2830

]
.

Choose ϵ = 0.89, β = 0.7, µ = 2, ℏ1 = 0.03, ∆∗ = 0.016, then one can get Fa ≤ 0.042, ζa > 2.2.
Figure 4 shows the Markov jumping with three modes; Figure 5 depicts the ET instant for all the

followers, which shows that the ET strategy reduces the number of communications as well as saves
resources; Figure 6 and Figure 7 show the trajectories of the error systems ηi1 and ηi2 between the leader
and the followers, respectively, the analysis of the two figures shows that the error tends to zero, so MASs
achieve LFCs.
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Figure 5 The trigger instants and trigger intervals
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Figure 6 State trajectories of the error systems ηi1
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Figure 7 State trajectories of the error systems ηi2

5. Conclusion

The issue of LFCs of NMASs with MSTs subjected to DoS attacks under ET control has been addressed.
Based on Lyapunov stability theory and Markov theory, using the ET strategy, sufficient conditions of LFCs
for MASs have been obtained, which extends the results of some existing literature. An example has been
provided to verify the effectiveness of the methods and the correctness of the results. We will investigate
the LFCs problem of NMASs with MSTs subjected to multiple network attacks under dynamic ET in the
future.
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