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Abstract. We introduce an inertial type gradient projection hybrid iterative method for finding a common
solution of generalized mixed equilibrium, variational inequality and fixed point problems in a two-
uniformly convex and uniformly smooth Banach space. Next, we analyze the strong convergence for a
common solution of problem. Furthermore, we carry out some consequences and present a numerical
example to show and tell the applicability of main theorem. Our result improves, unifies, generalizes and
extends ones from several earlier works.

1. Introduction

Let Y∗ denotes the dual space of a real Banach space Y. We denote the value of the functional j ∈ Y∗ at
x1 ∈ Y by ⟨x1, j⟩ and the norm of Y or Y∗ by ∥.∥. Let P , ∅ be a subset of Y. A mapping J : Y→ 2Y∗ such that

Jx1 = {x2 ∈ Y∗ : ⟨x2, x1⟩ = ∥x1∥
2 = ∥x2∥

2
}, ∀x1 ∈ Y.

is called normalized duality mapping.

Let G : P × P → R, b : P × P → R be bifunctions and D : P → Y∗ be a nonlinear mapping, where R
is the set of all real numbers. In this paper, we consider generalized mixed equilibrium problem (in brief,
GMEP)as: Find u1 ∈ P such that

G(u1,u2) + ⟨Du1,u2 − u1⟩ + b(u1,u2) − b(u1,u1) ≥ 0, ∀u2 ∈ P. (1)

The solution set of GMEP(1) is denoted by Sol(GMEP(1)).

If D ≡ 0 then GMEP(1) convert to generalized equilibrium problem (in brief, GEP): Find u1 ∈ P such that

G(u1,u2) + b(u1,u2) − b(u1,u1) ≥ 0, ∀u2 ∈ P. (2)

2020 Mathematics Subject Classification. 47H10, 47J22, 47J25
Keywords. Quasi-ϕ-nonexpansive mapping, fixed point problem, variational inequality problem, generalized mixed equilibrium

problem, inertial hybrid iterative method, Banach space
Received: 29 October 2020; Revised: 03 September 2022; Accepted: 19 January 2023
Communicated by Adrian Petrusel
* Corresponding author: Rehan Ali
Email addresses: mohdfrd55@gmail.com;m.jameel@qu.edu.sa (Mohammad Farid), rehan08amu@gmail.com (Rehan Ali),

krkazmi@gmail.com (Kaleem Raza Kazmi)



M. Farid et al. / Filomat 37:18 (2023), 6133–6150 6134

The solution set of GEP(2) is denoted by Sol(GEP(2)).

If D ≡ 0 and b ≡ 0 then GMEP(1) becomes equilibrium problem (in brief, EP): Find u1 ∈ P such that

G(u1,u2) ≥ 0, ∀u2 ∈ P, (3)

The solution set of EP(3) is denoted by Sol(EP(3)) and (3) introduced by Blum and Oettli [2].

The variational inequality problem (in brief, VIP): Find u1 ∈ P such that

⟨u2 − u1,Bu1⟩ ≥ 0, ∀u2 ∈ P, (4)

where B : P → Y∗ be a nonlinear mapping. VIP(4) is studied by Hartmann and Stampacchia [9] and
Sol(VIP(4)) denotes its solution.

Let T : P → P be a nonlinear mapping. we define fixed point problem (in brief, FPP): Find u1 ∈ P such
that

F(T) = {u1 ∈ P : Tu1 = u1}. (5)

Takahashi et al. [18] proposed an algorithm in 2009 as:

x0 ∈ P,
un = J−1(αn Jxn + (1 − αn)JTxn),

zn ∈ P such that 1(zn, v) +
1
rn
⟨v − zn, Jzn − Jun⟩ ≥ 0, ∀v ∈ P,

Pn = {w ∈ P : ϕ(w, zn) ≤ ϕ(w, xn)},
Qn = {w ∈ P : ⟨xn − w, Jx0 − Jxn⟩ ≥ 0},
xn+1 = ΠPn

⋂
Qn x0.


(6)

Recently, Kazmi and Ali [14], studied an iterative result for finding a common solution of EP (3) and
FPP (5) for an asymptotically quasi-ϕ-nonexpansive mapping. For further study of some generalizations
of algorithms (6), see[7, 8, 10–12, 20].

In 2008, Mainge [15] development and studied the following inertial method:

zn = un + θn(un − un−1),
un+1 = (1 − αn)zn + αnTzn.

}
(7)

In a short while ago, Dong et al. [4, 5] studied inertial iterative result in Hilbert space frame.

It is important to highlight that in the framework of Banach space, the inertial iterative algorithm is still
unexplored.

Therefore, inspired and motivated by the endeavor of Dong et al. [5], Mainge [15] and Takahashi et
al. [18], we proposed an inertial type gradient projection hybrid iterative algorithm for finding a common
solution of GMEP(1), VIP(4) for a γ-ism and FPP(5) for a family of quasi-ϕ-nonexpansive mappings in
two-uniformly convex and uniformly smooth Banach space. Next, we analyze the strong convergence for
a common solution of problem. Furthermore, we carry out some consequences and present a numerical
example to show and tell the applicability of main theorem.

2. Preliminaries

We offered some necessary definitions and results which are needed in succession.
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Let S = {x1 ∈ Y : ∥x1∥ = 1} be the unit sphere of Y and if ∥x1+x2∥

2 < 1, ∀x1, x2 ∈ S with x1 , x2 then Y is said
to be strictly convex. If for any ε ∈ (0, 2] there exists a δ > 0 such that

∥x1 − x2∥ ≥ ε implies
∥x1 + x2∥

2
≤ 1 − δ, ∀x1, x2 ∈ S,

then Y is called uniformly convex. Note that it is strictly convex and reflexive.

The space Y is called smooth if lim
s→0

∥x1 + sx2∥ − ∥x1∥

s
exists, ∀x1, x2 ∈ S and uniformly smooth if the limit

is attained uniformly, ∀x1, x2 ∈ S. The space Y enjoys Kadec-Klee property if for any {xn} ⊂ Y and x1 ∈ Y
with xn ⇀ x1 and ∥xn∥ → ∥x1∥ then ∥xn − x1∥ → 0 as n→∞.

A mapping ϕ : Y × Y→ R such that

ϕ(x1, x2) = ∥x1∥
2
− 2⟨x1, Jx2⟩ + ∥x2∥

2, ∀x1, x2 ∈ Y, (8)

is called Lyapunov function.

From (8), we have

(∥x1∥ − ∥x2∥)2
≤ ϕ(x1, x2) ≤ (∥x1∥ + ∥x2∥)2, ∀x1, x2 ∈ Y, (9)

ϕ(x1, J−1(λJx2 + (1 − λ)Jx3)) ≤ λϕ(x1, x2) + (1 − λ)ϕ(x1, x3), ∀x1, x2 ∈ Y, λ ∈ [0, 1], (10)

and

ϕ(x1, x2) = ∥x1∥∥Jx1 − Jx2∥ + ∥x2∥∥x1 − x2∥, ∀x1, x2 ∈ Y. (11)

Remark 2.1. ϕ(x1, x2) = 0 ⇔ x1 = x2, ∀x1, x2 ∈ Y provided Y be smooth, reflexive and strictly convex Banach
space.

Definition 2.2. A function T : P→ Y∗ is known as

(i) monotone if ⟨x1 − x2,Tx1 − Tx2⟩ ≥ 0, ∀x1, x2 ∈ Y;
(ii) γ− inverse strongly monotone (in short, ism) if∃γ > 0 such that ⟨x1−x2,Tx1−Tx2⟩ ≥ γ∥Tx1−Tx2∥

2, ∀x1, x2 ∈

Y;
(iii) Lipschitz continuous if ∃ L > 0 such that ∥Tx1 − Tx2∥ ≤ L∥x1 − x2∥.

If T is γ− ism then it is Lipschitz continuous with 1
γ as a constant.

Lemma 2.3. [21] Let Y be a 2-uniformly convex and smooth Banach space. Then, ∀x1, x2 ∈ Y, ϕ(x1, x2) ≥ c∥x1−x2∥
2,

where 0 < c ≤ 1 and called two-uniformly convex constant.

Lemma 2.4. [21] Let Y be a two-uniformly convex Banach space, then

∥x1 − x2∥ ≤
2
c
∥Jx1 − Jx2∥, ∀x1, x2 ∈ Y,

where c be defined in Lemma 2.3.

Lemma 2.5. [13] Let Y be an uniformly convex and smooth Banach space and let {un}, {vn} ⊂ Y with either {un} or
{vn} is bounded. If lim

n→∞
ϕ(un, vn) = 0 then lim

n→∞
∥un − vn∥ = 0.

Remark 2.6. Using (11), it is accessible that the converse of Lemma 2.5 is correct provided {un} and {vn} both are
bounded.

Definition 2.7. [3, 16] Assume T : P→ P be a function. Then:
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(i) a point u0 ∈ P is called an asymptotic fixed point of T if {un} ⊂ P with un ⇀ u0 such that lim
n→∞
∥Tun − un∥ = 0.

F̂(T) denotes asymptotic fixed points of T.
(ii) T is called relatively nonexpansive if F̂(T) = F(T) , ∅ and ϕ(u0,Tu) ≤ ϕ(u0,u), ∀u ∈ P,u0 ∈ F(T).

(iii) T is called quasi-ϕ-nonexpansive if F(T) , ∅ and ϕ(u0,Tu) ≤ ϕ(u0,u), ∀u ∈ P,u0 ∈ F(T).

Lemma 2.8. [19] Let Y be a uniformly convex and smooth Banach space, P ⊂ Y be closed convex and T : P→ P be
closed and quasi-ϕ-nonexpansive function. Then, F(T) is closed and convex.

Lemma 2.9. [13] Let Y be an uniformly and smooth convex Banach space. Then, ∃ 1 : [0, 2r] → R a strictly
increasing, continuous and convex function, for r > 0 such that 1(0) = 0 and 1(∥x1 − x2∥) ≤ ϕ(x1, x2), ∀x1, x2 ∈ Br,
where Br be the closed ball of Y.

Lemma 2.10. [22] Let Br(0) be a closed ball of a uniformly convex Banach space Y, where r > 0. For {x1, x2, ..., xN} ⊂

Br(0) and {λ1, λ2, ..., λN} be positive numbers with
N∑

i=1
λi = 1, ∃ 1 : [0, 2r)→ [0,∞) a continuous strictly increasing

and convex function with 1(0) = 0 such that

∥

N∑
n=1

λnxn∥
2
≤

N∑
n=1

λn∥xn∥
2
− λiλ j1(∥xi − x j∥), i, j = 1, 2, ...,N, i < j.

Lemma 2.11. [17] Let P , ∅ be closed convex subset of Y and B : P→ Y∗ be monotone and hemicontinuous function.
Then, VIP(4) is closed and convex.

Lemma 2.12. [13] Let P , ∅ be closed convex subset of a strictly convex, reflexive and smooth Banach space Y. Then,
∃ a unique element x0 ∈ P such that ϕ(x0, x1) = inf

u∈P
ϕ(u, x1), for x1 ∈ Y.

Definition 2.13. [1] A map ΠP : Y→ P is said to be generalized projection if ΠPx1 = u0, for any x1 ∈ Y and u0 be
the solution of ϕ(u0, x1) = inf

u∈P
ϕ(u, x1).

Lemma 2.14. [1] Let P , ∅ be closed convex subset of a strictly convex, reflexive and smooth Banach space Y. Then

ϕ(u,ΠPx1) + ϕ(ΠPx1, x1) ≤ ϕ(u, x1), ∀u ∈ P and x1 ∈ Y.

Also, for x1 ∈ Y and u ∈ P,

u = ΠPx1 ⇐⇒ ⟨u − v, Jx1 − Ju⟩ ≥ 0, ∀v ∈ P.

Assumption 2.15. The bifunction G : P × P −→ R satisfies as:

(i) G(u,u) = 0, ∀u ∈ P;
(ii) G(u, v) +G(v,u) ≤ 0, ∀u ∈ P i.e., G is monotone;

(iii) the mapping u 7→ G(u, v) is upper hemicontinuity, ∀v ∈ P;
(iv) the mapping v 7→ G(u, v), ∀u ∈ P is lower semicontinuous and convex.

Assumption 2.16. The bifunction b : P × P→ R satisfies as:

(i) b(u,u) − b(u, v) − b(v,u) + b(v, v) ≥ 0, ∀u, v ∈ P, i.e., skew-symmetric;
(ii) convex in second argument and continuous.

Lemma 2.17. [6] Let Y be a strictly convex, uniformly smooth and reflexive Banach space and P ⊂ Y be closed
convex. Let D : P → Y∗ be a continuous and monotone mapping, let G : P × P −→ R and b : P × P → R be
bifunctions satisfying Assumption 2.15 and 2.16, respectively. For x1 ∈ Y and r > 0, define Tr : Y→ P such that:

Trx1 =
{
v ∈ P : G(v,u) + ⟨Dv,u − v⟩ + b(v,u) − b(v, v) +

1
r
⟨u − v, Jv − Jx1⟩ ≥ 0,∀u ∈ P

}
. (12)

Then the following holds:
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(a) Tr is single valued;
(b) Tr is firmly nonexpansive, i.e., ∀x1, x2 ∈ Y,

⟨Trx1 − Trx2, JTrx1 − JTrx2⟩ ≤ ⟨Trx1 − Trx2, Jx1 − Jx2⟩;

(c) F(Tr) = Sol(GMEP(1)) is closed and convex;
(d) Tr is quasi-ϕ-nonexpansive;
(e) ϕ(u0,Trx1) + ϕ(Trx1, x1) ≤ ϕ(u0, x1), ∀ u0 ∈ F(Tr).

In continuation, the mapping Φ : Y × Y∗ → R, defined by

Φ(x1, x∗1) = ∥x1∥
2
− ⟨x1, x∗1⟩ + ∥x

∗

1∥
2.

Examine that Φ(x1, x∗1) = ϕ(x1, J−1x∗1).

Lemma 2.18. [1] Let Y be a strictly convex, smooth and reflexive Banach space. Then,

Φ(x1, x∗1) + 2⟨J−1x∗1 − x1, x∗2⟩ ≤ Φ(x1, x∗1 + x∗2), ∀x1 ∈ Y, x∗1, x
∗

2 ∈ Y∗.

3. Main Result

In this section, we provided our main theorem:

Theorem 3.1. Let Y be a 2-uniformly convex and uniformly smooth real Banach space with dual Y∗ and let P ⊂ Y be
nonempty closed and convex. Let B : P→ Y∗ be a γ− ism mapping with constant γ ∈ (0, 1). Let G : P× P→ R and
b : P × P → R be bifunctions satisfying Assumptions 2.15 and 2.16, respectively and D : P → Y∗ be a continuous
and monotone mapping,. For each i = 1, 2, ...,N, let Ti : P→ P be closed quasi-ϕ nonexpansive mappings such that

Γ := Sol(GMEP(1))
⋂

Sol(VIP(4))
⋂

(
N⋂

i=1
F(Ti)) , ∅. Let {xn} generated by schemes:

x0, x1 ∈ P, P1 := P,
wn = xn + θn(xn − xn−1),
yn = ΠC J−1(Jwn − µnBwn),

vn = J−1(αn,0 Jwn +
N∑

i=1
αn,i JTiwn),

zn = J−1(δn Jyn + (1 − δn)Jvn),
un = Trn zn,
Pn = {z ∈ P : ϕ(z,un) ≤ ϕ(z,wn)},
Qn = {z ∈ P : ⟨xn − z, Jxn − Jx0⟩ ≤ 0},
xn+1 = ΠPn

⋂
Qn x0, ∀n ≥ 1.



(13)

Consider {αn,i} and {δn} be sequences in [0, 1] and {θn} ⊂ (0, 1) satisfying:

(i)
N∑

i=0
αn,i = 1;

(ii) lim inf
n→∞

αn,0αn,i ≥ 0;

(iii) lim supn→∞ δn < 1;
(iv) rn ∈ [a,∞), for some a > 0;

(v) {µn} ⊂ (0,∞) satisfying the condition 0 < lim infn→∞ µn ≤ lim supn→∞ µn <
c2γ
2 , where c be defined in Lemma

2.3.

Then, {xn} strongly converges to x∗, where x∗ = ΠΓx0, generalized projection of Y onto Γ.
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Proof. We divide the proof into several steps.

Step 1. First, we prove that Γ is closed and convex.

By Lemmas 2.8, 2.11 and 2.17, Γ , ∅ be closed and convex and thus ΠΓx0 is well defined.

Step 2. Next, prove that Pn
⋂

Qn is closed and convex. From (13), it is obvious that Qn is closed and convex.
Clearly, P1 = P is closed and convex. Moreover, Pn be closed. Next, we prove the convexity of Pn. For
q1, q2 ∈ Pn, we see that q1, q2 ∈ P. This adopt tq1 + (1 − t)q2 ∈ P, where t ∈ (0, 1), and thus

ϕ(q1,un) ≤ ϕ(q1,wn) (14)

and

ϕ(q2,un) ≤ ϕ(q2,wn). (15)

The above two inequalities are equivalent to

2⟨q1, Jwn⟩ − 2⟨q1, Jun⟩ ≤ ∥wn∥
2
− ∥un∥

2 (16)

and

2⟨q2, Jwn⟩ − 2⟨q2, Jun⟩ ≤ ∥wn∥
2
− ∥un∥

2. (17)

By (16) and (17), we have

2⟨tq1 + (1 − t)q2, Jwn⟩ − 2⟨tq1 + (1 − t)q2, Jun⟩ ≤ ∥wn∥
2
− ∥un∥

2. (18)

Hence, we have

ϕ(tq1 + (1 − t)q2,un) ≤ ϕ(tq1 + (1 − t)q2,wn). (19)

This implies that tq1 + (1 − t)q2 ∈ Pn and hence Pn is closed and convex. So, Pn
⋂

Qn is closed and convex,
∀ n ≥ 1.

Step 3. We claim that Γ ⊂ Pn
⋂

Qn, ∀n ≥ 1.

Let x∗ ∈ Γ and so

ϕ(x∗,un) = ϕ(x∗,Trn zn)
≤ ϕ(x∗, zn) (20)
= ϕ(x∗, J−1(δn Jyn + (1 − δn)Jvn))
≤ δnϕ(x∗, yn) + (1 − δn)ϕ(x∗, vn). (21)

Using Lemma 2.10, we compute

ϕ(x∗, vn) = ϕ(x∗, J−1(αn,0 Jwn +

N∑
i=1

αn,i JTiwn))

= ∥x∗∥2 − 2⟨x∗, αn,0 Jwn +

N∑
i=1

αn,i JTiwn⟩ + ∥αn,0 Jwn +

N∑
i=1

αn,i JTiwn∥
2

≤ ∥x∗∥2 − 2αn,0⟨x∗, Jwn⟩ − 2
N∑

i=1

αn,i⟨x∗, JTiwn⟩

+αn,0∥Jwn∥
2 +

N∑
i=1

αn,i∥JTiwn∥
2
− αn,0αn,i1∥Jwn − JTiwn∥

= ∥x∗∥2 − 2αn,0⟨x∗, Jwn⟩ + αn,0∥Jwn∥
2

+

N∑
i=1

αn,i∥JTiwn∥
2
− αn,0αn, j1∥Jwn − JTiwn∥
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= αn,0ϕ(x∗,wn) +
N∑

i=1

αn,iϕ(x∗,Tiwn) − αn,0αn, j1∥Jwn − JTiwn∥

≤ αn,0ϕ(p,wn) +
N∑

i=1

αn,iϕ(p,wn) − αn,0αn,i1∥Jwn − JTiwn∥

≤

N∑
i=0

αn,iϕ(x∗,wn) − αn,0αn,i1∥Jwn − JTiwn∥

≤ ϕ(x∗,wn) − αn,0αn,i1∥Jwn − JTiwn∥. (22)
≤ ϕ(x∗,wn) (23)

Using Lemmas 2.4 and 2.18, we compute

ϕ(x∗, yn) = ϕ(x∗,ΠC J−1(Jwn − µnBwn))
≤ ϕ(x∗, J−1(Jwn − µnBwn))
= Φ(x∗, Jwn − µnBwn)
≤ Φ(x∗, (Jwn − µnBwn) + µnBwn) − 2⟨J−1(Jwn − µnBwn) − x∗, µnBwn⟩

= Φ(x∗, Jwn) − 2µn⟨J−1(Jwn − µnDwn) − x∗,Bwn⟩

= ϕ(x∗,wn) − 2⟨wn − x∗,Bwn⟩ − 2µn⟨J−1(Jwn − µnBwn) − wn,Bwn⟩

= ϕ(x∗,wn) − 2⟨wn − x∗,Bwn − Bx∗⟩ − 2µn⟨J−1(Jwn − µnBwn) − wn,Bwn⟩

≤ ϕ(x∗,wn) − 2µnγ∥Bwn∥
2 + 2µn∥J−1(Jwn − Bwn) − J−1 Jwn∥∥Bwn∥

2

≤ ϕ(x∗,wn) − 2µnγ∥Bwn∥
2 +

4µ2
n

c2 ∥Bwn∥
2

= ϕ(x∗,wn) − 2µn(γ −
2µn

c2 )∥Bwn∥
2 (24)

which combined with µn <
c2γ
2 , we have that

ϕ(x∗, yn) ≤ ϕ(x∗,wn). (25)

By (21) (23) and (25) we observe that

ϕ(x∗,un) ≤ ϕ(x∗,wn). (26)

This implies that x∗ ∈ Pn. Therefore, Γ ⊂ Pn, ∀n ≥ 1.

After a while, by using induction we prove that Γ ⊂ Pn ∩Qn, ∀n ≥ 1. From Q1 = P, we get Γ ⊂ P1 ∩Q1.
Let Γ ⊂ P j ∩Q j, for arbitrary j ∈ N. So, ∃ x j+1 ∈ P j ∩Q j such that x j+1 =

∏
P j∩Q j

x. From the concept of x j+1,
we get, for all x∗ ∈ P j ∩Q j,

⟨x j+1 − x∗, Jx0 − Jx j+1⟩ ≥ 0.

Since Γ ⊂ P j
⋂

Q j, we have

⟨x j+1 − x∗, Jx0 − Jx j+1⟩ ≥ 0, ∀x∗ ∈ Γ (27)

and hence x∗ ∈ Q j+1. So, we have Γ ⊂ Q j+1. Therefore, we obtain Γ ⊂ P j+1 ∩Q j+1.
Thus, Γ ⊂ Pn ∩Qn, ∀n ≥ 1. This means that {xn} is well-defined.

Step 4. Next, claim that {xn}, {wn}, {yn}, , {vn}, {zn}, {un} are bounded, lim
n→∞
ϕ(xn, x0) exists and lim

n→∞
ϕ(xn+1, xn) =

0.
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By (13), we get xn = ΠQn x0. From xn = ΠQn x0 and Lemma 2.14, we get

ϕ(xn, x0) = ϕ(ΠQn x0, x0)
≤ ϕ(u, x0) − ϕ(u,ΠQn x0) ≤ ϕ(u, x0), ∀u ∈ Γ ⊂ Qn.

This implies that {ϕ(xn, x0)} is bounded and hence, {xn} is bounded because of (9). Further,

ϕ(x∗, xn) = ϕ(x∗,ΠPn−1
⋂

Qn−1 x0)
= ϕ(x∗, x0) − ϕ(xn, x0),

implies that {ϕ(x∗, xn)} is bounded. Hence, {Tixn} is also bounded because of the fact ϕ(x∗,Tixn) ≤
ϕ(x∗, xn), ∀p ∈ Γ. Thus, {wn} is also bounded. From (23), it follows that {vn} is also bounded. By (25)
and (26), {yn}, {zn} and {un} are also bounded.

From xn+1 = ΠPn
⋂

Qn x0 ∈ Qn and xn ∈ ΠQn x0, we get

ϕ(xn, x0) ≤ ϕ(xn+1, x0), ∀n ≥ 1.

This prove that {ϕ(xn, x0)} is nondecreasing. Thus, lim
n→∞
ϕ(xn, x0) exists because of the boundedness of

{ϕ(xn, x0)}. Further, we get

ϕ(xn+1, xn) = ϕ(xn+1,ΠQn x0)
≤ ϕ(xn+1, x0) − ϕ(ΠQn x0, x0)
= ϕ(xn+1, x0) − ϕ(xn, x0), ∀n ≥ 1,

which intends

lim
n→∞
ϕ(xn+1, xn) = 0. (28)

Using Lemma 2.5, we get

lim
n→∞
∥xn+1 − xn∥ = 0. (29)

Step 5. We prove that xn → x∗, zn → x∗ and un → x∗ as n→∞, where x∗ be an arbitrary point in P.

As Y is reflexive and {xn} is bounded, ∃ a subsequence {xnk } of {xn} such that xnk ⇀ x∗. On account of,
Pn ∩Qn is closed and convex therefore x∗ ∈ Pn ∩Qn. Using weakly lower semicontinuity of ∥ · ∥2, we get

ϕ(x∗, x0) = ∥x∗∥2 − 2⟨x∗, Jx0⟩ + ∥x0∥
2

≤ lim inf
k→∞

(∥xnk∥
2
− 2⟨xnk , Jx0⟩ + ∥x0∥

2)

= lim inf
k→∞

ϕ(xnk , x0)

≤ lim sup
k→∞

ϕ(xnk , x0)

≤ ϕ(x∗, x0),

which implies that lim
k→∞
ϕ(xnk , x0) = ϕ(x∗, x0). Hence, lim

k→∞
∥xnk∥ = ∥x

∗
∥. Further, xnk → x∗ as k → ∞ because

of Kadec-Klee property of Y. Since lim
n→∞
ϕ(xn, x0) exists therefore it yield that lim

n→∞
ϕ(xn, x0) = ϕ(x∗, x0). If ∃

subsequence {xn j } of {xn}with xn j → x̃ as j→∞, then

ϕ(x∗, x̃) = lim
k, j→∞

ϕ(xnk , xn j )

= lim
k, j→∞

ϕ(xnk ,ΠQnj
x0)

≤ lim
k, j→∞

{ϕ(xnk , x0) − ϕ(xn j , x0)} = 0,
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that is, x∗ = x̃ and thus xn → x∗ as n→∞.

Since ∥wn − xn∥ = ∥θn(xn − xn−1)∥ ≤ ∥xn − xn−1∥ and using (29), we get

lim
n→∞
∥wn − xn∥ = 0. (30)

By Remark 2.6 and using bundedness of {wn}, we have

lim
n→∞
ϕ(xn,wn) = 0. (31)

By (29) and (30), we have

lim
n→∞
∥xn+1 − wn∥ = 0, (32)

it follows from Remark 2.6

lim
n→∞
ϕ(xn+1,wn) = 0. (33)

As xn+1 =
∏

Pn
⋂

Qn
x0 ∈ Pn, we have

ϕ(xn+1,un) ≤ ϕ(xn+1,wn).

Using (33), we get

lim
n→∞
ϕ(xn+1,un) = 0. (34)

By (9), we have

lim
n→∞

(∥xn+1∥ − ∥un∥) = 0,

which intend

lim
n→∞
∥un∥ = ∥x∗∥, provided lim

n→∞
∥xn∥ = ∥x∗∥. (35)

Hence, we have

lim
n→∞
∥Jun∥ = lim

n→∞
∥un∥ = ∥x∗∥ = ∥Jx∗∥, (36)

which suggest that {∥Jun∥} is bounded. Since Y and Y∗ are reflexive, we may consider Jun ⇀ y∗ ∈ Y∗. Thanks
to the reflexivity of Y, J(Y) = Y∗, i.e., ∃ y ∈ Y such that Jy = y∗, which intend

ϕ(xn+1,un) = ∥xn+1∥
2
− 2⟨xn+1, Jun⟩ + ∥un∥

2

ϕ(xn+1,un) = ∥xn+1∥
2
− 2⟨xn+1, Jun⟩ + ∥Jun∥

2.

Further, in above equation taking limit infimum as n→∞, we have

0 ≥ ∥x∗∥2 − 2⟨x∗x, y∗⟩ + ∥y∗∥2

= ∥x∗∥2 − 2⟨x∗, Jy⟩ + ∥Jy∥2

= ∥x∗∥2 − 2⟨x∗, Jy⟩ + ∥y∥2

= ϕ(x∗, y),

i.e., x∗ = y and hence, y∗ = Jx∗. Thus, Jun ⇀ Jx∗ ∈ Y∗. Thanks to Kadec-Klee property of Y∗ and (36), we get

lim
n→∞
∥Jun − Jx∗∥ = 0.
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By the demicontinuity of J−1, we have un ⇀ x∗. Thanks to Kadec-Klee property of Y and (35), we get

lim
n→∞

un = x∗. (37)

By the weakly lower semicontinuity of ∥ · ∥2 and for any x̂ ∈ Γ, we calculate

ϕ(x̂, x∗) = ∥x̂∥2 − 2⟨x̂, Jx∗⟩ + ∥x∗∥2

≤ lim inf
n→∞

(∥x̂∥2 − 2⟨x̂, Jun⟩ + ∥un∥
2)

= lim inf
n→∞

ϕ(x̂,un)

≤ lim sup
n→∞

ϕ(x̂,un)

= lim sup
n→∞

(∥x̂∥2 − 2⟨x̂, Jun⟩ + ∥un∥
2)

≤ ϕ(x̂, x∗),

which intend

lim
n→∞
ϕ(x̂,un) = ϕ(x̂, x∗). (38)

As xn → x∗, n→∞ and (37), we have

lim
n→∞
∥xn − un∥ = 0. (39)

By the uniform continuity of J, we get

lim
n→∞
∥Jxn − Jun∥ = 0. (40)

By the concept of ϕ and for any x̂ ∈ Γ, we calculate

ϕ(x̂, xn) − ϕ(x̂,un) = ∥xn∥
2
− ∥un∥

2
− 2⟨x̂, Jxn − Jun⟩

≤ ∥xn − un∥(∥xn∥ + ∥un∥) + 2∥x̂∥∥Jxn − Jun∥.

By (39) and (40), we get

lim
n→∞
{ϕ(x̂, xn) − ϕ(x̂,un)} = 0. (41)

By (38) and (41), we get

lim
n→∞
ϕ(x̂, xn) = ϕ(x̂, x∗). (42)

Again, by using weakly lower semicontinuity of ∥ · ∥2 and for any x̂ ∈ Γ, we get

ϕ(x̂, x∗) = ∥x̂∥2 − 2⟨x̂, Jx∗⟩ + ∥x∗∥2

≤ lim inf
n→∞

(∥x̂∥2 − 2⟨x̂, Jwn⟩ + ∥wn∥
2)

= lim inf
n→∞

ϕ(x̂,wn)

≤ lim sup
n→∞

ϕ(x̂,wn)

= lim sup
n→∞

(∥x̂∥2 − 2⟨x̂, Jwn⟩ + ∥wn∥
2)

≤ ϕ(x̂, x∗),

which yield

lim
n→∞
ϕ(x̂,wn) = ϕ(x̂, x∗). (43)
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Hence, for any x̂ ∈ Γ ⊂ Pn and by (23), we have

ϕ(x̂, vn) ≤ ϕ(x̂,wn). (44)

Using (43) and (44), we get

lim
n→∞
ϕ(x̂, vn) = ϕ(x̂, x∗). (45)

By (20), (26), Lemma 2.17(e) and un = Trn zn, we have for any x̂ ∈ Γ

ϕ(un, zn) = ϕ(Trn zn, zn)
≤ ϕ(x̂, zn) − ϕ(x̂,Trn zn)
= ϕ(x̂,wn) − ϕ(x̂,un).

By (38), (43) and taking n→∞, we get

lim
n→∞
ϕ(un, zn) = 0, (46)

and hence from (9), we have

lim
n→∞

(∥un∥ − ∥zn∥) = 0.

By relation (35), we have

lim
n→∞
∥zn∥ = ∥x∗∥, (47)

and hence

lim
n→∞
∥Jzn∥ = ∥Jx∗∥, (48)

i.e., {∥Jzn∥} is bounded in Y∗. By reflexivity of Y∗, we consider Jzn ⇀ y∗ ∈ Y∗ as n→∞. As J(Y) = Y∗ ∃ y ∈ Y
such that Jy = y∗. Thus,

ϕ(un, zn) = ∥un∥
2
− 2⟨un, Jzn⟩ + ∥zn∥

2

= ∥un∥
2
− 2⟨un, Jzn⟩ + ∥Jzn∥

2.

Taking lim infn→∞ in above equation, we have

0 ≥ ∥x∗∥2 − 2⟨x∗, y∗⟩ + ∥y∗∥2

= ∥x∗∥2 − 2⟨x∗, Jy⟩ + ∥Jy∥2

= ∥x∗∥2 − 2⟨x∗, Jy⟩ + ∥y∥2

= ϕ(x∗, y).

From Remark 2.1, we have x∗ = y, i.e., y∗ = Jx∗. Thus, Jzn ⇀ Jx∗ ∈ Y∗. Thanks to Kadec-Klee property of Y∗

and (48)

lim
n→∞
∥Jzn − Jx∗∥ = 0.

Using demicontinuity of J−1 in above yield zn ⇀ x∗. Thanks to Kadec-Klee property of Y and (47), we get

lim
n→∞

zn = x∗.

Step 6. Next, claim that x∗ ∈ Γ.

By Lemma 2.5 and (46), we have

lim
n→∞
∥un − zn∥ = 0. (49)
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By the uniform continuity of J, we get

lim
n→∞
∥Jun − Jzn∥ = 0. (50)

Further, by (30), (39) and (49), we get

∥wn − zn∥ ≤ ∥wn − xn∥ + ∥xn − un∥ + ∥un − zn∥

→ 0 as n→∞. (51)

Again, by uniform continuity of J, we have

lim
n→∞
∥Jwn − Jzn∥ = 0. (52)

By (20), (21), (23) and (24), we obtain for any x̂ ∈ Γ

ϕ(x̂, zn) ≤ δnϕ(x̂, yn) + (1 − δn)ϕ(x̂, vn)

≤ ϕ(x̂,wn) − 2µnδn(γ −
2µn

c2 )∥Bwn∥
2, (53)

(54)

this implies that

2µnδn(γ −
2µn

c2 )]∥Bwn∥
2
≤ ϕ(x̂,wn) − ϕ(x̂, zn)

= ∥wn∥
2
− ∥zn∥

2
− 2⟨x̂, Jwn − Jzn⟩

≤ ∥wn − zn∥(∥wn∥ + ∥zn∥) + 2∥x̂∥∥Jwn − Jzn∥, (55)

it follows from (51),(52), (55) and µnδn(γ − 2µn

c2 ) > 0 that

lim
n→∞
∥Bwn∥ = 0. (56)

Since B is γ-ism and so 1
γ -Lipschitz continuous. It immediately follows from lim

n→∞
wn = x∗ and (56) that

x∗ ∈ B−1(0). Thus, x∗ ∈ Sol(VIP(4)).
Furthermore, combining (13) with (56) yields that

lim
n→∞
∥yn − x∗∥ = lim

n→∞
∥ΠC J−1(Jwn − µnBwn) −ΠCx∗∥

≤ lim
n→∞
∥J−1(Jwn − µnBwn) − x∗∥

= 0. (57)

Using Lemma 2.4 and 2.18, we estimate

ϕ(wn, yn) = ϕ(wn,ΠC J−1(Jwn − µnBwn))
≤ ϕ(wn, J−1(Jwn − µnBwn))
≤ Φ(wn, (Jwn − µnBwn))
≤ Φ(wn, (Jwn − µnBwn) + µnBwn) − 2⟨J−1(Jwn − µnBwn) − wn, µnBwn⟩

= ϕ(wn,wn) + 2⟨J−1(Jwn − µnBwn) − wn,−µnBwn⟩

= 2µn⟨J−1(Jwn − µnBwn) − wn,−Bwn⟩

≤ ∥J−1(Jwn − µnBwn) − J−1 Jwn∥

≤
4
c2µ

2
n∥Bwn∥

2, (58)
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then using (56) we obtain that

lim
n→∞
ϕ(wn, yn) = 0. (59)

By Lemma 2.5, we get

lim
n→∞
∥wn − yn∥ = 0. (60)

Further, by (37), (57) and (60), we get

∥un − wn∥ = ∥un − yn + yn − wn∥

≤ ∥un − yn∥ + ∥wn − yn∥

→ 0 as n→∞. (61)

From rn ≥ a and (50), we have

lim
n→∞

∥Jun − Jzn∥

rn
= 0. (62)

By un = Trn zn, we obtain

G(un, v) + ⟨Dun, v − un⟩ + b(v,un) − b(un,un) +
1
rn
⟨v − un, Jun − Jzn⟩ ≥ 0, ∀v ∈ P.

Using Assumption 2.15(ii), we have

1
rn
⟨v − un, Jun − Jzn⟩ ≥ −G(un, v) + ⟨Dun,un − v⟩ − b(v,un) + b(un,un)

≥ G(v,un) + ⟨Dun,un − v⟩ − b(v,un) + b(un,un).

Letting n→∞, from (62) and by Assumption 2.15 (iv), we obtain

G(v, x∗) + ⟨Dx∗, x∗ − v⟩ − b(v, x∗) + b(x∗, x∗) ≤ 0, ∀v ∈ P.

For all t ∈ (0, 1] and v ∈ P, setting vt := tv + (1 − t)x∗. Hence, vt ∈ P and thus

G(vt, x∗) + ⟨Dx∗, x∗ − vt⟩ − b(vt, x∗) + b(x∗, x∗) ≤ 0.

By Assumption 2.15(i)-(iv), we get

0 = G(vt, vt)
≤ tG(vt, v) + (1 − t)G(vt, x∗)
≤ tG(vt, v) + (1 − t)[b(vt, x∗) − b(x∗, x∗) + ⟨Dx∗, vt − x∗⟩].
≤ tG(vt, v) + t(1 − t)[b(v, x∗) − b(x∗, x∗) + ⟨Dx∗, v − x∗⟩],

which yields
G(x∗, v) + ⟨Dx∗, v − x∗⟩ + b(v, x∗) − b(x∗, x∗) ≥ 0, ∀v ∈ P.

Thus, x∗ ∈ Sol(GMEP(1)).

Further, claim that x∗ ∈
N⋂

i=1
F(Ti).

Using (21), (22) into (25), we have for any x̂ ∈ Γ

ϕ(x̂,un) ≤ δnϕ(x̂, yn) + (1 − δn)ϕ(x̂, vn)
≤ δnϕ(x̂,wn) + (1 − δn)[ϕ(x̂,wn) − αn,0αn, j1∥Jwn − JTiwn∥]
≤ ϕ(x̂,wn) − (1 − δn)αn,0αn, j1∥Jwn − JTiwn∥.
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This implies that

(1 − δn)αn,0αn, j1∥Jwn − JTiwn∥ ≤ ϕ(x̂,wn) − ϕ(x̂,un). (63)

Now,

ϕ(x̂,wn) − ϕ(x̂,un) = ∥wn∥
2
− ∥un∥

2
− 2⟨x̂, Jwn − Jun⟩

≤ ∥wn − un∥(∥wn∥ + ∥un∥) + 2∥x̂∥∥Jwn − Jun∥.

Using (61) and the property of J in above inequality, we have

lim
n→∞

(ϕ(x̂,wn) − ϕ(x̂,un)) = 0. (64)

By Lemma 2.9 and given conditions in (63), we have

lim
n→∞
1(∥JTiwn − Jwn∥) = 0.

Using the concept of 1

lim
n→∞
∥JTiwn − Jwn∥ = 0,

which yield

lim
n→∞
∥Tiwn − wn∥ = 0. (65)

By (32), (60), (49) and (61), we observe that {xn}, {yn}, {un}, {wn} and {zn} all have the same asymptotic
behaviour, hence from (65), we have that

lim
n→∞
∥Tixn − xn∥ = 0. (66)

This means that x∗ = Tix∗, i.e., x∗ ∈
N⋂

i=1
F(Ti). Then, x∗ ∈ Sol(GMEP(1)) ∩ Sol(VIP(4))

⋂
(

N⋂
i=1

F(Ti)).

Step 7. Finally, we show x∗ = ΠΓx0. Taking k→∞ in (27), we obtain

⟨x∗ − x̂, Jx0 − Jx∗⟩ ≥ 0, ∀x̂ ∈ Γ.

Using Lemma 2.14, we get x∗ = ΠΓx0.

We provided some consequences from our main Theorem 3.1:

Corollary 3.2. Let Y be a uniformly convex and uniformly smooth real Banach space with dual Y∗ and let P ⊂ Y be
nonempty closed and convex. LetG : P×P→ R and b : P×P→ R be bifunctions satisfying Assumptions 2.15 and
2.16, respectively and D : P → Y∗ be a continuous and monotone mapping. For each i = 1, 2, ...,N, let Ti : P → P

be closed quasi-ϕ nonexpansive mappings such that Γ := Sol(GMEP(1))
⋂

(
N⋂

i=1
F(Ti)) , ∅. Let {xn} generated by

schemes:

x0, x1 ∈ P, P1 := P,
wn = xn + θn(xn − xn−1),

vn = J−1(αn,0 Jwn +
N∑

i=1
αn,i JTiwn),

zn = J−1(δn Jwn + (1 − δn)Jvn),
un = Trn zn,
Pn = {z ∈ P : ϕ(z,un) ≤ ϕ(z,wn)},
Qn = {z ∈ P : ⟨xn − z, Jxn − Jx0⟩ ≤ 0},
xn+1 = ΠPn

⋂
Qn x0, ∀n ≥ 1.


(67)

Consider {αn,i} and {δn} be sequences in [0, 1] and {θn} ⊂ (0, 1) satisfying:
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(i)
N∑

i=0
αn,i = 1;

(ii) lim inf
n→∞

αn,0αn,i ≥ 0;

(iii) lim supn→∞ δn < 1;
(iv) rn ∈ [a,∞), for some a > 0.

Then, {xn} strongly converges to x∗, where x∗ = ΠΓx0, generalized projection of Y onto Γ.

Corollary 3.3. Let Y be a uniformly convex and uniformly smooth real Banach space with dual Y∗ and let P ⊂ Y be
nonempty closed and convex. Let G : P × P → R be bifunction satisfying Assumption 2.15 and D : P → Y∗ be a
continuous and monotone mapping. For each i = 1, 2, ...,N, let Ti : P→ P be closed quasi-ϕ nonexpansive mappings

such that Γ := Sol(GEP(2))
⋂

(
N⋂

i=1
F(Ti)) , ∅. Let {xn} generated by schemes:

x0, x1 ∈ P, P1 := P,
wn = xn + θn(xn − xn−1),

vn = J−1(αn,0 Jwn +
N∑

i=1
αn,i JTiwn),

zn = J−1(δn Jwn + (1 − δn)Jvn),
un = Trn zn,
Pn = {z ∈ P : ϕ(z,un) ≤ ϕ(z,wn)},
Qn = {z ∈ P : ⟨xn − z, Jxn − Jx0⟩ ≤ 0},
xn+1 = ΠPn

⋂
Qn x0, ∀n ≥ 1.


(68)

Consider {αn,i} and {δn} be sequences in [0, 1] and {θn} ⊂ (0, 1) satisfying:

(i)
N∑

i=0
αn,i = 1;

(ii) lim inf
n→∞

αn,0αn,i ≥ 0;

(iii) lim supn→∞ δn < 1;
(iv) rn ∈ [a,∞), for some a > 0.

Then, {xn} strongly converges to x∗, where x∗ = ΠΓx0, generalized projection of Y onto Γ.

Remark 3.4. If Y is a Hilbert space, then we have Y∗ = Y, J = J−1 = I, an identity mapping, ϕ(x1, x2) =
∥x1 − x2∥

2, for all x1, x2 ∈ Y, c = 1, the two uniformly convex constant, ΠP = PP, projection mapping onto P and

nonexpansive mappings Ti, for each i = 1, 2, ...,N with
N⋂

i=1
F(Ti) , ∅ are quasi-ϕ nonexpansive mappings. Thus, if

one replaces quasi-ϕ nonexpansive mappings into nonexpansive mappings with
N⋂

i=1
F(Ti) , ∅ in a Hilbert space then

the assertions of Theorem 3.1 remain valid.
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4. Numerical Example

Example 4.1. Let Y = R, P = [a, b], where a, b ∈ R but fixed, and let G : P × P → R be defined by G(u, v) =
(u − 1)(v − u),∀u, v ∈ P and b : P × P → R be defined by b(u, v) = uv, ∀u, v ∈ P; let D : P → R be defined by
D(u) = u, ∀u ∈ P . Let B : P → R be defined by Bu = (3u − 1); let Ti : P → P be defined by Tiu = u+i

1+3i u. Setting

{µn} = {
0.9
n },rn =

1
4 , θn = 0.9, αn,0 =

1
2 ,

N∑
i=1
αn,i =

1
2 such that

N∑
i=0
αn,i = 1 and {δn} = {

1
n3 }, ∀n ≥ 1. Let {xn}, {un} and

{zn} be generated by the hybrid iterative algorithm (13) converges to x∗ = { 13 } ∈ Γ:

Proof. ObviouslyG and b satisfy Assumptions 2.15 and 2.16, respectively and D is continuous and monotone
and hence Sol(GMEP(1)) = { 13 } , ∅. Also, B is 1

3 -ism and Sol(VIP(4)) = { 13 } , ∅. And T is quasi-ϕ-
nonexpansive with Fix(Ti) = { 13 }. Thus, Γ := Sol(GMEP(1)) ∩ Sol(VIP(4)) ∩ F(Ti) = { 13 } , ∅. The iterative
scheme (13) becomes following scheme after simplification: Initial values given x0,x1,

wn = xn + θn(xn − xn−1)

yn = PP(wn − µnBwn) =


0, if̀x < 0,
1, ifx > 1,
wn − µn

wn
2 , otherwise.

,

vn = αn,0wn +
N∑

i=1
αn,iwn; zn = δnyn + (1 − δn)vn; un =

1 + 4zn

7
;

Cn = [en,∞) , where en =
un + wn

2
;

Qn = [xn,∞);
xn+1 = PPn

⋂
Qn x0, ∀n ≥ 1, P denotes the metric projection.

(69)

Finally, using the software Matlab 7.8.0, we have following figures which show that {xn}, {un} and {zn}

converge to x̂ = { 13 } as n→ +∞.
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5. Conclusions

We proposed an inertial type gradient projection hybrid iterative algorithm for finding a common
solution of GMEP(1), VIP(4) for a γ-ism and FPP(5) for a family of quasi-ϕ-nonexpansive mappings in
two-uniformly convex and uniformly smooth Banach space. Theorem 3.1 is an upgrade of the result of [16]
and [5] in the following sense:

(i) In [16], the authors studied and analyzed a convergence theorem for a relatively nonexpansive
mapping whereas in our Theorem 3.1, a convergence theorem is showed for a family of quasi-ϕ
nonexpansive mappings.

(ii) In [5], the authors studied convergence analysis theorem in a real Hilbert space for one nonexpansive
mapping where as in our Theorem, we studied in the much more general 2-uniformly convex and
uniformly smooth Banach space and for a family of quasi-ϕ nonexpansive mappings.
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