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Abstract. This study is about degenerate Hermite Appell polynomials in three variables or A,-Hermite
Appell polynomials which include both discrete and degenerate cases. After we recall the definition of these
polynomials and special cases, we investigate some properties of them such as recurrence relation, lowering
operators (LO), raising operators (RO), difference equation (DE), integro-difference equation (IDE) and
partial difference equation (PDE). We also obtain the explicit expression in terms of the Stirling numbers of
the first kind. Moreover, we introduce 3D- A;,-Hermite A-Charlier polynomials, 3D-A,-Hermite degenerate
Apostol-Bernoulli polynomials, 3D-A,-Hermite degenerate Apostol-Euler polynomials and 3D-A,-Hermite
A-Boole polynomials as special cases of A,-Hermite Appell polynomials. Furthermore, we derive the explicit
representation, determinantal form, recurrence relation, LO, RO and DE for these special cases. Finally, we
introduce new approximating operators based on i-Hermite polynomials in three variables and examine

the weighted Korovkin theorem. The error of approximation is also calculated in terms of the modulus of
continuity and Peetre’s K-functional.

1. Introduction

Appell polynomials have attracted intensive interest in recent years because of their diverse application
areas. Among the families of polynomials, Bernoulli, Euler, Genocchi and Hermite polynomials [1] are
the best known and they have many applications in numerical analysis, asymptotic approximation and
special function theory, and thanks to these applications, they have a wide range of uses in engineering and
applied sciences. It is because of these application areas that many extensions of Appell polynomials such
as Ap-Appell polynomials in [2], twice iterated Appell polynomials [3], Hermite-based Appell polynomials
in [4], Laguerre-based Appell polynomials [5, 6], truncated exponential-based Appell polynomials in [7],
twice iterated A,-Appell polynomials [8] and A;-Gould-Hopper Appell polynomials ( A,-GHAP) [9] have
been the subject of intensive research especially in the last decade. In the literature, extensions of several
structures are very important, if this extension is also a unification of the existing structures, since this
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unification focuses researchers on the investigation of advanced properties rather than focusing on the
investigation of modified families having similar properties to the existing area.

Hermite-based special numbers and polynomials are based on the work done by Milne-Thomson, in
1933 [10]. Taking into account Milne-Thomson polynomials, Dere et al. have done research in from 2011
to 2013 [11-13]. Later, in 2019, Milne-Thomson type polynomials and numbers were defined by Simsek,
ending the generalization of almost all Hermite-based numbers [14]. Moreover, in 2020, Kilar and Simsek
built the special numbers and polynomials based on multivariate Hermite polynomials [15]. For some of
the work and done in this field, see papers [16-21].

It is the main purpose of this paper to examine 3D-A;-Hermite Appell polynomials, which unify
(therefore include) existing Appell polynomials such as usual Appell polynomials, Aj-Appell polynomials,
bivariate Appell polynomials, Hermite-based Appell polynomials and A,-GHAP, etc. ([2, 4, 9, 22-30]).
Degenerate Hermite Appell polynomials in three variables first introduced and studied in Baran’s Ph.D
thesis in September 2021 [31] and later, by Riyaset et al. in November 2022 [32]. The degenerate Hermite
Appell polynomials in three variables A; (x, y,z; h) := ﬂ? introduced in [31, 32] via the generating relation

S((1+he)" (1+02) A +he)h = Z A (x,y,2z;h) j—]' (1)
j=0

where A; (0,0,0;,h) = Aj;, (j=0,1,2,---) are the degenerate numbers given by the series

9= ) Aing, Ao £ 0. @
i=0 ’

Throughout the paper, we assume that the conditions |t < 1, htZ‘ <1, |ht3| < 1 are satisfied and if thereis a
need for additional condition on the variable t which might come from 9 (f) will be mentioned in addition.
Ay, is the finite difference operator (see for instance [33]) given by

ATkl (x) =k(x +h) —k(x), h € R*.
We have from [33] that, the rate of m (m € IN) the operator finite difference can be derived from the above
definition to give

m

AAE) = AN @) = Y 1 ("j)f (x + 1) ©

r=0

and A° : I, Al : A, I is the identity operator. 3D-A,-Hermite Appell polynomials provide the following
difference operator properties [31]:

My (A) = jrAL, 4)

Y (A’;) = j(-DhAL, (5)
and

A (A = (= 1) (-2 hAL,. (6)

It can be seen from equalities (4)-(6) that 3D-A,-Hermite Appell polynomials satisfy the following difference
equations [31]:

(hytn = A7) AL =0 (7)
and
(WA = A7) A = 0. ®)

It should be noted that 3D-Aj,-Hermite Appell type polynomials include the following polynomial families:
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e Taking z = 0in (1), we have the A,-GHAP [9]

==

¢ e ti
S (1+n2)" 1 +nt)i = ZAj (x, y; h) L (9)
j=0 ’
the numbers A;(0,0;h) := 9, (j = 0,1,2,...) which are degenerate numbers in (2).

Ozarslan and Yasar [9] obtained explicit representation, determinantal form, recurrence relation, shift
operators, DE and PDE for A,-GHAP.

e Taking the limit 1 — 0in (1), we get the Hermite-based Appell polynomials [4, 22]

)

j
O (t) exp (xt + yt? +zt3) = Z,ﬂ{j (x,y,2) %

j=0

In [22], for Hermite-based Appell polynomials, they found DE, IDE and PDE by using the factorization
method. Also they derived the Hermite-based Bernoulli polynomials, the Hermite-based Euler
polynomials and the Hermite-based Genocchi polynomials.

In the case 9 () = 1, we recover the 3D-Hermite polynomials [34],
) t]
exp (xt +yt* + zt3) = Z?‘(j (x,y,2) ﬁ
=0

e Taking y = z = 0, we get A;-Appell polynomials [23]. In [2], the power series expansion of 8 () (1 + ht)"
is used for defining Aj,-Appell polynomial were defined

s j . j
YA (x;h)% = S0 (1 +h)F = Ao () + 1A (1) + .+ %ﬂj Gh) + . (10)
= ! ! !
where 3 (t) is the power series of f given as

t 2 ti
3B =Y+ =Hp+=,+..+ Tth + ..., Jon # 0.
. 1~ 20~ L .

In [2], Costabile and Longo defined Aj,-Appell sequences by
A (A () = jhA;1 ().

e Taking h — 1in (1), we get A-Appell polynomials in three variables as

SO+ (1+8) @+ = iAj (x,v,2) i—:
=0 '

where in the case 9 (f) = exp (—at) and then taking y = z = 0, we obtain Charlier polynomials C;.”) (%)
in [37]

(o)

j
exp (-at) (1+1)" = ¥ € (x % a1,

n=0

e Setting z = 0 and then letting & — 0, we obtain bivariate Appell polynomials [24]

. j
9 (t) Syt = Z R;Z) (x/ ]/) %
=0 ‘
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e Taking y = z = 0 and then letting 1 — 0, we get the usual Appell polynomials which were investigated
extensively from different aspects. Appell polynomials [35, 36] are defined via the generating relation
as

(et = ZAj (x) j—], (11)
j=0 '

where 9 (t) is a formal power series as follows

9(t) = ZAii—', Ao # 0. (12)
i=0

An equivalent definition of the Appell polynomials is the following
Dy (Aj() = jAa (), j=1,2,3,...

where D, := ;—X is the derivative operator.
o Taking 9 (t) = 1, we have h-Hermite polynomials in three variables in [31] defined by

y
h

(L+hDh (1+02)" (1+ ht3)% = ic’; (x,v,2) j—]' (13)
=0 '

Note that these polynomials include three variable Hermite polynomials as i — 0, A,-GHAP for z = 0,
bivariate Hermite polynomials for z =0 and & — 0.

By making special choices of 9 (f), we construct some new families of polynomials in three variables.
The special cases that we consider in the present investigation are 3D- A,-Hermite A-Charlier polynomi-
als, 3D-Aj-Hermite degenerate Apostol-Bernoulli polynomials, 3D-A,-Hermite degenerate Apostol-Euler
polynomials and 3D-Aj,-Hermite A-Boole polynomials

We organize the paper as follows:

In section 2, after we recall 3D-h-Hermite polynomials and their explicit representation, we investigate
some properties of 3D-A,-Hermite Appell polynomials recurrence relation, LO, RO, DE, IDE and PDE. In
section 3, we obtain an explicit representation in terms of the Stirling numbers of the first kind and some
addition formulas. In section 4, we consider some special examples of 3D-A,-Hermite Appell polynomials.
More precisely, we introduce 3D- A,-Hermite A-Charlier polynomials, 3D-Aj,-Hermite degenerate Apostol-
Bernoulli polynomials, 3D-Aj,-Hermite degenerate Apostol-Euler polynomials and 3D-A,-Hermite A-Boole
polynomials and obtain their explicit representation, determinantal form, recurrence relation, lowering
and raising operators, difference equations. In section 5, we construct new operators based on h-Hermite
polynomials in three variables and examine the weighted Korovkin theorem for them. We also obtain the
error of approximation with the help of Peetre’s K-functional and modulus of continuity.

2. 3D-h-Hermite Appell polynomials and their properties

The properties given in this section were studied in a part of Baran’s doctoral thesis [31]. For the
completion of the paper, we recall the results with their proofs. We should also mention that Theorem 2.6
is new result.

We consider the 3D-h-Hermite polynomials G/ (x,y,z) := G! defined in (13) since they are the usual
members of the 3D-h-Hermite Appell polynomials (in the case 9 (t) = 1), satisfy the following difference
operator properties:

Ay (G’]) = hiGL, (14)
(el hj(j-1) G, (15)
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and
M (GY) =hj(j-1)(j-2)GLs. (16)
Therefore 3D-h-Hermite polynomials satisfy the following difference equations
(g — <A) Gl=0 (17)
and
(WA - A7) Gl = 0. (18)

The polynomial G’; have the following explicit representation

4] ()

=30\ ] I (2s)! (3!
6= 3 2 (220 o o SR 19)
1=0 s=0
where
oo (20) ey
W) = (~3),n"
with
, Fw+p .
m; = nn+YM+2)---(n+j-1)= D, iz, =t
()
The polynomial sequence {ﬂj (v yz h)}jeN has the following explicit representation
o - VRN A v 2m)! 3D
D I D I DR Py ) e e
(20)
where
0 t]
\9(1’) = ZA]’h_'
=
Forj=0,1,2, -+, the determinantal form of the 3D-A;-Hermite Appell polynomials is given by
¢, ¢ ¢ - ¢, a
Yor Vik o V2h o v Yi-Lh Vih
P S U I L Covie o (jean Qyjewn
A = o | | (21)
Yo 0 0 your - Gwisn Qyjan
0 0 0 -y (U

where the coefficients of the Maclaurin series of % are the numbers v, (s =0,1,2,---) and
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1 - £
50 = L @)
L (f
G’; = (S))/s,hﬂl;_s. (23)
s=0

In the following theorem, we obtain the recurrence equation of the 3D-Aj,-Hermite Appell polynomials.

Theorem 2.1. 3D-h-Hermite Appell polynomials have the following recurrence relation

ﬂh
AL, = (x+ﬁoh)ﬂh+2()ﬁ]5hﬂ +x]'Z( O )
+2jy AL + 2yj! Z 1) +32j(j- DA,
=1
5] Al
4 1y j=3s-2 .
+3z].;( h) L j>2 (24)

SO _ Yy gl (25)

Proof. Differentiating (1) wrt ¢, we get

(o8]

ZO. i+ ]].' = ‘\99((:))\9 (B (1+ ) (1+ htz)’l (1+ ht3)% 1htx9 B (1 +hDk (1+ htZ)% (1+ ht3)’z7
YT om h 3OO +hDF(1+ htz)% (1+08) + 327 fht3s B @ +hp)k(1+ htz)% (1+n8)".

(26)

Considering the expansions

1_00_5 1_00_5525 1_00_5535
ht_;;(ht)’ 1+ht2_;;(1)ht’ 1+ht3_§;(1)ht’

in (26), we obtain

e8]

Sy - EmiL ot x;< DT

j=0

+2yZ( 1)° hStZ"Z .! +3z2( 1) hStBSZﬂh

j=0

t+2
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Then using Cauchy product rule in the above equation, we get

o j .
(x + Bon) Al + (S)ﬁshﬂ] g (et Boy) ALt + (By, — xh + 2y) Alt
0

]':2 s=|

ti

h h h

A+ Ayt + ZA]H]'
j=2

\.
[N

[ee] j . ‘ (o] . H
]' s ], h v
L L Z G

j= = =2 s=0
NE |
s ]' h f]
o h) o Ajasayyy 122
;s:o (j—3s—2)1” 32 j

(27)

Besides, by (20), we have the equalities Ag = Ao, ﬂﬁ’ = A+ Apxand ﬂﬁ’ = Ao+ 215+ Agpx (x = h) +2yAg .
Then, using the equations (2) and (27), we have

AL+ Abt = (x + Boj) AL+ (x + o) At + (Bip — xh + 2y) Al't. (28)
Using (28) in (27), if polynomial equality is used in terms of j—l,, we get the recurrence relation for the
3D-Ap-Hermite Appell polynomials. [J
Remark 2.2. Since the last four terms of the right hand side of (24) can be written as

(7] ﬂ? 9 ] *7{? 352
z'ﬂh_ + 2y (h)—s+32 1?{ + 3z7! (h)s'_—s_
JYAi T 2Yj] ; ( 1) jG =D AL, ] ~ (j—3s-2)!
[%] ﬂh

. s 251 —35-2
:Zy]!ZO(h)(] ’25 +3Z]Z(h) f T

it should be remarked that (24) is valid for j = 2. Similar consideration will be taken into account in the rest of the
paper.
Theorem 2.3. For the 3D-A-Hermite Appell polynomials, we have the LO as

_ 1
xL] - ]h xAh/
and the RO as

Bj-sn - :
+ ]S _ 1)\ s
L = x+ﬁ0h+E (]_S)st . +x§_1( 1) <A,

[’ 1 > 5]
A, 1
AZS“ + 3zh—2 +32) ;2532 AT 22, (29)

s=1

The difference equation satzsﬁed by the 3D-Ay-Hermite Appell polynomials is given by
x B = Bj-sh

X 2o Pt A s+1
(h+1+ h)xAh+Zli(]—s)'hJS+lx I ( +1)Z( 1° A

i A2 =] s A3 |5 s

R D) s =1

F YLD WA 2y 2y Y S AT 4Bt 32 )
s=1 s=1 s=1

ki
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Proof. The LO can be seen easily from (4). To give the RO, we write ﬂé’, ﬂ’; o ﬂ? v ﬂ’; 91, A, and 3{] 352
in terms of the lowering operator as follows
Al = [ Ll ol | A
1 1 1
= XA XA'Z e XA h
[(s Y R ) Y R h]ﬂf
- s! h
- []’h] =By ]ﬂ
h _ (] B S)‘ s h
ﬂf*S - jlhs =y (ﬂj)’
1
o h
AL = ()
" _ (] —2s-1)! AZ+L (At
Ajosa = jlhzstl 7 At (ﬂ )
1
. ) = ————— A2(A"
Aj 2(x,y,2;h) i(j—-1)h? h(“ﬂJ)’
| (j—3k—2)! 3542 { e
s = D ().
Using these relations in (24), we get
g A
/3]—5,11 - s ( )
ALy = (x+ﬁofh)~7‘?+ZW A Z;( Vo8 (A) + 2y—
s=0 =
(7] A" (5]
D ( ) D
2y ) o A (A) + 3zh— +32) (A, nz2 (31)
s=1 s=1

Hence, we have the equation (29).
To obtain the DE, we apply the factorization method, which is given simply by

Liy (L7 Al) = Al
Then with the help of the product rule
Ar(u@)o(x,y,2) =ulx+h) Awo(x,y,z)+0(x,y,z) A (x),
we can write that difference equation (30). So the resultant equation gives the claim. [

Theorem 2.4. 3D-A,-Hermite Appell polynomials satisfy the following integro-LO, integro-RO, and integro-DE

_ 1 _
xL] = ; xAhl yAh/

n
L = x+ﬁ0h+2 ﬁf”’ N M
s=1

[’T]
42y A A + 2y Z () oA AT 432 A2 A2

s=1
(5]
#32 ) (=h) AP A2 o,
s=1
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- .
yAn 1 Bj-sn —(JS) s+l s=1 A-s Astl y 1 A2
[(x+ﬁo,h)T E; S)‘x Y ;( 1 B A A +2(h+1)xAh yA2
5] (5]
1200 A + 2(% + 1) (<h)® oA 22210 YT (Cpy A A2
s=1 s=1
2 |5]
FI AL 432 ) (F1 A AR (;+1)

s=1

]:O, j=2,

respectively.

Proof. Applying the inverse difference operator on both sides of (4), we get

L) = ]_hﬂh

_ 1 h
S B o o e R

h
Ape = ! ;15)! A5 (),
R - L)
ﬂl,izsfl _ (j- 2;! -1 xA;(st) yAis+1 (fﬂ?’) )
A = ](]1 1) A28 (),
(j—3s—2)!

T —(Bs+2) A 3s+2 [ gh
A s o0 N (),

j!

by writing the above equation in the recurrence relation (24), we get the integro-raising operator.
To obtain the integro-DE, we use the factorization method

Lo (L (7)) = A,
and the product rule given in the proof of Theorem 2.3. [

Theorem 2.5. 3D-A,-Hermite Appell polynomials satisfy the PDE

,BOh A] 1 A li ﬁ] s,h As_l Aj_s+1 ﬂh
h] Wi nt Wi h Y=h j

j
+.L_Z( 1)71- ’( )(x+1h)2( 1)° B! i yAs“A (x +ih,y,z;h)
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1 Y i _
+— [2(— + 1) AT A2+ 2, AT2 A,

2]
2(L41) Y (07 0 | A (v, )

3z

AN
T

e [2) ) (=h) AT AR
5] N A

+322(—1)kh5’1 N yAZS+3—(j+1)Th A=0, j=2.
s=1

Proof. We use the IDE and taking (j — 1) multiples of the operator wrt x in (3) and use the h-summation by
parts formula [9] given by

j—
A o] (v) Z 1)11'( , )u(x+ih)v(x+ih),

i=0

and lastly, dividing both sides by #/~!, we get the PDE for 3D-A;-Hermite Appell polynomials. [

Theorem 2.6. 3D-A,-Hermite Appell polynomials satisfy the following integro-LO, Integro-RO and IDE in terms
Of yAgl Ay

_ 1 _
L = ;yAhleh, (32)

JLf = x+ﬁ0h+z “'l A h”) A]s+xZ(h JAS LA

[’T
F2y A 42y ) (h) A AR 452 AR A2
s=1

(5]
+32 Z (_h)s yA];(BS-%—Z) ZA25+2/ ] >2, (33)
s=1

—

j-1
=S, S 2 —
X+ Bon Z 1 ﬁ] h A (] S) A] +1 rx ( 1) hsl A_S AS+1+_y A ZA
ﬁ/ h h s)'y h Y=h
s=1 s=1
(7]

+2y Y (-1 AT A2 43 (% + 1) A AT+ 3 A A
(5] 5]

A
z - ~(3s+2 ~(3s+2 . y2h ;
+3(— +1) 17 A, LATE 13 ) (1) B A AT (o D= A=0, j22,
s=1 s=1

respectively.
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Proof. Replacing (j — 1) instead of j for the integro-lowering operator
o () (0,23 0) = (= DEA2 (6, 2:0),
we get

yAn (ﬂj—l (xyz h)) = (-1D)(-2)hAjs(x,y,zh),

ﬂ]‘,3 (X, Y,z; ”l) m yAh (ﬂjfl (X, v,z h))

and
A (A y,zh) = jG-1) (- 2DhAs (5 y,2h)
= =D =2 hes gy v (s (9,5 ),
A (A y,zh) = M (A (L y,zh)),

1
Aj1 (x,y,z;h) 7 VA A (ﬂj (x,y,z h)) )

Then we can write the integro-lowering operator (32). Also we give the integro-raising operator

As (v y,z:h) = [y s+1yLsio "yL;]‘(ﬂi (x,y,2;h)
1
b Y

1
A LA 7 /A ZAh] A (x,y,z;h)
= F yA,;("’S) AR (x,y, 2 h)

As (x,y,2;h)

S! —(j—s i—s
ﬁyAh(] )ZAi A (x, v,z h).

We can write the following equations instead of A;_s (x, v, z; ), Aj—1 (x, y,z h) , Ajos1 (X, ¥, 2, h) , Aj—2 (x, y, 2, 1)
and Aj-zs-2 (x, y,z; h)

(-9
!

AN
= (]] ) YA AN A (X Y,z h),

Ais(x,y,2h) A, ~(=7+) A] ]+Sﬂ] (x, v,z h)

(G=D' (1) -
*yAh(] J* )zAi, ]Hﬂj(x,y,z,'h)

Ai1(x,y,zh)

7!
= % Ah DA (x, Y,z 1),

Ajzs1(x,y,zh) = @ A, =40 ZA;zzmﬂj (x,y,z;h),
Az (x,y,zh) = U ]!2) JANA (x,y,2;h),

Aj-zs2 (x,y,zh) = G-ss-2t WA A2 A (x, y, 1)

j!
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Using the recurrence relation

-1
ﬂ'—s,h
Apa Gy ) = @+ o) Aoy + Y =5
5=0 :

A;(]_s) ZA,];S&’Ij (x,y,z;h)

j
X Z (=h) A A5 A; (x, y, 25 1) + 2y AT A A (x, 2 1)
=1
=]
+2y Z (=hy’ yA;:(ZSH) ZAiSHﬂ]' (x,y,z;h) + 3z yA;Z zAﬁﬂ]’ (x,y,2;h)
1
[
+3z Z (_h)s yA;(SHZ) 2A25+2ﬂj (X, Y% h) , ] >2
s=1

s

-
2

@
I

]

(35)

we can write that the integro-raising operator (33). For the integro-difference equation, in (35) applying to
both sides the following equation in [9]

L (f(2)g(y,2) = fz+h) Lig (y,2) + 9 (y,2) Duf (2).

We can write the integro-difference equation (34). [

3. Some summation formulas for 3D-Aj,-Hermite Appell polynomials

Now, we investigate the connections between the Stirling numbers of the first kind and 3D-A,-Hermite
Appell polynomials. We recall that the Stirling numbers S (i, k) of the first kind are defined the following
generating function [38]

flog(1+2)} =k ) S(i,k) f—| 2] < 1.
i=k

From the definition of S (i, k) [38], the Pochhammer symbol can be written as

@)=Y (DTS, k 2 (36)
k=0

Theorem 3.1. A,-GHAP can be represented by

4 (2) ;

Aj(x, y;h) = (]-_25_21)!(5+l)!ﬂ

a2 (GRS (s + LD . (37)

1=0 s=0

Proof. Using the definition of A,-Appell polynomials (10) and A,-GHAP (9), we have

- t] 2 Ty, X
Zo‘?lj(x,y;h)ﬁ S (1+n2)" (1 +ht)i
p

Il
—_—
1
N
—~
&
=
=
= =
N —
—_——
[
|
=<
(I)\_/
T
=
~
cnl“,';,
- 1))
N e’
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Using Cauchy product rule and then if polynomial equality is used in terms of ;—], in the resultant equation,
we get
| ; (Y
Ay (5, yih) = Z S 0 A (1)

S

Using in the above equahty (36), we get

1=0

Ay (x, y; 1) [ 25),3,( —h)* Aj_s (x;h) [Z D)7'S D (=Y
E

(SIS
—_—

(4] )
= oo W™ Ao (1) S (5,1 (1) 3/
][] i s
T L (j-2s-2) D) 4)
XAi_gs01 (1) (-1)° S (s + 1,1 v
Whence the result. [

-l
@«
i

T
IS}

1

N‘

Theorem 3.2. The 3D-Ay-Hermite Appell polynomials have the following representation

4] (21

[ j=3m-3v ] [ j—3m—3v—21]
2

—

Ji (j —3m —3v)!
Al = . .
I b= £ (j—3m —3v)! (m + 0)! ;‘ ;; (j—3m—3v-2s-2I)!
1 v
X G ()" Aj_sm-s0-25-21 (x; h) s (m +0,0) S (s + 1, 1) y'2". (38)

Proof. Using the equation (9) in the equation (1), we have

iﬂ?% = 9Oa+hi(1+ htZ)% (14087

(iﬂj(x,y;h) %][;(_5) " tg_m]
ZZ (]—3m)| T Ajeanm (G v ) (- (_Z)m :Tn'

"= ]—' ) Y (2
ﬂf_mZ:()(]‘_3m)!m!ﬂ]—3m(x/]//h)( h) ( h)m.

z

Using (36) for the term (_E)m in the above equality, we have

j!
j (j — 3m — 30)! (m + v)!

ﬂj—3m—31) (x/ v, h) (h)m S (m +0, Z)) z?
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Using the equation corresponding to A; 3,3, (x, y; 1) from (37), we have

] j=3 j=8m=3v7 [ j=3m=3v-2]
§ 2 2

(j —3m —30)!

vo;o(]—?ﬂn 30)'(m+v)v ; SZ:(; (G —3m—30—25_2).
1

X G+ ()" Aji_smso-25-21 (1) S (m +0,0) S (5 + 1, 1) y'z°

which completes the proof. [
Theorem 3.3. The 3D-Ay-Hermite Appell polynomials satisfy the following identity

5] =] )
Al = J!
! =0 =0 (j—3s—3D!(s+1)!

|

Aj_zez1 (x, y; ) S (s +1,1) 2. (39)

Proof. Using the definition of 3D-A,-Hermite-Appell polynomials in (1), we get

Zﬂ?j, [Zﬂ(x ok ' [i(_ ) i]

j=0 j=0 s=0

Then using the Cauchy rule, we have

[4]
=B 1)) o

Using Stirling numbers of the first kind in (36) instead of (_TZ)S and then using Cauchy product rule, we arrive the
desired result. [

Corollary 3.4. Taking z = 1 in (39), we have

g
' . Ajzsa (x, y; S (s + L 1)
1=0 5=0 (j=3s=3D)!(s+1)!

[—

Ai(x,y,1;h) =

Theorem 3.5. The 3D-Ay-Hermite Appell polynomials have the following addition formulas

-1

—.

f i
J: s 1
Aj(x+w,y,zh) = A 1 (x,y, ) IS (5,]) ', (40)
; = (j—s=D(s+D)
5 5] i
Aij(x,y+w,zh) = Aizs-21 (X, y,z, 1) K°S (5,1 o
= - (j—25=2D)! (s + ])!
(41)
5] [5] i
A (x,y,z+w;h) = . Aizs-31(x,y,z, 1) IS (s, 1) @'

4 (j— 35— 3D (s +1)!

I=0 s=
(42)
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Proof. Taking x + w instead of x in the equation (40), we have

S| (Sert]

Using the Cauchy rule and after comparing the coefficients of ;—]‘ on both sides of the resulting equation, we
have

ZAj(x+a),y,z;h) =
=0

—.

Ai(x+w,y,zh) = Z (g)ﬂ;s (x,y,z;h) (w)h

s=0

Then, using (36) for (a))’; , we have the claim (40). In a similar way, we can obtain the equations (41) and
(42). O

4. Special examples of 3D-A,-Hermite Appell polynomials

We introduce some special cases of 3D-A,-Hermite Appell polynomials and obtain their properties such
as explicit representation, determinantal form, recurrence relation, LO, RO and DE for them. The special
cases, we consider are the 3D- Ay-Hermite A-Charlier polynomials, 3D-A,-Hermite degenerate Apostol-
Bernoulli polynomials, 3D-Aj,-Hermite degenerate Apostol-Euler polynomials and 3D-A,-Hermite A-Boole
polynomials

4.1. 3D-Ay-Hermite A-Charlier polynomials

Here, we examine explicit representation, determinantal form, recurrence relation, LO, RO and DE
provied by 3D-A,-Hermite Charlier polynomials Ci (x,y,zh).

We introduce 3D-Aj,-Hermite A-Charlier polynomials via the following generating function
A1+ h)i (1 +ht2)" (1 +ht3 ZCM (x, 1,2 h) 3 Ao

If A=e¢h—1,y=0andz = 0in generating function, we obtain the Charlier polynomials.
Corollary 4.1. 3D-Ay,-Hermite A-Charlier polynomials satisfy the explicit representation as follows

\ ] [=]
-3l 2 30!
Ct;'/\ (x/ Yoz h) - Z (;) C? hs A( )(31) (x)s 2m-31 (]/) ( )h ( m|) (l')

s=0 1=0 m=0

—

=3l
2

in which the A-Charlier numbers C‘]’., 1(0,0,0;h) = C?jf forx=y=2=0,A=¢ [37,39], are given by the following
series

—a't _ . a,htj
A ‘Zcmﬁ'

j=0

The first four 3D-Ay-Hermite A-Charlier polynomials are as follows.
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Table 1: The first four 3D-A,-Hermite A-Charlier polynomials.

Cl},}\ (x,y,zh)
1
x—a'InA

X2 —a?"In* A = 2a"xIn A — hx + +2y
% — 3hx® + 212x + 3xa? In* A + 3xa" In Al — 3a" In Ax? — 6% In® A — 6ya” In A + 6xy + 62

WIN| P O —.

Corollary 4.2. 3D-A,-Hermite A-Charlier polynomials satisfy the following determinantal form

1 G Gl G?_l G?
1 d'InA 1A - 0D anf A
o 1 (dmr - (D m2 A (a0 /1 A
Ch(xyzh)= (-1) . , , o |
g 0 0 1 (B (a2
0 0 0 1 (],jl)ahln)\
where ‘
1 . £ h : ] a
T :Zas,h(/\); and G]. :Z a )L)C SA(x y,zh).
s=0 : 5=0

Proof. Taking 9 (t) = A", it gives

1 = t°
A_uht = ;)‘ As,h (A) E

from equation (22) and
Iy
ci=Y (i )as,h W CL, , (x,v,z:h)

s=0
from equation (23). Therefore, these equations are provided by substituting them in equation (21). O

Corollary 4.3. The recurrence relation for 3D-Ay-Hermite A-Charlier polynomials is given by

C‘jl'+1,}\ (x,y,z;h) = (x —d"In A) C’;’ Ly, zh)

o c o (yzh)
+x;j! 2 (=h) ](]_—S), +2jyCiy ) (v, Y,z h)

s=1

(7] @, v, 7k
2510 (Y2 ) o
+2y]'Z( h)° ] o +3](]—1)ZC[}_2,/\(X,]/,Z;}Z)

5 ]
+3zj1 y  (=h)’

s=1

W\

Clssnn (v y,2:h)
(j—3s—-2)!

Jiz2.
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Proof. It is proved when A=t is written in case of 9 (£) in Theorem 2.1. [J

Corollary 4.4. The 3D-Ay,-Hermite A-Charlier polynomials have the following LO, RO and DE

_ 1
XL] = ]_h XAh/
j Ay e (-1y
xL;— = x—d'"InA+ XZ (=1)° XAZ + ZyxT +2y ot xAiS_H
s=1 s=1
-2
+3Zh_2 + 3z o xAiS+2, i >2,
s=1
x a'ln A x I : (A2
s=1
(2], . . [
Ch A, (-1 1. |
+2y . e "AZHZ + 3Zh_3 + 3z 2 s xA3s+3 —j Cj,A oyl =0, j22
respectively.

Proof. It is proved when A~?'* is written in case of 9 () in Theorem 2.3. [

4.2. 3D-Ay-Hermite degenerate Apostol-Bernoulli polynomials

This part includes determinantal form, recurrence relation, LO, RO and DE for degenerate 3D-Aj-
Hermite degenerate Apostol-Bernoulli polynomials B; (x,y,z; A; h).

We introduce the 3D-Aj,-Hermite degenerate Apostol-Bernoulli polynomials via the following generat-
ing function

Y z
— e (1) (14 0P) ZB Gy, 2 A h) - < ln( )‘
A +hDt -1 £~ A

If h — 0and y = 0, z = 0 in generating function, we get the degenerate Apostol-Bernoulli polynomials [40].

Corollary 4.5. The polynomials B; (x,y,z; A; h) have the explicit representation

[5
Bi(x,y,z;Ah) = Z (i)

s=0 I=0 m=0

][] u (2m)! 3D)!

] sh(/\)( )(31)( )s 2m-31 (y)m( ) l ll

in which B;(0,0,0; A; h) = B, (1) (degenerate Apostol-Bernoulli numbers) [40] as follows

(e8]

t t
—= ZB]-,;Z (1) 7

Al +ht)r =1 =0

The first four 3D-A;-Hermite degenerate Apostol-Bernoulli polynomials are as follows.
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Table 2: The first four 3D-A;-Hermite degenerate Apostol-Bernoulli polynomials.

j| Bi(x,y,zAh)

00

F=3

2 (A 1)2 (x+A—xA)

3 M4) —1%%+4A—1M1—Ah—zmx+AH1+hyhu1—m+2yu—1f]

Corollary 4.6. The 3D-Ay-Hermite degenerate Apostol-Bernoulli polynomials satisfy the following determinantal
form

0o ¢ ¢ - d G
Wl ! o W),
RS TS N S
) ; )
oyl AOF - AT AT
Bi(x,y,zAh) = ,
/\]+1 1 (1) ) (1) 1
0 0 A /\(’ ) - )\(2) -
0 0 0o - A A/ ym
where
AA+h)E -1 £ L (]
% = Z asy (A) 5 and G;’ = Z (i)as,h N Bjs(x,y,z; A h).
s=0 ’ 5=0
Proof. Taking 9 (t) = —L+—, it gives

A(L+ht)h -

1 s}
A +hi -1 o
f = ;ﬂs,h (/\) ;

from equation (22) and

AA+h)E -1 L (
AQrhni -1 =Y e and G’;=Z(;)as,h(A>Bj-s(x,y,z;A;h)

t s=0 5=0

from equation (23). Therefore, these equations are proved by substituting them in equation (21). O
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Corollary 4.7. 3D-A,-Hermite degenerate Apostol-Bernoulli polynomials satisfy the following recurrence relation

=1 .
(1 + %)(x -1)8;(x,y,zA;h) - (1 + %)Z;‘ (i) (=h)/™* (j = 9)1Bs (x, 1,2 A; )
jojs+l j
j= )L L 1\ . « Bis (x,y,z;A;h)
(1 + )SZ(; kz(; ( )(]—s+1 k)'B] st1-kh (A) Bs (x,y,2; A h) +(1+ ;)x]!sz_;(—h) —(j—s)!
(=]
1 1 , < Bias1(x,y,2,Ah)
(1+ )Z]yB] 1(vy,z A h)+(1+ ])Zy]' L (—hy = 2(]'1—25]{1)!

1\, . Bjss2(x,y,2; A )
1 Z)3zjt Y (<hy
( ])31(1 )28Bj2 (%, Y, 2 A; h)+( ])321 (=h) =32

28j+1(x1y/Z;A;h)/ ]22/

where

t - ti
———— =) 8 T

A +ht)r =1 =0

1s written in case of 9 (t) in Theorem 2.1. [J

Proof. It is proved when

A(1+ht)h
Corollary 4.8. The LO, RO and DE of the 3D-Aj,-Hermite degenerate Apostol-Bernoulli polynomials are
- 1
xL] - ]_h A,
-1 j o jes+l
1 1) 1 Bj-sr1-k (1) .
Ay = (1+—.)(x—1>—(1+—) (1 AL (1+—.) (-h)f e AT
! ] ) s ] ;IZ‘ (j—s+1—k)hi=s h

1\/(x 1 N 'S o B (D) j-s+1
[(l+?)(ﬁ+1‘ﬁ)xAh‘(l+7)Z ) G o

s=0 k=0
1\/x ! 1\ = . {f” 1\ A2
+1+—,(—+1) (=1 (A (1+-) (—1)° (AT - ( ) J) i +2(1+—,) “h
( ]) h SZ:'; J SZ:':‘ ; ] Y2
(2] 3
1 (—1)S s xAh
+2 (1 + 7)y s, A (1 + —)3 =

+(1+ %)32 ;_25133 AP - (j——) Bi(x,y,zAm) =0, =2,
1

respectively.

1s written in case of 9 () in Theorem 2.3. [

Proof. It is proved when T
)\(1+h )i—
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4.3. 3D-Ay-Hermite degenerate Apostol-Euler polynomials

Now, we introduce the determinantal form, recurrence relation, LO, RO and DE for 3D-Aj,-Hermite
degenerate Apostol-Euler polynomials E; (x, y,z; A; h) .
We introduce the 3D-Aj-Hermite degenerate Apostol-Euler polynomials via the following generating

function
In ( )’

Corollary 4.9. 3D-A,-Hermite degenerate Apostol-Euler polynomials have the following explicit representation

2

— = (A+h)i (1+hP i 1+ht3 E;(x, y,z/\h) , <
A +h)h +1 ( A Z‘ Jt

] j L1 [Z] s — o 2m)! (3D)!
Ej(x,y,z,Ah) = Z s Z Z Ej-su (1) 2 (x s—2m-31 (V) @)1 o
s=0 1=0 m=0

in which E;(0,0,0; A; h) = &;;, (A) (degenerate Apostol-Euler numbers) [40] are given by

i ]h(/\)_

/\(1+ht)h+1 =0

The first four 3D-Ay-Hermite degenerate Apostol-Euler polynomials are as follows.

Table 3: The first four 3D-A;-Hermite degenerate Apostol-Euler polynomials.

(/\+1) [(/\+1)2x2 A+1)(h+2A + hA) x + 2y (A +1)* + A2 (1 + h) — A(l—h)]

Ji Ej (x, 1,z A h)

0 A+1

1 (/\+1)2 (x+xA=A)
2

3

e [(/\+1) 3+ A +hA+ ) + A+ 1) (2(A+ 1K)+ 6A (A + 1) h+6y (A +17 +3A (A 1)x
+ (=212 = 3h =1 - 6y + 62) A* + (—4h? + 4 — 12y + 182) A2 + (—21% + 3h — 1 — 6y + 182) A + 62]

Corollary 4.10. 3D-A,-Hermite degenerate Apostol-Euler polynomials satisfy the following determinantal form

h h h h
1 ¢ a o Gt G!
G4 mh o s )
| 0O (D20 Oz
Ei(x,y,zAh) = (—1)]( )
] 7 i . 7
AU b0 0 G OO Q4L
0 0 0 @ (]11)%

where

L+ht)i +1 o a L (i
%:Zasrh(/\); and G7=Z( )ash(A ]S(x y’Z /\ h)

5=0 : s=0
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Proof. Taking 9 (t) = —=——, it gives
f 8 () /\(1+ht)h+1 8

AA+h)F+1 I
T Lmg
from equation (22) and
joy
G? = Z (g )as,h (MEjs(x,y,2 A h)
s=0

from equation (23). Therefore, these equations are proved by substituting them in equation (21). O

Corollary 4.11. The following recurrence relation is satisfied for 3D-A,-Hermite degenerate Apostol-Euler polyno-
mials

j-1

(x - %) Ei(vy,z A=) (g) (=)™ (j = )IEs (x, ¥, 2 A; )

s=0

LS
2 Z (;)(] K S) (—h) k! Ejk—sy (A) Es (x, y,2; A; h)

) J Eis(x,y,z Ah) )
+x7! Z (=h)* ](]——s)' +2jyEi1(x,y,2;A;h)
- !

, Ejos1(x,y,z0)
I A _ , 1.
+2yj! E (=h) (=251 +3j(j—1)zE; 2 (x, Y,z A )

. —3s (x s /\ h) .
+3zj! E (=h)® Ei- (],2_3Sy_2)| =EnxyzAh), j22
s=1 :

where

= i ]h(A)

)\(1+ht)h +1 75

2
T

Proof. 1t is proved when
A(1+ht)h +1

is written in case of ¥ in Theorem 2.1. [

Corollary 4.12. The LO, RO and DE satisfied by E; (x,y, z; A; h) are given as

1
L = =2y,
] ]h h
=1 j—s
A1 v Siksn ()
+ s N s j—s+1 j—s
L= A L LY oy 2( 1) o 2y +2( DA
5=0 k=0
2] 5]
_ A2 _1)°
+2y ( 1) A25+1+3Z h +3 ( 1) A3S+2 ]22,

s+l X2y W2 }25+2 X=h
s=1 s=1
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X A 1 =25 k ]ksh(A) ]s+1 s+1
[(E”_huﬂ)) " 2n Z(_l) (j—k—s) hi- g i ( +1)Z( D"t

s k=0

._\II

[

=

A? 2 ] —s+1

3
+Z( 1y° As+2y—+2y (;3 xA25+2+3z—+Z( 1)~ o ’

12 _

Z (}1_25133 fof” JIEi(x,y,zA;h) =0, j>2.
s=1

—_—

—

+3z

;1 is written in case of 9 in Theorem 2.3. [

Proof. It is proved when
A(L+hi)h +

4.4. 3D-Ay-Hermite A-Boole polynomials

In this part we derive explicit representation, determinantal form, recurrence relation, LO, RO and DE
for 3D-A,-Hermite A-Boole polynomials BI; (x, y, z; i1; A; 1) .

We introduce 3D-A;-Hermite A-Boole polynomials via the following generating function

1
——————— (1 +ht)r (L+ht? h 1+hi§3 i Bli(x,,2 1 A; h)—
1+(/\+ht)" ( ) ( ]Z:f

If h =1,y = 0and z = 0 in generating function, we give the A-Boole polynomials with the generating
function as follows

1

Corollary 4.13. 3D-A,-Hermite A-Boole polynomials have the followzng explicit representation

(][]
!
Blf(x'}/fw;A;h>Z()ZZBl]sh(m)( ) 0z R,
5=0 .

1=0 m=0
where the A-Boole numbers Bl;(0,0,0; u; A;h) = Bljy (u; A) (for A = 1in [9]) , are given by the

= i ]h(H//\)

1+A+ ht)h =0
Corollary 4.14. 3D-A,-Hermite A-Boole polynomials satisfy the determinantal form as follows

A+ AR @ ARy AR AR (g
o At QAR G CHARE0D it (AR
Bl ( xy = —V ] :
iy, unn) = ——— , . ) . ) ’
jR Yzl (/\% +1)/+1 0 0 AF+1 (/;1);\}7(#—(]—3)@ (#)1]773 (é)ﬁ(;:—(]—z)h) (H)?,z
0 0 0 AR +1 (/AR ()
where

(e8]

jog.
u #°
1+(A+ht)r = Zas,;l (1) o and G’]? = Z (g)as,h (w;A)Blis (x, v,z ;A h) .

5=0 s=0




G. Baran et al. / Filomat 37:19 (2023), 65376567 6559

Proof. Taking 9 (t) = —L—, it gi
roof. Tnking S (t) sk it gives
R t
At (+h)h =) ag (s A) 5
s=0

from equation (22) and

jog.
G;‘ = Z (;)as,h (wA) Blis (x,y,2; u; A h)

5=0

from equation (23). Therefore, these equations are proved by substituting them in main determinantal form. [J

Corollary 4.15. 3D-A,-Hermite A-Boole polynomials satisfied the following recurrence relation as follows

By~
( %)Bl (v, 2 4 A1) — ’“’Z()(N’S (= 9)'Bls (x, v, 2 13 A; 1)

+%Z]‘]Z;()( )( ) ks (13 A) Bls (x, 9,7 11; A h)

Bl S(x ,2Z; ;A h) )
+xj! Z( h)° = y s)'F‘ +2jyBli 1 (x,y,z;u; A h)

s=1

=1

[2] s Bl (4, z A h)
— (j—2s-1)

+3j(j— 1) 2Bl (x, v,z 45 A; )

Bli—zs-2 (X, Y, 2; ;1)

+3zj! (=h)°* G—3-2)

=Bl (v, y,zw,Ah), j=2

where

1 . ht
L St [
1+ (A+ht)h ;; ’ j!

L is written in case of 9 in Theorem 2.1. [
A+(1+ht) 1

Proof. It is proved when

Corollary 4.16. 3D-A,-Hermite A-Boole polynomials satisfy the following LO, RO and DE as follows

_ 1
xL] = ]._thh/
joj-s k . s
v B E E (—1) Blj—k—s,h (‘U, /\) j-s s lLl' ( 1)]
L = o L L G 2( R Z I

=]
oy (1 o, 5 ¥ D e
VI A2y ) o A 432 432 ) AR, 22,

s=1 s=1
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oIS vk , J
X u u (-1) Blj—k—S,h (y, A) j—s+1 X s As+l
[(z 1o ) LY Gos R 7 (1)

s=1
2]
x

j-1 _1\j-s . j A

-+ 2 ) ALY (L1 A+ th—h +2y
5=0
A3

2
s=1 s=1

T (=17
3 h2s+3 *

Aisw -j|Blii(x,y,zu;Ah) =0, j>2.

Proof. Tt is proved when —L— is written in case of 9 in Theorem 2.3. [J

A+(A+ht)

5. Approximating operators on h-Hermite polynomials in three variables

In this section, we examine new operators including h-Hermite polynomials in three variables and give
the weighted Korovkin theorem, modulus of continuity and Peetre’s K-functional for these operators.

Throughout this section let # € IN := {1,2,---}, Yx € [0, 00) and fixed y,z > 0, h € (-1,0). Consider the
following linear positive operators:

(i) = 1 : Z - Gk(nx,y,z;h)u(k(thl)), 3)
+n)FA+ni@+nis K L
where f is sufficiently nice function which guaranties the convergence of the above series.
Lemma 5.1. We have the following properties for these operators:
&) = 1, #4)
G = xv LE (45)
& (Fx) = P+ % [4yh(% - 1) +12yz + 9zh(% - 1)
+(1+h)(2y +62) + (1 +h) (2y + 3z)]
+% [x +4xy + 6x2], (46)

where for each x € [0, o).

Proof. For £, (1;x), if take u = 1 in (43), we get

(o8]

1 Z Gk (nx, y,z; h)
A+h)F A +h) 1+ S k!

£, (1;x) =

On the other hand, since —1 < I < 0, |-ht|< 1,|-ht?|< 1, |-ht?|< 1, it is seen that it converges when replacing
x by nx and taking t = 1 in (13)

i Gk (nx,y,z,h)

- =A+n)F A+ A+h)F,

k=0
and thus we get
1

A+ (1 +h) (1 +h)h
1.

e, (1;%) A+m)F (1 +h) (1+h)h
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For &, (t;x), if take u = t in (43), we get

)

1 Z Gr(nx,y,z;h) k(h+ 1)
A+mE (1 +h) (1 +h)i = k! n

h+1 = Gie1 (nx, Y,z h)
A+ A +m)F 1 +h)in = k! '

L, (£ x)

Taking derivative with respect to t on both sides of the generating function, we have

y
h

i G (, ]/,Z;h)li—]: = x(1+h)i! (1 + htz) (1 " htg)%
k=0 !

a

2yt (L+ht)l (14 htz)%_l (148

(1+n8) 7

y
W

+3z2 (1 + ht) (1 + htz)

In (47), we replacing x by nx and take t = 1, we get

G Y, ,h nx ¥ z —
Z% =+ @+ )+ 1)+ ) [nx+ 2y + 32],
k=0 ’

and thus we have

2y +3
L. (Ex)=x+ yn Z.

For &, (tz; x), if take u = t* in (43), we get

(h + 1) > Geo (1, y,2; 1)
A+ (1 +h) (1+h)i n2 = k!
(h+1)>* = Gis1 (nx,y,2;h)
L+ L+ R (1 +h)in2 4 ke

L, (tz; x) =

On the other hand, in (47), taking derivative with respect to ¢ then replace x by nx and ¢ = 1 to obtain

- G Y,z h " i '
Z k2 (X, , 2 ) _ A+h)" 1+ h): (A +h)" [n2x2 — nxh + 4nxy + 6nxz
k! (1+h)

y_ Z_
+4yh(h 1) +12yz + 9zh(h 1)]

A+h)% L +h)F (1 +h)i
1+h)

k=0

2y + 62),

and thus we get

1 y z
2. _ .2 Z_
Qn(t,x) = x +n2[4yh(ﬁ—1)+12yz+9zh(h 1)+(1+h)(2y+6z)
+(1+h)(2y+3z)]+%[x+4xy+6xz].

Hence the proof is completed. [

6561

(47)
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Lemma 5.2. We have the following results

2y +3z

L, (t-xx)= (48)
and
2, _ 1 y z
¢, ((t=x7x) = — [4yh(z - 1) +12yz + 9zh(ﬁ - 1) +(1+h)(Qy + 62)
+(1+h) 2y +32)] + g, (49)
where for each x € [0, o).
Let ¢ (x) = 1 + x2. Then the function spaces B, [0, ), Cy[0, o0) and C’;,[O, o0) are defined as follows:
B,[0,00) = {u:[0,00) = R, |u(x)| <M, x)},
Cypl0,00) = {u € B, [0,00) 1 uis continuous},
. u(x)
C’(;, [0,00) = {u € Cy [0, 00) %ggo o) = k},
where ¢ (x) = 1 + x? is a weight function and k and M, are constants and the norm on B, [0,00) is
|u ()
llull, = su ,
v x>g) ¢ (.’X)
see [42].
Lemma 5.3. &, : C, — B, is a sequnce of linear positive operators.
Proof. We need to prove that linear positive operators £,, from C,, to B,,.
12, 50 < ((F) 00 ®:x)
n (1 )] o= =
Pl x€[0,00) @ (x)
2, (L) + £, ()
<
<y, xs{tgg) T3 2
a ¢ x€[0,00) 1+ xZ
< Miull,
where
c = l[4 h(%—1)+12 z+9zh(5—1)+(1+h)(2 +62)
ARV Y h y
+(1+h) 2y +32)] + % [x +4xy + 6xz] .
Therefore the given operators are uniformly bounded. [
Theorem 5.4. Let £, : C, — By, linear positive operators and ¢ (x) = 1 + x%. If
lim ||, (¢5x) - | =0, i=01,2 (50)

4

then for all u € CX,, we have

lim |2, (1; %) — ull,, = 0. (51)
n—o0
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Proof. From (44)-(46), we obtain

“Q’n (11x) - 1“@ = O/

1
1€, (£ %) — x|, < i 0, as n— oo,

and

o, (i) - < AL

where

— 0, as n — oo,

A= 4yh(% —1)+12yz+9zh(% —1)+(1 + 1)y + 62) + (1 +h) (2y + 32)
and

B =x +4xy + 6xz.
The proof completed by applying Korovkin’s theorem [41] (see also [42],[43]). O
LetueC [0, 00). Then for C > 0 the modulus of continuity of u defined by w (u; C) in [44],

ww;0) = sup |u(x)-u(y)|
x,y€[0,00)

Jx=y|<C

where C [0, «0) denotes the space of uniformly continuous functions on [0, o). Thereafter it is best known
that one can write

-y
|u(x)—u(y)|s 1+T w u; Q). (52)

for any C > 0 and each x € [0, c0).
Theorem 5.5. Foru € C [0, o0), we have

1€, (1;2) —u (¥)] < 200 (1;0), (53)
with C = G, (x) = /L ((t - x)2 ;x) where L, ((t - x)2 ;x) is obtained in Lemima 5.1.

Proof. Using linearity of the operators £,, (44) and (52), we get

100 @) —u @] < L0 () —u@)];x)
< @+%ﬁﬂu—ﬂmﬁwmx»

According to the Cauchy-Schwarz inequality for £, (|t — x|; x), we obtain that

12 62) = 0 ) < (14 2 2 (- 075) 0 (5.

If we choose C = C, (x) = 4 / 2, ((t - x)2 ;x), we get the result. [
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Let
C310,00) = {v € C5[0,00) : v/, 0" € Cp[0, 20)},
with the norm
||U||c§[o,m) = [|9lle,q0,00) + ”U,”CB[O,OO) + ||U"||c3[o,oo)
also

9llcsf0,000 = sUP [0 ()],
x€[0,00)

(see [44]) .
Theorem 5.6. Forany v € Clz3 [0, 00) , we have
1
1€, (0;x) =0 (x)] < ECn 2+ Ca) ol czfo,00) /

where

h

Proof. From the Taylor’s series expansion of the function v € CZB [0, ), we have

n2

(t - x)

o) =v()+(t-x)v (x)+T

v (u),
where u between x and t, from which it follows

1
o (t) — o ()| < My |t — x| + EMz(t—x)z,

where
M; = sup [v" (x)| = ”U/”CB[O,OO) < ||U||c23[o,oo) ’
x€[0,00)
My = sup [0” ()] = l0"llcyp0,00) < ||U||c§[o,oo)

x€[0,00)

because of (55). Thus,

1
0@ =0 @) < (It= 2+ 5 ¢ = 92 lollgpoen -
Since

1€, (0; %) —v(xX)| = |2, (0 (t) —v(x);0)| < L (o) —vX)];x),

and &, (|t — x|;x) < (L’n ((t —x)? ;x))% = (, we get

1
12, (0;x) —v(x)] < (L’n (It = x[;x) + >4 ((t - x)’ ;x)) l19llc20,c0)
1
< ECn 2+3C) lI7llc210,60) -

This complete the proof. [

1

G = [1(4yh(%—1)+12yz+9zh(§—1)+(1+h)(2y+6z)+(1+h)(2y+3z))+%]2‘

6564

(54)

(55)

(56)



G. Baran et al. / Filomat 37:19 (2023), 6537-6567

6565

In the proof of the following theorem in the use relation between Peetre’s K-functional and the second of

the modulus continuity, is defined by

Wy (u;7) := sup |lu (. +2t) = 2u (. + 1) + 1 () llcy[0,00)

0<t<t

for u € Cg [0, o0), which is
K (u;7) < Cws (w; V7) +min (1, 7) |, |,
see [44].
Theorem 5.7. If u € Cg [0, 00), then we obtain
12, ;%) = 1 ()] < 2M {3 (u; V) +min (1, 7) Jullc, |,

where

1
_Cn

T=1T,=
2

with C is same as Theorem 5.6 and M > 0 is a constant which is independent of the function u and t.

Proof. We prove this by using Theorem 5.6. Let v € C2 [0, ). Since
1€ (1;2) —u ()] < 1€ (= v;%) = (= 0) ()] + |£, (07 %) =0 (¥)].

For |2, (u — v;x) — (u — v) (x), we have

1€ (u-v;0) —(w=-0) () < ¢ W=+ |(u-0)x)

< 2u—=1llg, .

Using (61) and write into (60), we get

1
1 (20) ~u ()l < 20 =olle, + 580 2+ G ollczpo.e
1
< 2(Ju=vlle, + 3G @+ G Ipllcgoe |
< 2 inf u—"9c, +7lv
Uecg[o,@{” le, + T llolls}
< 2K(u;71),

where K (1; 6) is Peetre’s K-functional defined by (57). Then we have

12, (1:3) = 1 ()] < 2M {2 (F; V) + min (1,0) [ ., )
O

6. Conclusion

(57)

(58)

(59)

(60)

(61)

A-GHAP were defined in [38] and interesting properties of these polynomials containing special poly-
nomials were obtained. In this paper, we studied 3D-A;-Hermite Appell polynomials. We give some of
their properties such as recurrence relation, determinantal form, shift operators, etc. As special cases, we
introduce 3D- Ay-Hermite A-Charlier polynomials, 3D-Aj,-Hermite degenerate Apostol-Bernoulli polyno-
mials, 3D-A,-Hermite degenerate Apostol-Euler polynomials and 3D-Aj,-Hermite A-Boole polynomials. We
exhibit certain of their properties such as explicit and determinantal forms, recurrence relation, raising and

lowering operators and difference equation.
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It can be noted that the r-variable case can be defined via generating relation

3 ﬁ (1 + hti)% = i Aj (x1, X2, ... Xy) %,
i=1 = !

W <1, (i=01,..7). (62)

Starting from this definition and their properties, it is possible to derive families with r variables. Its
properties such as explicit representation, determinantal form, recurrence relation, summation formulas
and shift operators can be investigated. In addition to these, more r-variable polynomials can be defined
as special cases of A; (x1, x2, - - - x,) which may have some potential applications in number theory, special
function theory and approximation theory.
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