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Abstract. In this paper, it is our aim in this paper to introduce a new iterative algorithm for approximation
of a solution of an equation of Hammerstein-type. The proposed scheme does not involve computation
of inverse of operators under study; it does not involve passing through computation of a certain set that
must contain a solution of the equation of Hammerstein-type before convergence takes place. The proposed
scheme requires only one parameter satisfying verifiable mild conditions. Moreover, the mappings involved
are neither defined on compact subset of the space under study, nor assumed to be angle bounded. Our
theorems complement several results that have been obtained in this direction.

1. Introduction.

Let E be a real linear space, and let F,K : E→ E be two mappings such that the range, R(F), of F equals the
domain, D(K), of K. For u ∈ D(F), an equation of Hammerstein-type is of the form

u + KFu = h⇔ (I + KF)u = h, (1)

where I is identity operator. The Operator I + KF are called Hammerstein operator.

Equation (1) has extensively been studied by many authors (see e.g., [1] - [5], [7] - [9], [11], [19], [24], [32],
[34] - [36], [41], [46], [47]). Perhaps, due to the fact that several physically significant problems such as
problems arising in differential equations (e.g., the problem of forced oscillations of finite amplitude of a
pendulum (see [41, Chapter IV])) can be transformed into an operator equations of the form (1). The study
of equations of Hammerstein type has been of increasing research interest (see e.g., Dolph [33], Hammer-
stein [35], Pascali and Sburban [46]).

If in (1), the operator K is the identity operator, then (1) reduces to an equation of the form

u + Fu = h. (2)
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Existence of solutions of (1) and (2) have been studied by various authors and several existence results
have been generated (see for example, [1] - [5], [7] - [9], [24], [32], [34] - [37], [46] - [48], [52]). On the other
hand, on assumption that solution of (2) exists, several researchers had dwelled on generation of iterative
algorithms for approximation of solutions of the operator equation (2) (see e.g., [5], [12] - [16], [20], [22],
[26] - [30], [38], [39], [48] - [53], [54]). In some cases, iteration process of Mann and Ishikawa types and their
variants were employed (see e.g., [5], [12] - [16], [19], [20], [26] - [30]).

It is worthy to note, however, that only few authors (see e.g., [4, 11, 22, 26, 41]) have endeavored to address
the issue of iterative approximation of solutions of (1) if the solutions are known to exist (or even on as-
sumption that solutions exist). This is, perhaps, because methods of finding solutions of (2) do not easily
carry over to (1). Part of the difficulty remains the fact that the composition of two monotone operators
need not be monotone (see e.g. Chidume [10]).

In the special case where the operators are defined on subsets D of E which are compact or more gener-
ally,angle bounded (see e.g. Brez̀is and Browder [1] or Browder [6] for definition), Brez̀is and Browder [1]
proved strong convergence of a sequence generated by suitably defined Galerkin approximaiton algorithm to
a solution of (1) (see also Brez̀is and Browder [3]).

Galerkin approximaiton method is implicit in nature and too difficult to use in real life applications. For this
reason, many authors have studied explicit iterative methods for approximation of solutions of equations
of Hammerstein type (see for example [17, 18, 23, 31, 42]). In [31], for example, the authors first showed
that their iterative algorithms are bounded; then went further to establish existence of a setΩ such that if a
solution u∗ of equation of Hammerstein-type

u + KFu = 0 (3)

belongs toΩ, then the sequence generated by their scheme converge to u∗. It is worthy to note that the idea
behind this method of proof is not that novel since the assumption that the set Ω contains a solution of (3)
to guarantee the convergence of the sequence generated by the algorithm studied in [31] to u∗ is rather too
strong.

In [43], Ofoedu and Onyi provided an iterative algorithm for aproximation of solution of (3) without con-
struction of a set Ω that must contain its solution(s) before convergence result is achieved. It is worthy to
note, at this juncture, that the scheme introduced in [43] is loaded with iterative parameters to enhance
convergence. Though introduction of parameters to enhance convergence of a scheme is not bad, having
them in excess could be time consuming.

Motivated by the results of the authors mentioned above, it is our aim in this paper to introduce a
new iterative algorithm for approximation of a solution of (3). The iterative algorithm does not involve
K−1, it does not involve passing through computation of a certain set Ω that must contain a solution of (3)
before convergence takes place. The proposed scheme requires only one parameter satisfying verifiable
mild conditions. Moreover, the mappings K and F are neither defined on compact subset of H nor assumed
to be angle bounded on H. Our theorems complement several results in the literature.

2. Preliminaries.

Let H be a real Hilbert space with inner product
〈
., .

〉
H

and induced norm ∥.∥H. An operator A with domain

D(A), and range R(A), in H is called monotone if for all x, y ∈ D(A), we have that
〈
Ax − Ay, x − y

〉
H
≥ 0.

The operator A is called m-strongly monotone if there exists a constant m > 0 such that for all x, y ∈ D(A),〈
Ax − Ay, x − y

〉
H
≥ m∥x − y∥2H, while the mapping A is said to be Lipschitz or Lipschitz continuous if there

exists a constant L ≥ 0 such that for all x, y ∈ D(A), ∥Ax − Ay∥H ≤ L∥x − y∥H.
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The following Lemmas (whose proofs are immediate) shall be needed in the sequel:

Lemma 2.1. Let H be a real Hilbert space. Let F,K : H → H be strongly monotone mappings with monotonicity
constants m1 and m2 respectively and with D(F) = D(K) = H. Let Ã : H × H → H × H be defined by Ã(u, v) =
(Fu − v,u + Kv) for all (u, v) ∈ H ×H, then Ã is min{m1,m2}−strongly monotone.

Lemma 2.2. Let H be a real Hilbert space. Let F,K : H → H be monotone mappings with D(F) = D(K) = H. Let
Ã : H ×H→ H ×H be defined by Ã(u, v) = (Fu − v,u + Kv) for all (u, v) ∈ H ×H, then Ã is monotone.

Lemma 2.3. Let H be a real Hilbert space. Let F,K : H → H be Lipschitz mappings with D(F) = D(K) = H. Let
Ã : H ×H→ H ×H be defined by Ã(u, v) = (Fu − v,u + Kv) for all (u, v) ∈ H ×H, then Ã is Lipschitz.

Lemma 2.4. Let H be a real Hilbert space. Let F,K : H → H be Lipschitz mappings with D(F) = D(K) = H. Let
Ã : H ×H → H ×H be defined by Ã(u, v) = (Fu − v,u + Kv) for all (u, v) ∈ H ×H. A point u∗ ∈ H is a solution of
the equation Hammerstein-type (3) if and only if (u∗,Fu∗) ∈ Z(Ã), and Z(Ã) = {z ∈ H ×H : Ãz = 0}.

Lemma 2.5. Let H be a real Hilbert space and let u, v ∈ H, then

∥2u − v∥2 = 2∥u∥2 − ∥v∥2 + 2∥u − v∥2. (4)

We shall also make use of the following Lemmas:

Lemma 2.6. (Ofoedu et al. [44]) Let {an}n≥1 and {bn}n≥1 be two real sequences such that an , 0, for all n ∈ N, and
lim
n→∞

an = a∗, for some a∗ , 0. Suppose lim
n→∞

anbn = 0, then lim
n→∞

bn = 0.

Lemma 2.7. (Ofoedu et al. [44]) Let {an}
∞

n=0, {bn}
∞

n=0 be sequences of nonnegative terms, let {ηn}
∞

n=1 be a se-

quence in ]0, 1[ and β ∈ ]0, 1[ and let γn =
1
2

(
1− 2ηn + {1+ 4η2

n}
1
2

)
and δn =

1
2

(
− 1+ 2ηn + {1+ 4η2

n}
1
2

)
∀ n ∈N,

then the following are equivalent:

1. an+1 + δnan + bn+1 ≤ γn(an + δnan−1) + βbn.

2. an+1 + bn+1 ≤ (1 − 2ηn)an + ηnan−1 + βbn

Lemma 2.8. (Opial [45]) Let {xn} be a sequence in H such that xn ⇀ x, then for all y , x

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥,

where xn ⇀ x as n→∞ if and only if {xn}n≥1 converges weakly to x.

3. Main Result

For the remaining part of this paper, H is a real Hilbert space. H × H is endowed with the inner product
⟨z1, z2⟩H×H = ⟨u1, v1⟩H + ⟨u2, v2⟩H. Thus for all z1 = (u1, v1), z2 = (u2, v2) ∈ H × H, this inner product clearly
induces a norm on H ×H given by ∥z∥2H×H = ∥u∥

2
H + ∥v∥

2
H for all z = (u, v) ∈ H ×H.
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3.1. Strong convergence theorem for m−strongly monotone mapping

Theorem 3.1. Let H be a real Hilbert space. Let F,K : H → H be Lipschitz strongly monotone mappings with
monotonicity constants m1 and m2 respectively. Let the sequence {(µn, ζn)}n≥0 in H ×H be generated iteratively from
arbitrary µ1, µ0, ζ1, ζ0 ∈ H by

µn+1 = µn − λn(Fxn − yn)
ζn+1 = ζn − λn(Kyn + xn), (5)

where, xn = 2µn −µn−1, yn = 2ζn − ζn−1, {λn}n≥1 is a decreasing sequence in ]a, b[ for some a, b ∈
]
0,min

{
1

4m∗ ,
√

2
4L

}[
,

where m∗ ∈]0,min{m1,m2}] is fixed, L is the Lipschitz constant of the mapping Ã : H × H → H × H given by
Ã(u, v) = (Fu − v,u + Kv). Suppose that the equation of Hammerstein-type (3) has a solution u∗ ∈ H, then {µn}n≥1
converges strongly to u∗.

Proof. Observe that by Lemma 2.1, the mapping Ã : H × H → H × H given by Ã(u, v) = (Fu − v,u + Kv)
for all (u, v) ∈ H ×H is min{m1,m2}−strongly monotone mapping. Observe that if we let ωn := (µn, ζn) and
ψn := (un, vn)∀n ≥ 1, then we obtain that (5) is equivalent to

ωn+1 = ωn − λnÃψn,

ψn+1 = 2ωn+1 − ωn, ∀ n ≥ 0, (6)

Let u∗ be the solution of (3) and let z = (u∗,Fu∗), then by Lemma 2.4, z ∈ Z(Ã); and since Ã is strongly
monotone, Z(Ã) = {z}. So, using (6), we obtain that

∥ωn+1 − z∥2H×H = ∥ωn − λnÃψn − z∥2H×H − ∥ωn − λnÃψn − ωn+1∥
2
H×H

= ∥ωn − z∥2H×H +
〈
ωn − z,−λnÃψn

〉
H×H

−

〈
λnÃψn, ωn − z

〉
H×H
+

〈
λnÃψn, λnÃψn

〉
H×H

−∥ωn − ωn+1∥
2
H×H −

〈
ωn − ωn+1,−λnÃψn

〉
H×H

+
〈
λnÃψn, ωn − ωn+1

〉
H×H
−

〈
λnÃψn, λnÃψn

〉
H×H

= ∥ωn − z∥2H×H − ∥ωn − ωn+1∥
2
H×H

−2λn

〈
Ãψn, ωn − z

〉
H×H
+ 2λn

〈
Ãψn, ωn − ωn+1

〉
H×H

= ∥ωn − z∥2H×H − ∥ωn − ωn+1∥
2
H×H − 2λn

〈
Ãψn, ωn+1 − z

〉
H×H

. (7)

Also by Lemma 2.5, we have that

∥ψn − z∥2H×H = 2∥ωn − z∥2H×H − ∥ωn−1 − z∥2H×H + 2∥ωn − ωn−1∥
2
H×H

≥ 2∥ωn − z∥2H×H − ∥ωn−1 − z∥2H×H.

From this, min m1,m2−strong monotonicity of Ã and the fact that Ãz = 0, we obtain that with m∗ ∈
(0,min{m1,m2}],

2λn

(〈
Ãψn, ψn − z

〉
H×H
−m∗

(
2∥ωn − z∥2H×H − ∥ωn−1 − z∥2H×H

))
≥ 2λn

( 〈
Ãψn, ψn − z

〉
H×H
−min{m1,m2}∥ψn − z∥2H×H

)
≥ 0 (8)
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So, using (8) in (7), we have that

∥ωn+1 − z∥2H×H ≤ ∥ωn − z∥2H×H − ∥ωn+1 − ωn∥
2
H×H

−2λn

〈
Ãψn, ωn+1 − z

〉
H×H
+ 2λn

〈
Ãψn, ψn − z

〉
H×H

−2λnm∗
(
2∥ωn − z∥2H×H − ∥ωn−1 − z∥2H×H

)
= ∥ωn − z∥2H×H − ∥ωn+1 − ωn∥

2
H×H + 2λn

〈
Ãψn, ψn − ωn+1

〉
H×H

−2λnm∗
(
2∥ωn − z∥2H×H − ∥ωn−1 − z∥2H×H

)
= (1 − 4λnm∗)∥ωn − z∥2H×H − ∥ωn+1 − ωn∥

2
H×H

+2λnm∗∥ωn−1 − z∥2H×H + 2λn

〈
Ãψn − Ãψn−1, ψn − ωn+1

〉
H×H

+2λn

〈
Ãψn−1, ψn − ωn+1

〉
H×H

. (9)

Next, observe that〈
ωn − ωn−1 + λn−1Ãψn−1, ωn − ωn+1

〉
H×H
= 0 (10)

and 〈
ωn − ωn−1 + λn−1Ãψn−1, ωn − ωn−1

〉
H×H
= 0. (11)

Adding (10) and (11) gives

〈
ωn − ωn−1 + λn−1Ãψn−1, ψn − ωn+1

〉
H×H
= 0. (12)

It immediately follows from (12) that

2λn−1

〈
Ãψn−1, ψn − ωn+1

〉
H×H

= 2
〈
ωn − ωn−1, ωn+1 − ψn

〉
H×H

= 2
〈
ψn − ωn, ωn+1 − ψn

〉
H×H

= ∥ωn+1 − ωn∥
2
H×H

−∥ωn − ψn∥
2
− ∥ωn+1 − ψn∥

2
H×H. (13)

It is easy to see that

2λn

〈
Ãψn−1, ψn − ωn+1

〉
H×H
=

2λnλn−1

λn−1

〈
Ãψn−1, ψn − ωn+1

〉
H×H

(14)

Thus, we obtain from (13) and inequality (14) that

2λn

〈
Ãψn−1, ψn − ωn+1

〉
H×H

=
λn

λn−1

[
∥ωn+1 − ωn∥

2
H×H

−∥ωn − ψn∥
2
H×H − ∥ωn+1 − ψn∥

2
H×H

]
. (15)
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Furthermore, observe that since A is L-Lipschitz continuous mapping, we have that

2λn

〈
Ãψn − Ãψn−1, ψn − ωn+1

〉
H×H

≤ 2λnL∥ψn − ψn−1∥H×H∥ωn+1 − ψn∥H×H

≤ λnL
(

1
√

2
∥ψn − ψn−1∥

2
H×H +

√

2∥ωn+1 − ψn∥
2
H×H

)
≤ λnL

[ 1
√

2
(∥ψn − ωn∥

2
H×H + 2∥ψn − ωn∥H×H∥ωn − ψn−1∥H×H

+∥ωn − ψn−1∥
2
H×H) +

√

2∥ωn+1 − ψn∥
2
H×H

]
≤ λnL

[ 1
√

2

(
∥ψn − ωn∥

2
H×H + (1 +

√

2)∥ψn − ωn∥
2
H×H

+(
√

2 − 1)∥ωn − ψn−1∥
2
H×H + ∥ωn − ψn−1∥

2
H×H

)
+
√

2∥ωn+1 − ψn∥
2
H×H

]
= λnL(1 +

√

2)∥ψn − ωn∥
2
H×H + λnL∥ωn − ψn−1∥

2
H×H

+
√

2λnL∥ωn+1 − ψn∥
2
H×H (16)

Using (15) and (16), we deduce from (9) that

∥ωn+1 − z∥2H×H ≤ (1 − 4λnm∗)∥ωn − z∥2H×H − ∥ωn+1 − ωn∥
2
H×H

+2λnm∗∥ωn−1 − z∥2H×H + λnL(1 +
√

2)∥ψn − ωn∥
2
H×H

+λnL∥ωn − ψn−1∥
2
H×H +

√

2λnL∥ωn+1 − ψn∥
2
H×H

+
λn

λn−1

[
∥ωn+1 − ωn∥

2
H×H − ∥ωn − ψn∥

2
H×H − ∥ωn+1 − ψn∥

2
H×H

]
.

Thus,

∥ωn+1 − z∥2H×H ≤ (1 − 4λnm∗)∥ωn − z∥2H×H +
(
λn

λn−1
− 1

)
∥ωn+1 − ωn∥

2
H×H

+2λnm∗∥ωn−1 − z∥2H×H +
(
λnL(1 +

√

2) −
λn

λn−1

)
∥ψn − ωn∥

2
H×H

+
(√

2λnL −
λn

λn−1

)
∥ωn+1 − ψn∥

2
H×H + λnL∥ωn − ψn−1∥

2
H×H

≤ (1 − 4λnm∗)∥ωn − z∥2H×H + 2λnm∗∥ωn−1 − z∥2H×H

+
(
λnL(1 +

√

2) −
λn

λn−1

)
∥ψn − ωn∥

2
H×H

+
(√

2λnL −
λn

λn−1

)
∥ωn+1 − ψn∥

2
H×H + λnL∥ωn − ψn−1∥

2
H×H.

But λnL(1 +
√

2) − λn
λn−1
≤ 0. Therefore,

∥ωn+1 − z∥2H×H +

(
λn −

√
2λnλn−1L
λn−1

)
∥ωn+1 − ψn∥

2
H×H

≤ (1 − 4λnm∗)∥ωn − z∥2H×H + 2λnm∗∥ωn−1 − z∥2H×H + λnL∥ωn − ψn−1∥
2
H×H

= (1 − 4λnm∗)∥ωn − z∥2H×H + 2λnm∗∥ωn−1 − z∥2H×H + λnL∥ωn − ψn−1∥
2
H×H
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≤ (1 − 4λnm∗)∥ωn − z∥2H×H + 2λnm∗∥ωn−1 − z∥2H×H + λn−1L∥ωn − ψn−1∥
2
H×H

≤ (1 − 4λnm∗)∥ωn − z∥2H×H + 2λnm∗∥ωn−1 − z∥2H×H

+max
{

λn−1λn−2L

λn−1 −
√

2λn−1λn−2L
,

1
2

}
×

(
λn−1 −

√
2λn−1λn−2L
λn−2

)
∥ωn − ψn−1∥

2
H×H (17)

Since λn <
√

2
4L , it follows from (17) that

∥ωn+1 − z∥2H×H +

(
λn −

√
2λnλn−1L
λn−1

)
∥ωn+1 − ψn∥

2
H×H

≤ (1 − 4λnm∗)∥ωn − z∥2H×H + 2λnm∗∥ωn−1 − z∥2H×H

+

√
2

2

(
λn−1 −

√
2λn−1λn−2L
λn−2

)
∥ωn − ψn−1∥

2
H×H (18)

Now, set

an = ∥ωn − z∥2H×H, β =

√
2

2
, ηn = 2λnm1, and

bn =

(
λn−1 −

√
2λn−1λn−2L
λn−2

)
∥ωn − ψn−1∥

2
H×H,

then (18) becomes

an+1 + bn+1 ≤ (1 − 2ηn)an + ηnan−1 + βbn, ∀n ∈N. (19)

Thus, if we set

γn =
1 − 4λnm∗ +

√
1 + 16λ2

nm∗2

2
=

1 − 2ηn +
√

1 + 4η2
n

2
.

and

δn =
−1 + 4λnm∗ +

√
1 + 16λ2

nm∗2

2
=
−1 + 2ηn +

√
1 + 4η2

n

2
,

then by Lemma 2.7, (19) is equivalent to

an+1 + δnan + bn+1 ≤ γn(an + δnan−1) + βbn. (20)

Moreover, observe that λn ∈

]
0,min

{
1

4m∗ ,
√

2
4L ,

}[
implies that

λn <
1

4m1
⇐⇒

√
2

2
<

1 − 4λnm∗ +
√

1 + 16λ2
nm∗2

2
,

that is, γn > β, so that (20) gives

an+1 + δnan + bn+1 ≤ γn(an + δnan−1 + bn)
= γn(an + δn−1an−1 + bn) + γn(δn − δn−1)an−1. (21)
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Since {λn} is decreasing, we have thatγn(δn−δn−1)an−1 ≤ 0, and since the function f given by f (x) = 1−2x+
√

1+4x2

2
is strictly decreasing on [0, 1] with f (0) = 1, we obtain that since 0 < 2am1 < 2λnm1 < 1,

γn <
1 − 4am∗ +

√

1 + 16a2m∗2

2
:= κ0 < 1.

So we obtain from (21) that

an+1 + δnan + bn+1 ≤ γn(an + δn−1an−1 + bn)
≤ κ0(an + δn−1an−1 + bn)
...

≤ κn
0(a1 + δ0a0 + b1).

This implies that an+1 ≤ κn
0M, where M = a1 + δ0a0 + b1 > 0. Hence, {ωn}

∞

n=1 converges strongly to z. But
ωn = (µn, ζn)∀n ∈N and z = (u∗,Fu∗). Hence, µn → u∗ and ζn → Fu∗ as n→∞. This completes the proof.

Remark 3.2. We note that Theorem 3.1 (which gives a strong convergence result) holds for the class of min{m1,m2}-
strongly monotone mappings which is a proper subclass of class of monotone mappings.

Question: Does Theorem 3.1 hold for larger class of monotone mappings?

Answer: For larger class of monotone mappings, weak convergence result suffices. The next theorem affirms this
position.

Theorem 3.3. Let H be a real Hilbert space, H. Let F,K : H→ H be Lipschitz monotone mappings. Let the sequence
{(µn, ζn)}n≥1 in H × H be generated iteratively from arbitrary µ1, µ0, ζ1, ζ0 ∈ H by (5) but with {λn}

∞

n=1 being a

monotone decreasing sequence in [a, b], for some a, b ∈
]
0,
√

2−1
L

[
, where L is the Lipschitz constant of the mapping

Ã : H × H → H × H given by Ã(u, v) = (Fu − v,u + Kv). Suppose the solution set, S, of (3) is nonempty, then
{µn}n≥1 converges weakly to some u∗ ∈ S.

Proof. By Lemma 2.2 the mapping Ã : H×H→ H×H given by Ã(u, v) = (Fu−v,u+Kv) for all (u, v) ∈ H×H
is monotone mapping and by Lemma 2.4, u∗ ∈ S if and only if (u∗,Fu∗) ∈ Z(Ã). We note immediately that in
the case at hand, S is not necessarily a singleton. Thus, Z(Ã) may contain more than one point.

Fix u∗ ∈ S, then with z = (u∗,Fu∗) ∈ Z(Ã) and using the same transformation as in the proof of Theorem 3.1,
we obtain from (7) that

∥ωn+1 − z∥2H×H ≤ ∥ωn − z∥2H×H − ∥ωn − ωn+1∥
2
H×H

−2λn

〈
Ãψn, ωn+1 − z

〉
H×H

. (22)

Since Ã is monotone, we have that 2λn

〈
Ãψn, ψn − z

〉
≥ 0. Thus, adding

2λn

〈
Ãψn, ψn − z

〉
to the right hand side of (22) yields

∥ωn+1 − z∥2H×H ≤ ∥ωn − z∥2H×H − ∥ωn − ωn+1∥
2
H×H

+2λn

〈
Ãψn, ψn − z

〉
H×H
− 2λn

〈
Ãψn, ωn+1 − z

〉
H×H

= ∥ωn − z∥2H×H − ∥ωn − ωn+1∥
2
H×H

+2λn

〈
Ãψn, ψn − ωn+1

〉
H×H

= ∥ωn − z∥2H×H − ∥ωn − ωn+1∥
2
H×H

+2λn

〈
Ãψn − Ãψn−1, ψn − ωn+1

〉
H×H

+2λn

〈
Ãψn−1, ψn − ωn+1

〉
H×H

. (23)
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Using (15) and (16) in (23), we obtain that

∥ωn+1 − z∥2H×H ≤ ∥ωn − z∥2H×H − ∥ωn+1 − ωn∥
2
H×H

+λnL(1 +
√

2)∥ψn − ωn∥
2
H×H + λnL∥ωn − ψn−1∥

2
H×H

+
√

2λnL∥ωn+1 − ψn∥
2
H×H +

λn

λn−1
∥ωn+1 − ωn∥

2
H×H

−
λn

λn−1
∥ωn − ψn∥

2
H×H −

λn

λn−1
∥ωn+1 − ψn∥

2
H×H

≤ ∥ωn − z∥2H×H −

(
λn

λn−1
− λnL(1 +

√

2)
)
∥ωn − ψn∥

2
H×H

+λnL∥ωn − ψn−1∥
2
H×H −

(
λn

λn−1
−

√

2λnL
)
∥ωn+1 − ψn∥

2
H×H. (24)

It is easy to see from (24) that

∥ωn+1 − z∥2H×H + λnL∥ωn+1 − ψn∥
2
H×H

≤ ∥ωn − z∥2H×H −

(
λn

λn−1
− λnL(1 +

√

2)
)
∥ωn − ψn∥

2
H×H

+λnL∥ωn − ψn−1∥
2
H×H −

(
λn

λn−1
−

√

2λnL
)
∥ωn+1 − ψn∥

2
H×H

+λnL∥ωn+1 − ωn∥
2
H×H

= ∥xn − z∥2H×H −

(
λn

λn−1
− λnL(1 +

√

2)
)
∥ωn − ψn∥

2
H×H

+λnL∥ωn − ψn−1∥
2
H×H −

(
λn

λn−1
− λnL(1 +

√

2)
)
∥ωn+1 − ψn∥

2
H×H

≤ ∥ωn − z∥2H×H + λnL∥ωn − ψn−1∥
2
H×H

−

(
λn

λn−1
− λnL(1 +

√

2)
) (
∥ωn − ψn∥

2
H×H + ∥ωn+1 − ψn∥

2
H×H

)
. (25)

Now, using the fact that ∥ωn − ψn∥H×H = ∥ωn − ωn−1∥H×H, we obtain from (25) that

∥ωn − ωn−1∥
2
H×H + ∥ωn+1 − ψn∥

2
H×H(

λn
λn−1
− λnL(1 +

√
2)

)−1 ≤ ∥xn − z∥2H×H + λnL∥ωn − ψn−1∥
2
H×H

−

(
∥ωn+1 − z∥2H×H + λnL∥ωn+1 − ψn∥

2
H×H

)
.

So that

∥ωn − ωn−1∥
2
H×H + ∥ωn+1 − ψn∥

2
H×H(

λn
λn−1
− λnL(1 +

√
2)

)−1 ≤ ∥ωn − z∥2H×H + λnL∥ωn − ψn−1∥
2
H×H

−∥ωn+1 − z∥2H×H − λn+1L∥ωn+1 − ψn∥
2
H×H

+∥ωn+1 − z∥2H×H + λn+1L∥ωn+1 − ψn∥
2
H×H

−∥ωn+1 − z∥2H×H − λnL∥ωn+1 − ψn∥
2
H×H.

Since {λn}n≥1 is monotone decreasing, we have that

∥ωn − ωn−1∥
2
H×H + ∥ωn+1 − ψn∥

2
H×H(

λn
λn−1
− λnL(1 +

√
2)

)−1 ≤ ∥ωn − z∥2H×H + λnL∥ωn − ψn−1∥
2
H×H

−∥ωn+1 − z∥2 − λn+1L∥ωn+1 − ψn∥
2. (26)
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It therefore follows from (26) that for any p ∈N,

p∑
n=1

∥ωn − ωn−1∥
2
H×H + ∥ωn+1 − ψn∥

2
H×H(

λn
λn−1
− λnL(1 +

√
2)

)−1

 ≤ ∥ω1 − z∥2H×H + λ1L∥ω1 − ψ0∥
2
H×H

so that as p→∞, we have that

∞∑
n=1

∥ωn − ωn−1∥
2
H×H + ∥ωn+1 − ψn∥

2
H×H(

λn
λn−1
− λnL(1 +

√
2)

)−1

 < +∞.
This implies that

(
∥ωn − ωn−1∥

2
H×H + ∥ωn+1 − ψn∥

2
H×H

) (
λn
λn−1
− λnL(1 +

√
2)

)
→ 0 as n→∞. But

lim
n→∞

(
λn

λn−1
− λnL(1 +

√

2)
)

exists and it is not equal to zero. Thus, by Lemma 2.6, we have that

lim
n→∞

(∥ωn−ωn−1∥
2+∥ωn+1−ψn∥

2
H×H) = 0. This implies that lim

n→∞
∥ωn−ωn−1∥H×H = 0⇐⇒ lim

n→∞
∥ωn+1−ωn∥H×H = 0

and lim
n→∞
∥ωn+1 − ψn∥H×H = 0.

We note here that the sequence {ωn}n≥1 is bounded. This follows from inequality (26) which gives

bn+1 := ∥ωn+1 − z∥2H×H + λn+1L∥ωn+1 − ψn∥
2

≤ ∥ωn − z∥2H×H + λnL∥ωn − ψn−1∥
2
H×H =: bn ∀ n ∈N. (27)

Thus, the sequence {bn}n≥1 is monotone decreasing sequence of non-negative real numbers which is bounded
above by b1. It is easy to see that

∥ωn − z∥2H×H ≤ bn ≤ b1 ∀ n ∈N. (28)

Hence, the sequence {∥ωn − z∥H×H}n≥1 is bounded. Boundednes of {ωn}n≥1 thus follows.

Since {ωn} is bounded, there exists a subsequence {ωni }
∞

i=1 of {ωn}which converges weakly to some z∗ ∈ H×H.
Since lim

n→∞
∥ωn+1 − ψn∥H×H = 0, it is easy to see that {ψni }

∞

i=1 also converges weakly to z∗.

We show that z∗ ∈ Z(Ã). Observe that for any ψ ∈ H ×H,〈
ωn+1 − ωn + λnÃψn, ψ − ωn+1

〉
H×H
= 0. (29)

So, using the fact that Ã is monotone, we obtain that for all ψ ∈ H ×H,

0 =
〈
ωn+1 − ωn, ψ − ωn+1

〉
H×H + λn

〈
Ãψn, ψ − ψn

〉
H×H

+λn

〈
Ãψn, ψn − ωn+1

〉
H×H

≤
〈
ωn+1 − ωn, ψ − ωn+1

〉
H×H + λn

〈
Ãψ,ψ − ψn

〉
H×H

+λn

〈
Ãψn, ψn − ωn+1

〉
H×H

≤ ∥ωn+1 − ωn∥H×H(∥ψ∥H×H +M) + λn

〈
Ãψ,ψ − ψn

〉
H×H

+M∥ψn − ωn+1∥H×H

= ∥ωn+1 − ωn∥H×H(∥ψ∥H×H +M) + λn

〈
Ãψ,ψ − z∗

〉
H×H

+λn

〈
Ãψ, z∗ − ψn

〉
H×H
+M∥ψn − ωn+1∥H×H, (30)

for some M > 0. Taking limit as i → ∞ in (30) and using the fact that lim
n→∞
∥ωn+1 − ωn∥H×H = lim

n→∞
∥ψn+1 −

ψn∥H×H = 0, lim
n→∞

λn > 0 and {ψn}
∞

i=1 converges weakly to z∗ we obtain from (30) that for any ψ ∈ H ×H,

0 ≤
〈
Ãψ,ψ − z∗

〉
H×H

. (31)
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Now, let ε ∈ (0, 1) be given, then we obtain from (31) that for any ψ ∈ H ×H,

0 ≤

〈
Ã
(
z∗ + ε(ψ − z∗)

)
, ε(ψ − z∗)

〉
H×H

=
〈
Ã
(
z∗ + ε(ψ − z∗)

)
− Ãz∗, ε(ψ − z∗)

〉
H×H

+
〈
Ãz∗, ε(ψ − z∗)

〉
H×H

. (32)

So, we obtain using (32) that

0 ≤

〈
Ã
(
z∗ + ε(ψ − z∗)

)
− Ãz∗, ψ − z∗

〉
H×H

+
〈
Ãz∗, ψ − z∗

〉
H×H

. (33)

Inequality (33) implies that

0 ≤ ∥Ã
(
z∗ + ε(ψ − z∗)

)
− Ãz∗∥H×H∥ψ − z∗∥H×H

+
〈
Ãz∗, ψ − z∗

〉
H×H

. (34)

So, using (34) and the fact that Ã is continuous, we obtain for all ψ ∈ H ×H that as ε→ 0,

0 ≤

〈
Ãz∗, ψ − z∗

〉
H×H

. (35)

In particular, for ψ = −Ãz∗ + z∗ ∈ H ×H, we obtain from (35) that

0 ≤ −∥Ãz∗∥H×H.
2.

This implies that Ãz∗ = 0. Thus, z∗ ∈ Z(Ã).

Next, observe that since the sequence{
∥ωn − z∥2H×H + λnL∥ωn − ψn−1∥

2
H×H

}
n≥1

is monotone nonincreasing (see (27))and bounded below by 0, then it converges. But

lim
n→∞
∥ωn − ψn−1∥

2
H×H = 0,

Thus,

lim
n→∞
∥ωn − z∥2H×H exists ∀ z ∈ Z(Ã). (36)

We now show that {ωn} converges weakly to z∗. Suppose for contradiction that {ωn} does not converge
weakly to z∗. Let x̄∗ ∈ H × H be a weak cluster point of {ωn}n≥1 such that x̄∗ , z∗, then the same line
of argument which led to obtaining that z∗ ∈ Z(Ã) gives that x∗ ∈ Z(Ã). Thus, we obtain from (36) that
lim
n→∞
∥ωn−z∗∥2H×H and lim

n→∞
∥ωn−x∗∥2H×H both exist. Let {ωnk }k≥1 be a subsequence of {ωn}n≥1 such thatωnk ⇀ x̄∗

as k→∞. Then by Lemma 2.8 we have that

lim
n→∞
∥ωn − x̄∗∥2H×H = lim

k→∞
(∥ωnk − x̄∗∥2H×H = lim inf

k→∞
∥ωnk − x̄∗∥2H×H

< lim inf
k→∞

∥ωnk − z∗∥2H×H = lim
k→∞

(∥ωnk − z∗∥2H×H

= lim
n→∞
∥ωn − z∗∥2H×H.
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Similarly, we can deduce that

lim
n→∞
∥ωn − z∗∥2H×H < lim

n→∞
∥ωn − x̄∗∥2H×H,

a contradiction. Hence, {ωn}
∞

n=1 converges weakly to z∗, where z∗ = (u∗, v∗) ∈ Z(Ã) for some u∗ ∈ S with
v∗ = Fu∗. This completes the proof. □

Remark 3.4. It is well known that in finite dimensional space, weak and strong convergences coincides. Immediate
consequence of this is the following theorem:

Theorem 3.5. Let F,K : RN
→ RN be Lipschitz monotone mappings. Let the sequence {(µn, ζn)}n≥1 in RN

×RN be
generated iteratively from arbitrary µ1, µ0, ζ1, ζ0 ∈ RN by (5) but with {λn}

∞

n=1 as a monotone decreasing sequence

in [a, b], for some a, b ∈
]
0,
√

2−1
L

[
, where L is the Lipschitz constant of the mapping Ã : H × H → H × H given by

Ã(u, v) = (Fu − v,u + Kv). Suppose the solution set, S, of (3) is nonempty, then {µn}n≥1 converges weakly to some
u∗ ∈ S.

4. Numerical Example

Example 4.1. Let F,K : R→ R be defined by Fu = 2u+ 1,u ∈ R and Kv = 2v, v ∈ R, then F and K are clearly both
strongly monotone mappings. Let A : R2

→ R2 be defined for (u, v) ∈ R2 by

A(u, v) = (Fu − v,u + Kv).

It could be easily shown that he mapping A is Lipschtz and strongly monotone. To see this, let x = (x1, x2),
y = (y1, y2) ∈ R2, then

∥Ax − Ay∥2 = [2(x1 − y1) − (x2 − y2)]2

+ [(x1 − y1) − 2(x2 − y2)]2

= 5[(x1 − y1)2 + (x2 − y2)2]

∥Ax − Ay∥ =
√

5∥x − y∥,

showing that A is Lipschitz. Moreover,〈
x − y,Ax − Ay

〉
=

〈
(x1 − y1, x2 − y2), (2(x1 − y1) − (x2 − y2), (x1 − y1) + 2(x2 − y2))

〉
= 2[(x1 − y1)2 + (x2 − y2)2]
= 2∥x − y∥2,

showing that A is m−strongly monotone with m = 2. Observe that (−0.4, 0.2) is a zero of the operator A. Now, fix

m1 = 1 ∈]0,m[ and let λn =
1

2n +
1

4
√

10
. Observe that {λn}n≥1 is a decreasing sequence 0 < a < λn < min

{
1

4m1
,
√

2
4L

}
=

min
{

1
4 ,

1
2
√

10

}
= 1

2
√

10
for all n ≥ 7, where a = 1

4
√

10
.

From ω0 = (1, 2) and ψ0 = (−1, 3) ∈ R2, let {ωn}n≥0 be iteratively generated by

ωn+1 = xn − λnAψn, ψn+1 = 2ωn+1 − ωn, (37)

then with x∗ = (−0.4, 0.2) ∈ A−1(0), the following graph shows the behaviour of ∥ωn − x∗∥ and ∥ψn − x∗∥ :
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Remark 4.2. The above figure is drawn with the aid of MATLAB R2008b. Values of n ∈ N are plotted on the
horizontal axis, while the values of ∥ωn − x∗∥ and ∥ψn − x∗∥ are plotted on the vertical axis. The blue curve represents
the graph of ∥ωn − x∗∥ while the green curve denotes the graph of ∥ψn − x∗∥.
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