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Blow up and growth of solutions to a viscoelastic parabolic type
Kirchhoff equation

Erhan Piskin?, Fatma Ekinci®

“Dicle University, Department of Mathematics, Diyarbakir, Turkey

Abstract. In this article, we study a system of viscoelastic parabolic type Kirchhoff equation with multiple

nonlinearities. We obtain a finite time blow up of solutions and exponential growth of solution with
negative initial energy.

1. Introduction

This article deals with the following initial value problem

us — M(IIVul*)Au + fot w1 (t = s)Au(s)ds + [ul"™ u; = fi(u,v), x€Q, t >0,

vy — M(|[Vo|P)Av + f(f wy(t = s)Av(s)ds + [0 vy = fo(u,v), x€Q, t>0, ()
u(x,t)=v(xt) =0, x€edQ, t>0,
u(x,0) =up(x), v(x0) =0 (x), x€Q,

where g > 2 is a real number and Q is a bounded domain in R" (n > 1) with smooth boundary JQ. For the
relaxation functions w; and w,, we suppose that w; : R* — R* (i = 1,2) are of C'(R*), and represent the
kernel of memory term. fi(u,v) (i = 1,2) will be given later. M(s) is a nonnegative C! function for s > 0
satisfying

M(s)=1+s", y>0.

To motivate our problem (1) can trace back to the initial boundary value problem for the single parabolic
equation

t
U — Au+ f w(t = s)Au(s)ds + |ul"2 u; = f(u). 2)
0

This type problem appears a variety of mathematical models in applied science. For instance heat transfer,
population dynamics, chemical reactions and so on (see [1, 7] and references therein).

We now state some existing results in the literature: Firstly, we mention the pioneer work of Hu et al. [1]
where the authors proved a blow up result of solution with vanishing initial energy for problem (2). Truong
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and Van Y [2] showed the local and global existence of solutions by using the Faedo-Galerkin method
for problem (2). In addition, they proved the finite time blow-up and the decay of the weak solutions.
Later, Truong and Van Y [3] investigated the result of exponentional growth of the weak solutions under
the sufficient conditions for problem (2). Dang et al. [4] also studied problem (2) and they showed the
exponential growth of solution.

Piskin and Ekinci [5] investigated the following problem

t
u = M ([IVul) Au + f w(t = s)Au(s)ds + |u"% uy = [ul 2 u.
0

The authors studied the local and global existence of weak solutions by using the Faedo Galerkin method.
Also they discussed the finite time blow up of the weak solution with positive initial energy and the general
decay of the solution. Finally, they showed the exponential growth of the solution with sufficient conditions.
Also, in [6], the authors considered

ur— Auy — M (lqullz) A+ [T uy = uf 2 u.

They gave appropriate conditions in order to have nonexistence of global solutions or exponential growth
incase of global existence.
In the absence of the diffusion term |u|"? ;, equation (2) reduced to following equation

¢
uy — Au + j(; w(t —s)Au(s)ds = f(u). (3)

Problem (3) has been studied by various authors and several results concerning blow-up of solutions, both
the lower and the upper bounds for blow-up time when the blow-up occurs, see [7-9].

When we examine system problems in the literature, we mention work of Piskin and Ekinci [10] as
follows

4)

i — dio(VulP > Vi) + ulf > u; = fi(u,0),

o — dio(|Vol 2 Vo) + o' 2 0, = fo(u,0),

where p, g > 2. They considered nonexistence of solutions and exponential growth of solution with negative

initial energy. Also, Pang and Qiao [11] studied the blow up properties of the problem (4) with negative and

positive initial energy for p = 2. Furthermore, in [12], the authors investigated the blow up and exponential
growth of solution with negative initial energy for the single equation of problem (4) with Au; term.

Another system problem is Braik et al.’s work [13] and they proved a finite-time blow-up result for a

large class of solutions of the problem (1) with positive initial energy for the case M = 1 and without the

multiple nonlinearities terms (lulq’2 up and [o]72 vt) .

In the absence of the multiple nonlinearities terms (Iulq_2 uy and o172 vt) ,and p = 2, system (4) becomes

u—Au= fi(u,v),
{ vi - Av = f;(u, ). ()

Systems like form (5) naturally appears in studying non-linear phenomena in biology, chemistry, medicine
and physics and so on (see [14-25]). In [26], the authors obtained the global existence solutions, blow-up of
solutions in a finite time and asymptotic behavior of solutions in subcritical energy level and critical energy
level, which are divided from potential well theory, respectively. Furthermore, they showed the sufficient
conditions of global well posedness with supercritical energy level by combining with comparison principle
and semigroup theory for (5).

Recently, in [27] the author also investigated the problem (5). He studied the global existence of
solutions by combining the energy method with the Faedo-Galerkin’s procedure. Moreover, he discussed
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the asymptotic stability by using Nakao’s technique. Finally, he got blow up of solution when initial energy
is negative.

We extent the prior works to coupled system where we associate the viscoelastic parabolic Kirchhoff-type
equations with memory term to merged a more applications area.

This paper is organized as follows: In Section 2, we establish some notations and stament of assumptions.
In Section 3-4, we discuss the blow up and the growth of solutions, respectively.

2. Preliminaries

In the present section, we shall give some assumptions for the proof of our results. Let [|.||, ||Il, and

(u,v) = fQ u(x)v(x)dx denote the usual L2 (QQ) norm, L7 (Q2) norm and inner product of L*(Q), respectively.
Throughout this paper, we accept that C is a general positive constant.

To state and prove our results, we need some assumptions:

For the numbers m and g, we suppose that

{2<q<m$2(”—_21) ifn>2,

n—

2<g<m<+o0 ifn=1,2.
Regarding the functions fi(u,v), f2(u,v) € C! such that

Fi(u,0) = 81—"((;;, ?J), i, 0) = &Fg;, v)

and

{ lo(jul™ + 0I") < F(u,v) < Li(jul™ + [o]™), %
ufi(u,v) +vfa(u,v) = (m+ 1)F(u, v)

where [y, [; are positive constants.
The relaxation functions w; (i = 1,2) are C' nonnegative functions such that

a)i(O) >0, 1- f wi(s)ds =1 > 0, (8)
0
There exist two positive differentiable functions &; and &, such that
wi(t) > 0, wi(t) <0, wi(t) < =&i(t)wi(t), f Eitydt =0, (i=1,2), fort=0.
0

Also, we introduce following notation:

t
(w; o Vw)(t) = f wi(t = ) IVaw(t) = V()| ds.
0

Combining arguments of [1, 7, 24], (u(x, ), v(x, t)) is called a solution of problem (1) on Q X [0, T) if
20+1) 1 .72
u,v€C0O,T; W, (Q)) NCH 0, T; L~(€Q)), )
|l uy, [0l v, € LAQ % [0, T))

satisfying the initial condition u(x, 0) = uy(x), v(x, 0) = vo(x) and

(uy, w) + ((1 + (L |Vul? dx)y) Vu, Vw) - (fot w1(t —s)Vu (s)ds, Vw) + (lul"’2 ut,w)
y ¢
(v, @) + ((1 + (f Vo) dx) )Vv, V(p) - (f wy(t — s)Vo (s)ds, V(p) + (Ivlq_2 7y (p)
Q 0

(f1(u, v), w) (10)

(fa(u, 0), ) (11)
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for all w, ¢ € (0, T; W20 D).
The energy functional associated with problem (1) is

t t
E (b :%P—fm@m%mW+%Pifm@$hww

0 0

_ 1 wupo 4 1 2(y+1)
+2(y 1) IVl + 20+ 1) Vol
+1leoVuMD+%wzonMﬂ]—”fPWLvML (12)
2 0
where u, v € W(l)'z(erl)(Q).

Multiplying the first equation in (1) by u; and second by v;, integrating over €, since w/(s) < 0, we have

2 2 -2 2 -2 .2
ﬁMHﬂMHiqumM—IWWWW
Q Q

+% (a)’1 o Vu) t) + % (cu’z ° VU) )

E'(t)

1 1
—;m@ﬂWWF—;mGHWﬁZ
0. (13)

IA

3. Blow up of solutions

In this section, we deal with the blow up results of the solution for the system (1).

Theorem 3.1. Suppose that (6) and (8) hold, ug, vy € WS’Z(VH)(Q) and (u,v) is a local solution of the system (1).
Assume further that

E(0) <0

and

t Y
j;a)i(s)dszy+l/4.

Then, the solution of the system (1) blows up in finite time.

Proof. We set

H(t) = —E(b). (14)
From (14) and (13)
H'(t) = -E'(t) > 0. (15)

Since E(0) < 0, we get
H(0) = —-E(0) > 0. (16)
By integrating (15), we obtain

0 < H(0) < H(p). (17)
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By using (14) and (12)

t t
H(t) - f F(u, v)dx —%[1— f @ (s)ds]lqullz—%[l— f @y (s)ds]uwu2
Q
0

0

(192l PO*D + 7o) 20+1)

B 1
2(y+1)
_% [(w1 © Vi) () + (wp 0 Vo) ()]
< 0. 19

Then, by using (7), we have

0 <H(0) < H(f) < LF(MIU)dx < b (fully, + 1oll5) - (19)
Then, we define

W () = H0) + 5l + 3 ol (20)

where ¢ > 0 small to be chosen later and 0 < 0 < (m —2)/m since 2 < m. By differentiating (20) and by using
(1) and (7), we get

W () = (1-o0)H (H)H (t)+ ef uudx + efvvtdx
Q

Q
= (1-o)H O (OH'(t) — e IVulP0*D) — ¢Vl 201

t t
(1 _ 2 [+ B 2
e(l j(;wl(t s)ds)IIVuII 5(1 foa)z(t s)ds)IIVUII
t
—engu (t)‘fo w1 (t=8) (Vu (t) — Vu (s)) dsdx

¢
—& f Vo (t) f ws (t —s) (Vo (t) — Vo (s)) dsdx
o) 0
+e(m+1) | Fu,o)dx—e | |[ul"?uldx —e | [ol" voldx
o) Q Q
(1= 0)H " (OH' () = & [IVulPO*) + Vol PO+

¢ t
—e(l—j(; w1 (t—s)ds)lqullz—s(l—j(; a)z(t—s)als)llell2

—& f: w1 (t—s)LVu &) (Vu (1) = Vu (t)) dxds

\%

t
—ej[; Wy (t—s)fQVv(t) (Vo (1) — Vo (b)) dxds
+e(m + 1) (Jull™ + lo|") — & fQ |ul7? uutdx — e fQ 0|72 vv?dx (21)

In order to estimate the last terms in (21), we use the following Young’s inequality

ab < 6~ 'a* + ob?,
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. 92 92
for 6 > 0, witha = |u| 7 u; and b = |u| = u, we have

_ 92 92
f|u|q 2umdx < fIMI T uyu|'T udx
Q Q
< &1 f "2 1u2dx + 6 f lul’ dx.
Q Q

92 92
In the same way fora = |[v| Z vy and b = [v] Z v, we get

f [o]" " vordx < 67 f [0 v2dx + 6f [o]? dx.
Q Q Q

524

The Cauchy-Schwarz and Young’s inequalities allows us to estimate the sixth and seventh term in the

right-hand side of (21) as follows

A

t t
f or (E—3) f Vit () (Vit (2) = Vi (0) dds < f w1 (¢ = ) V1 (Ol V2t (2) = Vit (O e
0 Q 0

IN

t
(w1 o V) (8) + 411 ( f 1 (s) ds) IVal?.
0
Similarly
t t
I) wy (t=5s) fQ Vo (t) (Vo (1) = Vo (1)) dxds < (w, o Vo) () + le (](; ws () ds) IVoll?.

So, (21) becomes

W (#)

\%

(1-0)H °(HH'(t) — & [IIVu||2(7’+1) + ||Vv||2(7+1)]

[1-3 [enofwat-cfo-F [Lncoaior
e w1 (8)ds|||Vul|” —e|1- = wy () ds|||Vo||
4 Jo 4 Jo

—¢ [(w1 © Vi) (t) + (w2 0 Vo) ()] + &(m + 1) (llully, + lloll;)

—ed (Jlull} + lloll]) — 57" f ™ uldx — e57! f [ol"? v2dx
Q Q

(1= H(OH'(t) - e [IVulP01) + Vo) 204D

_E[l _ %fotan (S)dS]m Valf - 5[1 — %fota)z (s)ds

; ; 12 [IVol?
~ [ @1 (s)ds — [; w2 (s)ds ] ’
—e[(w1 0 Vu) (t) + (w2 0 Vo) ()] + e(m + 1) ([ully, + ll0ll;)

—ed (Jlull] + lloll}) — 57! f "2 12dx — 57" f o772 v2dx.
Q Q

\%

1-3 [ wi(s)ds
1—]; wi(s)ds !

We denote k; i=1,2.

W (#)

\%

(1= )H (OH'(t) — & [IIVulP0*D) + Vol 20+
—ekmy IVl - ekonpz (Vo]
=& [(w1 o Vu) () + (w2 0 Vo) ()] + e(m + 1) (|[ully, + [[0Il;,)

e (|lull] + llolf]) — &6~ fluqu uldx — 57! f|v|q2

(22)
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\%

(L= )H OH' () = ¢ [IVulP0*) + Vol 0]
—emin (k) (i IVl + 12 [VoI)

=& [(w1 0 Vi) (t) + (w2 0 Vo) ()] + e(m + 1) ([fully, + lloll)

—ed (Jlull} + lloll]) — 57" f |l ujdx — 57! f 0" v} dx
Q

Q
Then, from the definition H(t), we have

W) 2 (1= H O O = e [IVuP0T Vel )

—&min {k;} [ —2H(t) —

1
vulR0+) - 2 yplr0+)
in| IVl GV

1
(r+1)
— (w1 0 Vu) (t) = (wy o Vo) (t) + 2f F(u, v)dx]

=& [(w1 0 Vi) (t) + (w2 0 Vo) (O] + e(m + 1) ([fully, + llolly)

—ed (Jlull} + lloll]) — &5~ f|u|‘72 uldx — 57 f|v|q2

> (1-0)H(H)H () + 2¢ min {k;}H(¢)
i=1,2
) ; _ 2(y+1) 2(y+1)
+e [mgll/{zkz} Y 1] (192 P0+Y) + v P0+)
+e (min {ki} — 1) [(wq o Vu) () + (w; o Vo) (1)]
i=1,2
+e (m +1-2minf{k )(llullm +lollm)
i=1, 2
—&d (||u||g + ||v||g) —e57! f |ul172 uPdx — e67! f 0|72 v?dx (23)
Q Q

As the embedding L™ (QQ) < L7(Q) — L?(Q), (since m > g > 2), we have

{ ] < C < CAlull), o
my L
lloll] < Cllolly, < Clolly) =
Since 0 < % < 1, now applying the following inequality
X <(x+l)<(1+1)(x+z) (25)

which holds forall x > 0,0 <1 <1,z > 0, especially, taking x = |[ull};, ] = 1, z = H(0), we get

Clllully)* < (1 + % ) (llully, + H(0)),

similarly

ClIM™ < (1+ ——=) (Il + H(0)).

H(O)
Then, from (19) and (24), we get
all? +loll] < C(1hull], + Ifell,)

< Ci(llully + 1oll)- (26)
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Insert (26) into (23), it follows that

() = (1-0)H (HH'(t) + 2emin {k;}H(t) + ec” (|[ully, + 1oll5)
i=12
—ed7! f "2 uPdx — e67t | |02 2dx, (27)
Q Q

where we pick 6 small enough such that ¢ = m + 1 — 2min {k;} — C;6 > 0 and taking 6! = BH™(t) (27)
=12
follows that

W (1)

\%

(10— Be)H "(HH' () + 2emin {k;}H(t) + ec” ([fully, + lloll;)
i=1,2

v

a(H(®) + [ully, + llolly), (28)

where @ = min {28 min {k;}, sc’} and we pick ¢ small enough such that 1 — o — e > 0.
i=1,2

We now estimate W= (t) . From definition of W (t)
€ € =
Wi (1) = (H00 + 5 1l + 5 10P) 29)
As the embedding L™ (QQ) < L?(Q), m > 2, we have
W (t) < C(HE) + lully " + ol =), (30)

Now, by the inequality d<(x+1) <1+ %)(x +2z) forx = |julh, | = 2/m(1 —0) < 1, since 0 < (m —2)/m,
z = H(0), we get

IA

_ 1
2/(1-0) my2/m(l-0) - m
llecll;s (Ifaal ) <1+ —H(O)) (Il + H(0))

IA

Cllully - 31)
In the same way, we get

lelfy =" < Cliely;. (32)
Therefore, (30) becomes that

W () < C(H®) + lully + olly) (33)
By associatining of (28) and (33) we reach

W (1) > EWTS (1), (34)

where & > 0 is a constant. A simple integration (34) from 0 to ¢ yields that W (t) > which

1
T (0)-£2
implies that the solution blows up in a finite time T, with

<170
EoWT (0)
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4. Growth of solutions
In this section, we state and prove exponential growth result.
12(y+1)

Theorem 4.1. Suppose that (6) and (8) hold, ug,vo € W’
Furthermore, we assume that

(Q) and (u,v) is a solution of the system (1).

E©0) <0

t Y
foa)i(s)dsz SEEYY

Then the solution of the system (1) grows exponentially.

and

Proof. Let us define the functional
F(t)=H({t) + 5 IIuII +35 IIUII (35)

where H(t) = —E(t). By differentiating (35) and using Eq.(1), we get

F () H@{+e¢ (f uudx + f vvtdx)
Q Q
= gl + fodl P + f |7 utdx + f 0|72 v?dx
Q Q

—% (] o Var) (B - E (a); o Vo) (t)

+1w1 ©) IV I + wz(s)||w(t)||

—éf|1/l|q uutdx—eflvlq 2 ovldx

—e|IVul? - & [IVol? — e [[Vul20*D) — & Vol 20+1)
+8f[uf1(u,v)+vf2(u,v)]dx
Q

¢
+8Lj(;a)l(t—s)Vu(t)Vu(s)dsdx

¢
+sf9f0wz(t—s)Vv(t)Vv(s)dsdx. (36)

F @) = lulP+ ol — e [VulP = e [Vol? = e [Vul PO — ¢ [V 204D

t
+e(m+1)fF(u,v)dx+effa)1 (t = s) Vu (t) Vu (s) dsdx
Q QJo

+sffta)z(t—s)Vv(t)Vv(s)dsdx

flulq 2 2dx+f|v|’4 vadx—sflulq uutdx—sflvlq 2vvt (37)

In order to estimate the last two terms in the right-hand side of (37), we use the following Young's inequality,

ab < 6~ 'a* + ob?,
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so we have
) -2 -2
flulq uudx < flul T ouy ul T udx
o) Q
< 6‘1f|u|q_2u,2dx+6f|ulqu.
Q Q
Similarly,

o vodx < 67 o' vrdx + | dx.
172 vopdx < 671 12 02dx + 6 1d
Q Q Q

Therefore, combining with

ffwl (t —s) Vu (t) Vu (s) dsdx

= foa)l (s)ds ||Vul? +fa)1 t—s)fVu(t (Vu (s) = Vu (t)) dxds

v

t
—§(w1 o Vu) () + %(fo w1 (S)dS)IIVuIIZ.

Similarly

¢ 1 1/ ,
Lfo Wy (t —s) Vo (t) Vo (s)dsdx < 3 (wp 0 Vo) (t) + 5 (fo w> () ds) [|Vol|~.

Then, (37) becomes

, 1 1
F@) = ||ut||2+||vt||2—e(1—§ f wl(s>ds)||w||2—e(1—5 f wz(S)dS)||VU||2
0 0

—e IVl PO + Vol 20D + e + 1) (lulls + loll2)

—5 @10 Vi) () = 5 (20 Vo) (1

—ed (Jlull] + lloll]) + (1 - e57") fQ ul™? udz + (1 - e57") L [0l vFdx

1-1 [T (s)ds 1-1 [T w (s)ds
> gl + llodll? - e | —22—— 1 IVull? — e | —27—"—
1- [J @i (s)ds 1
e [IVulPO*D) 4 90l P0*D] 4 e+ 1) (ull + Hloll2)
5 (@10 V) () = 5 (@20 Vo) (0
—ed (Jlul] + o) + (1 - e57" f|u|q Puddx + (1- 57! f|v|'7 2 02dx.
We denote A; = 3 h oo =1,2.

1- [ wi(s)ds |
! 2 2 2 2

F O 2 lul?+llod? = edun [Vul? = eAana Vol

= [IVulP0D) 4+ [VolPO* D] 4+ e + 1) (s + l1oll)
~5 @i o Vi) (f) = 5 (w2 0 Vo) (¢

e (|lulf] + lloll]) + (1 - &5~ f|u|q “ufdx + (1 f|v|q “uidx

— [, w2(s)ds

528

(38)
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v

2 2 : 2 2
sl + llonl? = & min A; (1 [IVul? + 2 |IVol?)
i=1,2

—e[IVal PO + V20D + e + 1) (lulls + loll2)
=5 @10 Vu) () = 5 (@2 0 V0) (1

—ed (Jlull] + lloll]) + (1 - e57") fg " ufdx + (1 - e57") fo o772 v2dx. (39)

From H (t) definition, (39) becomes

F () = 2emin{AJHE) + gl + 1o + e(m + 1 = 2min (A:}) (lully; + llolly;)
; nu

i=1,2 i=1,

- -1 mi j 2(y+1) 2(y+1)
(1= gl + )

te (min () - %) [(@1 0 Vi) (t) + (w3 0 Vo) (B)]
i=1,2

—ed (Jlull) + lloll]) + (1 - e57") fQ jul”™2 uddz + (1 - e57") f lo"~2 v2dx. (40)

Q
Then, from (26) we obtain

F () > e2min{AJH(E) + [l + ol + eay (fully; + lloll;

i=1,2

+eay [(wy 0 Vi) () + (w2 0 Vo) (8]

+ (1 - 86_1) fQ |2 12dx + (1 - 85_1> L 0|72 v2dx,

where 6 small enough such that 2y = m + 1 — 2min {A;} — 6C; > 0 and 4, = min {A;} - % > 0, then taking ¢
i=1,2 i=1,2

and 6 small enough such that 1 — €57 > 0, we have
F'(8) = CEHE) + ludl® + llorl* + llully, + llolly + (@1 © Vi) (8) + (w2 © Vo) (1) (41)
On the other hand, by definition of F(f), we get
_ €, €00
F#) = H) + 5 lull + 5 ol

As the embedding L™ (QQ) < L2(Q), m > 2, and then using the inequality x' < (x +1) < (1 + %)(x + z) for
x = lully, 1 =2/m<1,z=H(0), we get

F(t) C (H(t) + [lully; + lloll) (42)
C(H() + Il + ol + [l + et + (@1 © Vi) () + (@3 © Vo) (1)) (43)

IA

IA

From (41) and (43), we arrive at
F (t) = rF(t), (44)

where r is a positive constant.
Integration of (44) over (0, t) gives us

F (t) = F(0) exp(rt).
From (42) and (19), we get
F(t) < H(t) < llully + llolly, -

Consequently, we show that the solution in the L,,-norm growths exponentially. [
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