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Abstract. This article is concerned with a generalized almost periodic multispecies mutualism model with
impulsive effects and time delays. By utilizing comparison theorem and constructing a feasible Lyapunov
function. We establish some criteria to guarantee that the permanence, existence, uniqueness and global

stability of almost periodic positive solution. A feasible numerical simulation will be provided to explain
the suitability of our main criteria.

1. Introduction

In 1924-1926, Bohr [4-6] has established the theory about almost periodic function (APF) systematically.
During the immediate decade, following Bohr’s research, numerous significant works were finished to
APFE. We refer researchers to van Kampen [7], Bochner [8, 9] and von Neumann [10]. Almost periodic
differential equations (APDEs) can be founded in various fields to characterize some phenomena such as
celestial mechanics, mechanical vibration, electric or ecology system, engineering technology and so on. In
view of its extensive applications from science to engineering, APDEs has been developed rapidly during
the past three decades. Despite a lot of works devoted to the qualitative properties of periodic solutions
(see [21]), but the study of almost periodic solutions can obtain a more general and extensive application in
real world because of the different time-dependent coefficients in time period. As we know, the traditional
tools of solving the qualitative problems of periodic model cannot be used to solve the same problems
of almost periodic issues due to the compactness of operator. Furthermore, some results are obtained in
recent decades, but there have still many unresolved problems, some of them were not even mentioned
in literatures. Therefore, we claim that it will be significative to begin the investigation of almost periodic
differential equations. In the field of biological dynamic, several useful researches on the APDEs have been
published such as hematopoiesis system [22-27], cellular neural networks [28, 29] and so on.

Biological dynamic systems with time delays have been investigated by many researchers based on
their real world applications. The mutualism model is one of the hot and interesting research subjects,
which illustrates the mutualism between two or more species. What we mainly concern in this article is the
qualitative properties of a multispecies mutualism system with Lotka-Volterra functional responses
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: )
i(t) = xi(t) | ai(t) — bit)xi(t |, t £ b,
5i(0) = x(1) | i) ()x(>+j§jc]()1+xj(t_Tj(t)) ¢ o

xi(t]) = (1 + hy)xi(t), ke Z*,i=1,2,--- ,n,
under the initial condition
xi(@) = pi(@), ae[-7,0], pi@) € CI-7,0LRY), i=1,2,,n. @)

The Lotka-Volterra models were introduced by Lotka and Volterra in the 1940s. They described many
of the relationships between two or more species, such as competitive mechanism [18, 20], predator-prey
mechanism [17, 19] and mutualism and so on. To study the mutual effects between two or more natural
species of mutualism type, several biological models have been introduced and investigated by many
ecologists, biologists and mathematicians [12-16, 32-34]. In 2014, Zhang et al [30] studied the dynamics of
a Lotka-Volterra multispecies mutualism system with time delays

)

fy 1+ Xj(i’)

5(t) = xi(0) [ai(t>—bi(t>xi<t—n(t>)+ y olm®y)

where x;(f) stands for the population density of the species i at time t. The time delay 7;(t) appeared in
system (3) illustrate the influence of the past history of the species i. However, this model did not describe
the impacts of the past states of other species j. Recently, Lin et al [31] investigate the global asymptotic
stability of a Holling type III multispecies competition-predator model with multi-time delays

) - = (Do) |
i(t) = ui(t) |ai(t) = Y by(B)ur(t — i (1)) =1,2,--,m,
o) u()[a() ; (O (t = Te(t)) ; (tHﬁk(t)}l ,

m

. L eul(t— Ok(t)) .
0;(t) = v(t) [_dj(t) + ; u,f(t]—gk(t)) 0 - kzz;gjk(t)vk(t - Gk(t))} s =12 ,m

System (4) take into account the dependence on the past states of other species j. Therefore, motivated by
the previous articles [30, 31], we are firmly convinced that this work can illustrate the effects of the time
delays of other species. We also claim that it will be significant, interesting and beneficial to investigate the
qualitative theory of system (1) as it extends previous theories and admits biological value.

Throughout the entire article, we assume that the following three conditions hold:

(H1) The biological coefficients a;(t), bi(t) and c;j(t) (i,j = 1,2,--- ,n, i # j) are almost periodic continuous
functions, where a;(t) stands for the growth rate of prey. b;(t) represents the prey population decays
in the competition among the preys. ¢;i(t) is the prey is fed upon by the predators; all the parameters
of the almost periodic model (1) satisfy the following two conditions:

max {ai(t), bi(t), ci(H)] < +oo,

i,j=1,2,+ ni#j
min a;(t), b;i(), c;:(#)} > 0.
min {ai),bi6), ci 0}

(H2) Hi(t) = o<t (1 +hi),i=1,2,--- ,n, k € Z* denotes the almost periodic bounded function and there
have two positive constants H! and H satisfy H' < H;(t) < H".

(H3) Under the initial condition 7;(0) = 0, the time delay term 7,(t) represent continuously differentiable
and positive almost periodic functions on R* with 7;(t) < 1. Thatis, ¢;(t) = t — 7i(t) possess the inverse
function ¢;!(f). In addition, ¢;(t) < ¢;(t) for t > 0.
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As far as I can survey, this is the first article to study the existence, uniqueness, permanence and global
stability of almost periodic solutions (APS) of Lotka-Volterra multispecies mutualism model with impulsive
effects and time delays on functional responses. The primary target of this article is to get several parameter
conditions to guarantee the existence of a unique APS of (1) with global stability.

The organization of the rest part of this article is as follows: Section 2 contains some lemmas and
the existence theorem of APS of (1). We offer the proof of the existence, permanence, global asymptotic
stability and uniqueness of APS of model (1) in Section 3. In Section 4, we offer a numerical simulation to
describe the applicability of our main results. In the last section, some conclusions and future orientations
of investigation are performed.

2. Preliminaries

We restate some notations, lemmas and definitions which will be applied in the proofs of our main
theorem.

Lemma 2.1. Under the initial condition (2), all solutions to system (1) are positive, which means that
{c1(B), x2(t), -+, xa (D))" € RM|xi(to) > 0 fortg >0, i=1,2,--- ,n}
represents positive invariant for (1) and (2).
Proof. Based on x;(tp) >0(i=1,2,---,n), we obtain
xi(t) = xi(to) exp ftt [ai(s) — bi(s)xi(s) + Z FU(S)% dsy . (5)
0 j=Li#]
This ends the proof of Lemma 2.1. [

Lemma 2.2 ([2], Lemma 2.2). Ifa > 0,b > 0, and % > (<)x(a — bx), when t > 0 and x(0) > 0, we deduce

hpmmm>ﬁ@mamansa.

B b t—o0

Lemma 2.3 (Brouwer fixed-point theorem). Assume that the continuous operator A maps the closed and bounded
convex set Q C R" onto itself; then the operator A has at least one fixed point in set Q.

Here and subsequently, we focus on the system as follow

(t—Ti(t
yi(t>=y,-<t>[a,-<t>—Bi(t>y,-<t>+ Y, it | =120 ©
j=1,i#] JINIE ]

under the initial condition
xi(s) = @i(s), s €[-7,0], @i(s) € C([-7,0,R"), i#jf
and

Bty = [ a+mobit), Cyty= [] A +meyt), i#j

O<te<t O<te<t

Lemma 2.4. All solutions to system (6) are positive, which means that {(y1(t), y2(t), - , yu(t))T € R™|yi(to) >
Oforty>0,i=1,2,---,n} represents positive invariant for (6).
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Lemma 2.5. The following two results hold:

() If (ya(t), y2(t), -+, yu(t))T stands for a positive solutions of system (6), then

(ur(8), x2(8), -, 2xa(D)

T
- ( [T a+mom®, [[a+myo,-, [Ta+ hnk>yn(t)]

O<tp<t O<ty<t O<tr<t
represents a positive solution of system (1);

(ii) If (x1(t), x2(t), -+ , x4 (1)) stands for a positive solutions of system (1), then
1 (8), ya(8), -+, yn(®)"

T
- ( [Ta+motam, [T a+mymnw, -, []a+ hnk)-lxna)]

0<ty<t 0<te<t 0<tp<t
represents a positive solution of system (6);
for model (1) and (6).
Proof. Assume that (y1(t), y2(t), -+, y.(t))T stands for a positive solution of model (6). Set

xi(t) = H 1+ hy)yit), i=1,2,--- ,n,

0<tp<t

then for any t # t;, by applying
vy = [ @+ ™), i=1,2-n

O<ty<t

to model (6), we can effortlessly check that the first two equations of model (1) hold.
Ift=1#,t€Z", we obtain

xi(t}) = lim xi(t) = lim H (1 + ha)yi(h) = H (1 + his)yi(te)
=1 2 o<t 0<ks<ty )
=(1 + hix) H yiltt) = (1 + hixi(te), i=1,2,--- ,n

O<ts<ty

Therefore, (7) can be applied to all the equations of system (1). Hence, (x1(t), x2(t), -+, x,(t))T stands for a
positive solution of system (1).

Now, we prove the second part of this theorem. We discover that y;(t)(i = 1,2,---,n) are continuous.
Therefore, y;(t)(i = 1,2,-- - , n) are continuous on each interval (f, tx+1]. It is effortless to verify the continuity
of yi(t) at t; (impulse point), t € Z*. Thanks to yi(t) = [To<;, (1 + hir) ' xi(t), we get

vt = [] Q+m) ™ x) = ] Q+m)™ xitt) = yitto),

O<ts<ty O<ty<ty

vt = [T Q+m) ™ x) = [ @ +ho) ™ xitt) = yicto),
O<ts<ty O<ts<ty

i=1,2,---,n.

Hence, y;(t)(i = 1,2,--- ,n) are continuous on the positive axis [0, +o0) of x-axis. It is effortless to verify that
(1), y2(), - -+, yu(H))T is a positive solution of system (6). The proof is complete now. []

Lemma 2.6 (Barbalar Lemma). If f : [0,+00) — R is uniformly continuous and tlim fot f(s)ds < +oo, then
tlim f(t) =0.
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3. Main results

In this part, we prove the permanence, global asymptotic stability, existence and uniqueness of almost
periodic solution of (1) and (6).

3.1. Permanence

Theorem 3.1. Suppose that system (1) can satisfy (H1)-(H3). Then system (1)-(2) possesses permanence. That is to
say, any positive (almost periodic) solution (x1(t), xa(t), - -+ , x,(1))T of system (1)-(2) fulfills

m; < li?1 infx;(t) < limsupx;(f) <M;, i=1,2,-- ,n.

t—oo

where

u n U
a,’ + Z]’:Li;ﬁ]‘ Cij lZl.
M; = T, m; = ﬁ
p ;

Proof. Based on the first equation of model (1), we deduce that

X(t) < |a = blxi(t) + ctl,i=1,2,,n (8)
]

j=Li#]
Employing Lemma 2.2 into (8), we obtain

u n U
@i+ Lij=1,i G

lim sup x;(#) < =M;,i=1,2,---,n. 9)

t—o0

bl

Based on the first equation of system (1), we get that
%(t) 2 (al - bxi(), =12, n. (10)

Employing Lemma 2.2 into (10), we obtain
al
li¥ninfxi(t) > b_‘l‘ =m;, i=1,2,---,n. (11)
i
This ends the proof of Theorem 3.1. O

Theorem 3.2. Suppose that system (6) can satisfy (H1)-(Hs). Then system (6) possesses permanence. That is to say,
any positive (almost periodic) solution (y1(t), y2(t), -+, yu()T of system (6) fulfills

H_’,l‘ < ll?lionfyi(t) < limsup y;(t) < ﬁll’ i=1,2,---,n.

i t—oo i

Proof. Suppose that (y1(t), y2(t), -+, ya)" represents a positive (almost periodic) solution of system (6).
Thanks to Lemma 2.5, we obtain that

(1 (8), x2(8), -+, 2a(D)" = (Hi(Oya (1), Ha(O)y2(8), -+, Hu(O)yu(£)"
represents a positive (almost periodic) solution of system (1)-(2). Together with Theorem 3.1, we have

m; < li¥n inf H;(t)y;(t) < limsup Hi(t)y;(t) <M;, i=1,2,--- ,n,
—00 f—00
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which means that

mp ... . M .
o < 11?_1N1>onfy,(t) < limsup y;(t) < Ik i=1,2,---,n.

i t—o0 i

This finishes the proof of Theorem 3.2. [

Theorem 3.3. Suppose that S represents the set of all solutions (y1(t), y2(t), -+, yu())T of (6) satisfying

fort € R*. Then S + @.

Proof. According to the theory of almost periodic function, there possesses a sequence {t,}, lim t, = oo, such
n—o0
that

ai(t +ty) — ai(t), Bi(t +t,) — Bi(t), Cij(t + t,) — Cij(?),
Hl(t + tn) - Hl(t)/ Ti(t + tn) - Ti(t)/ i= 1/2/' o n, i * j/

uniformly on R* as n — co. Based on the Brouwer fixed-point theorem, we can propose a hypothesis that
(y1(t), y2(t), -+, yu(t))T represents a positive (almost periodic) solution of system (6) satisfying

fort > T >0,i=1,2,---,n It is obvious that the sequence (y1(t + t,), yo(t + tn), -, yu(t + t)7T is
equicontinuous and uniformly bounded on each bounded subset of R*. Applying Ascoli’s theorem leads
to

B y( -+ £) = B (¢ + 80, 12+ 80, yalt + B)T = 2(0) = (18, 22(8), -, 2a(8).

where y(t + ;) represents a subsequence of y(f + f,) uniformly on each bounded subset, z(t) stands for a
continuous function. For any given T; € R*. For all positive integer 1, we can suppose that t, + T; > T.
Therefore, if t > 0, we obtain

t+T4
yi(t +t+T1) — yi(tk +Ty) = f yi(S + tx) (a,-(s +tx) — Bi(s + tk)yi(s + ty)

T,
Y (12)
Yj(s + b — (s + 1))
+ Cii(s+t
jzlzl;;j i( k)1 +Hj(s + t)y;(s + tx — Tj(s + t))

If we let n — o0 in (12), together with Lebesgue’s dominated convergence theorem, we derive that:

(13)

7 1+ Hj(s)y;(s — 7j(s))

t+T1 Zi?: ; - Cii(s)yi(s — Ti(s))
yilt + T1) = yi(Th) =f vi(s) (ﬂi(s)—Bi(s)%‘(s)+ =i e T Y ]

forallt > 0. T; € R* is selected randomly. For this reason, system (6) possesses a positive (almost periodic)
solution z(t) = (z1(t), zo(f), - - - , z+(t))T on R*. It is obvious that 7 < yit) < % for t € R*. Therefore, z(t) € S.
This ends the proof of Theorem 3.3. [ ‘
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3.2. Global asymptotic stability

Lemma 3.4. Ifa,b e R, then

—sgn(a) -b < —la| +|a - b. (14)

Theorem 3.5. Suppose that the system (6) satisfy (Hy1)-(Hs) and the following condition:
(Hy) liminf P;(t) > 0,i=1,2,-- ,n.

where

n

Pt = ) S —Bi(t)‘[”i(tﬁ%&(m )y S0

no el Cuu
Z f J ]( )zdu
t (1 + m,-)

j=Li#j

2 1 2
ey (L+mi) i iy (L +m;)

M;Ci(¢7' (1) quil(%l(t»cl(u)du
¢

Higi (¢71(1)) Jor'o
in which ;' represents the inverse function of ¢; = t — 7i(t) (i = 1,2,--- ,n), respectively. Then the solution of
system (6) is global asymptotically stable.

Proof. We assume that system (6) possesses two positive solutions y(t) = (y1(t), y2(t), -+, y.()T and F(t) =
(#(1), 72(t), -+, Ju(t))T. Thanks to Theorem 3.2, there has a positive constant T, such that

fort>T,i=1,2,--- ,n. We focus on the upper right derivatives of

Va(t) = ‘m %;

,i=1,2,--- 0.

It is obvious by a direct computation that

D Vﬂ(t)—sgn(}/i(t) yz(t))(?i(t) yi(f))

( G-1®)  yt-t) )
1+ Hj(t)g]'(f - Tj(t)) 1+ H]'(t)yj(t — "[]'(t))
n Cij(®) [t — 71(8) — (¢t — 7,()] }

=sgn (7i(t) — yi(t)) | =Bi(t) (Fi(t) — yi(h)) +
_ j_% [1+H®gt - 7)) [1 + Hi®yy,t - 7))

j=Lli#j

=sgn (§i(t) — yi(t)) [ -Bi(t) (7:(H) — yi(t)) + Z Cij(t)

1 Cii(t
" sgn (@0 - yi(t) [— Y SO -1 - it — )] + By o - yi(t))‘

2
j=1,i#j (1 + mj)

(14) B = Gt = Gij(h o .
< Bi(t) |7i(t) — yi(t)| — — |7i(t) —y;i()]| + — yi(s) — yj(s)) ds
' | jﬂz,i‘:tj (1+m]-)2| ] ] | jﬂz,i‘:ej 1+m]-)2 Lff(f>( ] ] )
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! Cij(t Y Cit
<807~ (0] - Ol -yl Y, —

2
j=Li#j (1 + mj) j=1i#j (1 + mj)

S _ - 7is — Ti(s))
f”i(t) {l/j(S) [“1(5) = Bj(s)7;(s) + Z Gii9)1 T HOTG —L-(s))]

i=1,j#i
} dsl

1 Cii(t 1 Cii(t
<Bi(t) [71:(t) — yi(®)| - Z Ll 5 |75 - yit)] + Z 0

yi(s — Ti(s))
1+ Hi(s)yi(s — ti(s))

-y;(s) {‘1]’( ) — Bj(s)y;(s) + Z Cji(s)

i=1,j#i

j=Li#j (1 + m]-) j=1,i#j (1 + m]-)z
[ e -Bene+ Y et G0y 0)
=10 P I Hi) s - ) [

~Bj(s)y;(6) [7(5) = v;(9)]

- yi(s — Ti(s)) 7i(s — 7i(s))
Ve écﬁ T+ HOWG - 10) {V—; SO HORG - n(s))]}l
1 Cii(t - Cij(t
<Bi(t)|:(t) - wi(t)| - Y| O o) - o)+ 2. 0
j=1,i#j (1 + mj) j=1,i#] (1 + mj)
f M@ Bene+ Y et gy
t=j(t) : e i=1,j#i "L+ Hi)gis = ns) | ]

Cji(s) |7i(s — 7i(s)) — yi(s — Ti(s))|
+B;(5)y;(5) |7,(5) ~ y;6)] + %(S)llz]; 1+ Hi(s)yi(s — i(s))] [1 + Hi(s) (s — Ti(S))]}

n C; 1 Cii(t
<Bi(8) 7)) - yi(H| - ) Y 3 [0 -0+ ) 0

j=Li%] (1 + mj) =y (1 + mj)z
t n M C. 1( )
inm {[a]‘(s) + B j(5) + ,12];1 i J]r |7(6) = y;6)] + H Mg, i) [7;(5) = 09|
_J Z ]r(S) |]/1(5 T (s)) — yl(s —T; (S)))}
] i= 1]#:1

Based on the appearance of integral term, we define

M; = M;Cji(s)
Fij(s) = |aj(s) + E’]Bj(s) Z H’(l—]

) |7i(5) = y;(s)] + B 1(9)|7(5) = y6s)|
j i=1,j#i " i

]

n

M; i
_l Z ](S) |y,(s Ti(s)) — yi(s — T (5))|
] =1,j
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and G;;(s) stands for a primitive function of F;j(s),i = 1,2,--- ,n. Thus,

- i Ci't g
D*Vaa(t) <Bi(®)|5:(t) = yi#] - ) O 50— o]+ Z 0 f i)

j=Li#j 1 +m]) j=Li#j 1 +1’I1‘) (15)

n n

=Bi(H)[5i(t) - yi(®)| - ), S0 - vy + Y 0 ; 5[Giih) = Gijte — 7).

j=1,i%] (1 + m]) j=Li#j |1 +m;
Set
= Cy(h)
Ci(t) = _—
l 1—1;4 (1 + mj')2

We denote that

o7 ot
Va(t) = f f Ci(u)Fi(s)dsdu. (16)
t Gi(u)

We can effortlessly check that

p ()
Va)= [ C0[Git) G ]
(17)

o710 o710
e f Cituw)u — f C1(0)Giy b 0)t.

Therefore, if t > T + 7, we get that

7 (1) Ci(p7 (¢t
D*Vi(t) :Fij(t)ft Ci(u)du + Gij(t) (% - Ci(f)]
Ci(¢7' (1)
| — "G - C; (D 18
( ) Gij(t) Cz(f)Gz](CZ)](t))] (18)
o))
£ [ Clu = G0 (G4 - Gyi0).
We denote that
G <v>C<u>c ¢7'©)
i i(v) — yi(0)| dudv.
Valt) = fm(t)fl(v) o7 )) 5160 = o) dude )
It is obvious by a direct computation that

M,Ci(p71(t )
D"Vt = D) f Ciwdu - |5i(t) = yi(t)|
Higy (¢71(8)) Joro

B (1)
= —Ci() [t = i) = wilt — ()] ft Ci(u)du.

i

(20)

We construct a function of species i:

Vi(t) == Va(t) + V(t) + Via(t), i=1,2,--- ,n
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Thanks to (15), (18) and (20), it can easy to see that

n Ci' t fpf](f) C;
DV <BO O 50~ Y, — L[5 0] + Fytd | G,
1 (14 m) t(1em)
M;Ci(¢7Y () o7 @@
’ H§¢z (‘Pi_l(t)) L;l(t) (w)du |y() yi( )| @1)

M; 0]
- ﬁci(t) |7t = Ti(H) = yit = ()] f;p Ci(u)du

]

fort > T + t. We construct an appropriate Lyapunov function V(¢) as follows:
V() = Z Vih).
i=1

Together with (21), we deduce that

7

D*V() <= ) Pt |7:() - it
i=1

where the formula of P;(t) was proposed by Theorem 3.5.
Due to condition (Hy), there possesses positive constants To > T + tand a;(i = 1,2,--- ,n). If t > Ty, we
get

Pi(t) 2 a; > 0. (22)
We denote a* = min{ay, ay, - - - , a;}. Together with (21) and (22), we deduce that
n
D*V(t) < —a” ) |7it) - yi(t)|. (23)
i=1
Integrating both sides of the last inequality from T to t, we have
t n
v = v +a [ Y| - welds
To =1

for t > Ty. Thus, it means that V(t) is a bounded function on the interval [Ty, +c0). In addition,

+oo N
f Z |7i(s) — yi(s)| ds < +oo.
To =1

Based on Theorem 3.2 and Eq.(6), we can deduce that ;(t) — yi(t)(i = 1,2,--- ,n) and their derivatives are
bounded functions on the interval [T, +c0). Hence, Y., |7i(f) — yi(f)| remain uniformly continuous. Thanks
to Lemma 2.6, we obtain that

Jim Y (7. - yi(8)] = 0.
i=1

Together with |y,~(t) — yi(t)| > 0, we have , i = 1,2,--- ,n. Then the positive almost-periodic solution for
system (6) is globally asymptotically stable. This finishes the proof of Theorem 3.5. [
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3.3. Existence and uniqueness of almost periodic solution

Theorem 3.6. Suppose that the conditions (Hy)-(Hy) hold. Then the multi-species mutualism system (6) possesses
a unique almost periodic positive solution which admits global asymptotic stability.

Proof. Thanks to Theorem 3.3, the multi-species mutualism system (6) exists a positive bounded solution
1(6), y2(t), -+, ya(1)T fulfilling

m; Ml‘ +

—L <y(t) < =, te R,

HY Hf

Hence, there possesses a sequence {&/,} with &/, — ooasm — cosuch that (y1(t+&),), y2(t+EL), -+, yu(B+EL)T

stands for a positive bounded solution of the following model

5 1o G+ )t — v:,(t»)
1+ H]'(t + 5;,1)Xj(t - "C]'(i’))

71 = it (ai<t+<z:ﬂ> B+ i) + 24)

Together with (24) and Theorem 3.1, we can come to a conclusion that not only (y1(t+&},), y2(t+&7,), -, yu(t+
') but also (1t + &), ot + &), -+, Yu(t + &,))T possesses uniformly bounded. Therefore, (yi(t +
o p(E+ &)yt + &N s equi-continuous. Thanks to Arzela-Ascoli theorem, we can find a sub-

sequence {(y1(t + &), Yot + En), -+, Yult + En)T) € (@t + &), yalt + &), -+ yult + &,))T} with uniform
convergence such that for any ¢ > 0, there admits a positive constant pg(¢) > 0. In addition, if m,[ > pg(e),
we get that

|yit + &) = yit + &) <&, i=1,2,--- ,n,

which means that (y1(t + &), vo(t + Em), -+, yn(t + EnT represents a positive almost periodic asymptotic
function, there admit two functions P;(t) and Q;(f) such that

yi(t) =Pi() + Qi(t), i=1,2,--- ,n, te R,

where
lm P+ &) = Pi(t), lim Qi(t+ &) =0,

P;(t) stand for almost periodic functions. It shows that
im it + &) = Pi(t), i=1,2,--- .

Meanwhile,

it +Em+ k) —yit+ En
lim_ gi(t+ &) = lim ligg Vit En B~ yilt + &)

m—+00 k—( k
i t ¥ k - ] t i — I
=lim lim Yilt + &+ K) = yilt + En) =lim—P(t+k) Pit)
k—0 m—+co k k—0 k

4

thus the almost periodic function Pi(t),i=1,2,--- ,n exist.
Here and subsequently, we need to verify that P(t) = (Pi(t), P2(t), -+, Pu(t))T represents an almost
periodic solution to model (6). According to the theory of almost periodic function [3], there admits a

sequence {Ep}, &p — o0 as p — +oo, such that
ai(t + &p) — ai(t), Bi(t + &p) — Bi(t), Cijt + &p) — Cij(t), Hi(t + &p) — Hi(t), it + &p) — ilt),

as p — +oo uniformly on R*,i=1,2,--- ,n.
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It is effortless to check that

pgqlm vit+<&p) =Dit), i=1,2,--- ,n.

Therefore, we deduce that
P = lim it + &)
Ljmr,j2i Cijt + Ep)yj(t+ Ep — Tt + &p))
T+ Hj(t+Ep)y(t+Ep — Tt + &p))

= pl_i)l?oo yi(t + ép) [ﬂi(t + ép) - Bi(t + ép)yi(t + ép) +

Y j=1,j2i Cij())Pj(t — (1))

,1=1,2,--- ,m.
1+ H]'(t)Pj(t - Tj(i’))

=Pi(t) [ai(t) — Bi(t)Pi(t) +

It means that P(t) = (P1(t), Pa(t),- -+, Pu(t)) can satisfy (6). Meanwhile, P;(t) represents an almost periodic
solution of (6).

We proceed to show that system (6) has only one almost periodic positive solution. Suppose for the sake
of contradiction that system (6) possesses two almost periodic positive solutions P(t) = (P1(t), Pa(t), - - , Pu(t))
and Q(t) = (Q1(t), Qa(t), - - - , Qu(t)). We assert that P;(f) = Qi(t) for all t € R*. Conversely, there exists at least
a positive number 1 € R* such that Pi(1) # Q;(n) for a certain integer i > 0. It means that

& = [Pin) - Q| = | lim_yi(y+ &) = tim_ g+ &) = Tim [yt - 5i(8)] > 0,

which contradicts with tlim | 7i(t) — yi(t)| = 0 proposed by Theorem 3.5. This finishes the proof of Theorem
—+00
36. O

Theorem 3.7. Suppose that the conditions (Hy)-(Hy) hold. Then the multi-species mutualism systems (1) and (6)
possess a unique almost periodic positive solution which admits global asymptotic stability.

Proof. Thanks to Lemma 2.5, we can discover that

T

(8,220, % @) = | ] A+ mya®, [ @ +mayate,-, T O+ maoyat®

0<te<t O<te<t 0<te<t

stands for an almost periodic solution of system (1). Because (H>) holds, follow the proofs of Theorem 79 and
Lemma 31 in [11], we can deduce that x(t) = (x1(t), x2(t), -+, x4(t))" stands for an almost periodic solution.
Thus, based on the uniqueness and global stability of y(t), x(f) represents a unique globally asymptotically
stable solution to system (1). This ends the proof. [

We can obtain the following corollary because the condition (H4) has been simplified by setting 7;(t) =
7,(i=1,2,---,n), where t; > 0 are constants.

Corollary 3.8. We denote 7;(t) = 7;(i = 1,2,--- ,n), where t; > 0 are constants. Thanks to (Hy) and (H,), we can
suppose further that
lim inf P;(t)

t—+o0

t+T; n Ci (u
f G
t

2
j=1,i#] (1 + mj)

1

1 Cii(t : 1 M;Ci(t
=liminf{ }* ]—()Z—B,-(t)— aj(t) + 2,1y + Y l—]()
e S (1 m]-) H; i Hi (L + i)

v Cij(t+1)
M] Zj:l,i;éj (1+mj)2 t+27; 1 Cij(u)

duy>0,i=1,2,--- ,n.

1 2
Hj BT otz (1 + m]-)

Thus, (1) possesses a unique almost periodic positive solution which has global asymptotic stability.
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We can obtain the following corollary because the condition (Hy) has been simplified by setting hj = 0
Corollary 3.9. We denote hy = 0. Thanks to (H,) and (H,), we can suppose further that
imine i)

“imint} 3% b - [”f<f>+2Mb<t>+ ) MAcﬂ(t” O

j=1,i#] (1 + m, (1 +mi) j= 1z¢] 1 + m,)

n CI]((P (t
M; ¥ OO Iy ciu)

B J=Li#] (1+m) f _
Gi(o7'0)  Joro SR (1em)

duy>0,i=1,2,---,n

Thus, (1) possesses a unique almost periodic positive solution which has global asymptotic stability.

4. Example

In this section, we offer a multispecies mutualism system to verify the feasibility of our main theorem.

() = 11() (0.3 0,05 sin(V2H) — (025 — 0.04 cos(V3H)x (1) + —2E =002 | 13x3(t = 0.015) )

T+ x(f—0.02) 1+ xs(t—0.015))’
o ~ ~ ~ , 0.5x1(t—0.01)  0.8x3(t — 0.015)
() = x2() (0.2 0.02 cos( V2t) — (0.25 — 0.03 sin( V38)xa(f) + T r (=000 " T m{=00 15)), (25)

N . . 0.7x1(t = 0.01)  1.1x(f — 0.020)
() = x3(0) (0.25 — 0.06 sin( V3t) — (0.3 — 0.05 sin( V2£)xs () + Tre =000t Trm 0.020)) .

By a direct computation, we can obtain the following table:

Table 1: The biological parameters of x7, x, and x3

X1 X2 X3
ai(t) 0.3 —0.05sin( V2 0.2-0.02cos(V2t)  0.25—0.06sin( V3t)
al 0.25 0.18 0.19
at 0.35 0.22 0.31
bi(t) 0.25—0.04cos(V3t)  0.25-0.03sin(V3t) 0.3 —0.05sin(V2¢t)
bl 0.21 0.22 0.25
b 0.29 0.28 0.35
) o 05 0.7
) 1 % 1.1
) 1.3 0.8 %
" 0.8621 0.6429 0.5429
M; 12.6190 6.9091 8.4400

Meanwhile, we obtain

lim inf P1(f) > 0.05 > 0, liminf Pa(f) > 0.04 > 0, lim inf P3(£) > 0.03 > 0.
—+00 —+00 —+00

It means that the conditions of P;(t), P>(t) and P5(t) proposed by (Hy) are fulfilled. It is also shown that the
almost periodic positive solution of system (26) admits existence, permanence, global asymptotic stability
and uniqueness.
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» Delay differential equations
| ~ I I

0 10 20 30 40 50 60 0 80 90 100
time t

Figure 1: Numeric simulation of x1(f), x2(t) and x3(f) of (26) with the initial conditions (x1(0), x2(0), x3(0)T = (1.5,1,0.5)7,
(x1(0), x2(0), x3(0)" = (2,1.25,1.5)" and (x1(0), 22(0), x3(0))" = (2.5,1.5,2.5)".

5. Conclusion and future works

In this research, we investigated the qualitative behavior of a famous mutualism system, the denomi-
nated Lotka-Volterra model, assuming continuous and almost periodic parameters. It will be interesting to
study the following two more general systems:

- xj(t = ;(t)
() = x; i(t) = bi)xi(t — 7; i) ——7L"_, ,
%) = xi(0) | ai(t) — bi)xi(t — Ti(h)) + j;jc Or Y t# 26
xl(t]-:) = (1 + hik)xi(tk)/ k € Z+/ i= 1/ 2/ e, n
and
L (t-Tt) & (- Ti(b))
.i = Xi i - bi i ij ]— 1 — s 7
%i(8) = xi(t) | ait) — bit)xi(t) + j;ﬁjc O g—om * k_;;kck(t et (LA

xi(t]) = (1 + hy)xi(t), ke Z*,i=1,2,--- ,n,

where 0 < m; < 1,0 <m <1, m > 0and K; + K, = n. Clearly, system (26) is a more general model
compared with system (1). Since we argue that the time-delay effect also exists in the species i. Biologically
speaking, we describe (26) as multispecies mutualism system with multiple delays. However, we know that
there might exist more than one kind of functional response in one model. Therefore, we claim that (27)
also has biological significance. It stands for a multispecies mutualism system with mixed monotone operator.

It is a challenging work to investigate the qualitative properties such as existence, permanence, unique-
ness and global asymptotic stability of system (26) or system (27). These tasks remain for the future.
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