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Positive solutions for integral boundary value problems of nonlinear
fractional differential equations with delay

Tawanda Gallan Chakuvinga?, Fatma Serap Topal®

*Department of Mathematics, Ege University, 35100 Bornova, Izmir, Turkey

Abstract. In this study, we consider integral boundary value problems of nonlinear fractional differential
equations with finite delay. Existence results of positive solutions for the problems are obtained on the basis

of the Guo-Krasnoselskii theorem and the Leggett-Williams fixed point theorem. Comprehensive examples
follow the main results in the respective sections.
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1. Introduction

A wide interest in fractional differential equations has emerged of late, following advances in fractional
calculus theories resulting in its applications in engineering, mechanics, chemistry, physics among other
fields [8]-[10], [18]-[32], [34]-[37], [40]- [42].

There are a fair number of approaches dedicated to the existence of positive solutions for fractional
boundary value problems such as the Leggett-Williams theorem [11]-[12], the fixed point theorem on cones
[13]-[14] and [17]. Using some of these approaches, various studies entail integral boundary value condi-
tions, for example, [15]-[16], which have diverse applicability in the field of thermo-elasticity, population
dynamics and so on.

Comprehensive details on integral boundary value conditions can be seen in [33] and references entailed
therein. Although, Caputo and Riemann-Liouville derivatives are usually considered separately in many
instances, hardly any work covers a fusion of the two fractional-order derivatives, the few includes [5]-[7].

Inasmuch as the previous literature included integral boundary value problems (IBVP), the combina-
tion of IBVP with mixed fractional-order derivatives for delayed fractional differential equations is scarce.
Consequently, we address this scarcity by considering a finite delayed IBVP with mixed fractional order

derivatives which presents a unique and rare contribution in this field of study. In this study, we consider
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the following IBVP
DP(@p(°D*y(D)) + f(t, 1) = 0, te[0,1],
yt) = ¢(t), te[-1,0],

11
YO = y"(0) =0, y(1)=k [ y(s)ds, (1.1)

Pp(“D*y(0)) = [pp(‘D*y(0)]" = 0,
where2 <@ <3,1<$<2 0<k<?2 °D*and D#F are the Caputo and Riemann-Liouville derivatives
respectively, f : [0,1] X C; — [0,+00) is a continuous function such that t € R*, y,(0) = y(t + 0) for
te€[0,1] and O € [-7,0], ¢ € C,(:= C[-7,0]) and C; is a Banach space with ||}ll|—r,0) = maxge[--0] [P(O)| that
C! ={y € C[-7,0lly(t) > 0, t € [-7,01}, p,(y) = lyP?y such thatp > 1, go;l =@gand 1/p+1/q=1.

This paper is organized in such a manner, in section 2, we present some background material, definitions
and lemmas. Section 3 deals with the existence of single and multiple positive solutions for the functional
differential equation with fractional order and finite delay. Section 4 focuses on existence of multiple
positive solutions for fractional differential equation finite delay.

2. Basic Definitions and Preliminaries
In this section, we introduce some necessary definitions and lemmas.
Definition 2.1. [33] The integral

tor_ -l
Pot = | %g@ds, @)

where B > 0 and T is the Euler gamma function, is the fractional integral of order B for a function g(t).
Definition 2.2. [33] For a function g(t) the expression

n t
Dot = (%) |REEERCT 22)

is called the Riemann-Liouville fractional derivative of order B, where n = [f] + 1, and [B] denotes the integer part of
number .

Definition 2.3. [33] The a order Caputo fractional derivatives for a function f(t) is defined as follows:

1
I'n-a)

t
‘Df(t) = fo (t—8)"* 1 f(s)ds, n—1<a<n. (2.3)

Definition 2.4. [2] Let P C K be a nonempty, convex closed set and K a real Banach space. Then P is called a cone
in K provided that

1. AyeP, forallye Pand A >0,
2. y,~y € P implies that y = 0.

Definition 2.5. [2] Let P be a cone in real Banach space K. If the map Y : P — [0, o0) is continuous and satisfies
Ytx+A-ty) 2tV (x)+(1-H)Y(y), xyePb te]0,1],

then Y is called a nonnegative continuous concave functional on P.
In a similar way, the map v is a nonnegative continuous convex function on a cone P of a real Banach space K provided
that v : P — [0, o0) is continuous and

vitx + (1 = t)y) < tv(x) + (1 = Hv(y),
forallx,y € Pand t € [0,1].
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Lemma 2.6. [1] Assume that g € C(0,1) N L(0,1) with a fractional derivative of order f > 0 that belongs to
C(0,1) N L(0,1). Then

PDPg(t) = g(t) + c1tF ! + cotF 2 + oo+ o tP 7N, (2.4)
forsomec; € R, i=1,2,--- ,N, where N is the smallest integer greater than or equal to p.

Lemma 2.7. [2] Assume that @« > 0 and n = [a] + 1. If the function y € L[0,1] N C[0, 1], then there exists
¢ieR,i=1,2,...,n,such that

FEDf) = f(B) — o1 — cat - — et 25)
Lemma 2.8. The IBVP (1.1) has a unique solution as follows:
1
B
]/(f) — J(; G(tr S)goﬂ(l f(sr ys))dsr t € [O/ 1]/ (26)
(P(t)/ te [_T/ O]/
where
2t(1-5)" (a—k(1-5))—a(2—k)(t=s)"""
G(t, s) { - ; a(zk—k)rsmj) Z—, 0<s<t<]1, 2.7)
=) 209 ak(15) :
S e 0<t<s<l

Proof. Let u(t) = ¢,(°D*y(t)), we now show that IBVP (1.1) can be expressed as the following IBVPs:

Dfu(t) + f(t, 1) =0,
{u(O) =u'(0)=0 (2.8)

and

{CD‘*y(t) = @y (u(t)), te(0,1) 9)

1
y(0)=y"(0)=0, y(1) =k [} y(s)ds.
Using Lemma 2.6 and (2.8), we get

u(t) = —Iﬁf(t, Vi) + ittt + eotf 2,
Since u(0) = u/(0) = 0, then ¢; = ¢c; = 0 and we have
u(t) = =P f(t, ys)
~ (a9 2.10)

Also, from (2.9) and Lemma 2.7

y(t) = —I“(pq(lﬁf(t, Ye)) +co +cit + cot?.
Since y(0) = y”(0) =0, then ¢y =c, =0, so

y(t) = —I“p,(IPf(t, yp) + c1t. 2.11)

From the condition y(1) = k fol y(s)ds of (2.9), we get

_ g1
vy =k [ yits =~ [ LI g s,y s,
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then

1 1 _ o1
1 :k‘fo y(s)ds+f0 %(pq(lﬂf(s, Ys))ds.

Substituting for ¢; into (2.11) implies that

1 1 (1 _ S)a—l
y(t) = —I“(pq(lﬁf(t, ye) + kiffO y(s)ds + tfo W(pq(lﬁf(s, Ys))ds.

LetH = fol y(t)dt, then from (2.12), we have

1 t 1 )
=— ="
- fo T f(s,ys)dsdt + fo ktHdt
f f o S)“ 1(Pﬂ(1ﬁf(5/ ys))dsdt

1 1 a-1
1(”( +)1)(Pq(1 f(s,ys)ds + 5 *pal f ( F(S)) P, (IF£(s, y5))ds
Thus we get
2-k T (1-9)
(2—)H = | o o, s + 5 f T gt v

@ 1—3s)2 1
f T f)l)%(l f(s,ys )als+2 p f ( r(l)) PP f(s, ys))ds.

Substituting (2.13) into (2.12), we get

t—s)*! 2kt 1-s)®
y(t) = f ( r(> Po(IP (s, y:))ds — f (af)l)%(lﬁf(slys))ds

kf 1—25)" 1 _ o)a-1
e E r(a)) Pall" G5,y s + ¢ fo %w(lﬁf@,ys»ds

~ t 2t(1 — s)afl(a —k(1-35))—a(t— s)“*l(z —K
) fo Q2-kI(a+1) Pq(IPf(s, ys))ds

1211 = 5)* M a ~ k(1 - 5))
’ f Q-Pr(a+1) Pq(If(s, y5))ds

1
= fo G(t, s)pq(IP (s, ys))ds

This completes the proof. [J

Lemma 2.9. [2] The function G(t,s) defined in (2.7) satisfies the following properties:
1. 0 < G(t,s) < m fort s€(0,1)ifand only if 0 < k < 2.
2. tG(1,s) < G(t,s) < 7 o 2)G(l s), forallt,s € (0,1),2<a<3and0 <k <2.

570

(2.12)

(2.13)

Lemma 2.10. [3] Let K be a Banach space and let X C K be a cone in K. Assume that {3y and (), are open subsets of
Kwith0 € Qqand Qy € Qp. Let T : X N (Qp \ Q1) — X be completely continuous operator. In addition, suppose

that either
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1. ITyll < lIyll, for all y € X N9y and || Tyl > ||lyll, for all y € X N Q, or
2. ITyll < llyll, for all y € X N 9Qy and ||Tyll > |lyll, for all y € X N dQ4 holds.

Then T has a fixed point in X N (Qy \ Q).

Lemma 2.11. [2] If p € (0,3) is a fixed number, then for each y € P and s € [p,1 — p] there exists a constant
u € (0,1) that satisfies

Yslli—z01 = ullyllo,, Iyllio,11 = sup ly)l,

te[0,1]

where P is defined in Lemma 3.1.

3. Main results

We introduce some notations and hypotheses for convenience as follows:

fo= ; f(ty) - : ft,y)
et i+ @p(lIYlli—zon)” yeCt lvlicn—0* @p(lIyll=zo1)”
1-p

R Ba-1) 1

BO Z(F(ﬁ N 1))q_1 L s G(ll S)ds/ u € (0/ 1)/ P € (O/ 2)/
2a 1

— Bg-1) .

P = a2 Dy fo oG e

(H1) ¢ 20o0n[-17,0];

(H2) f(t,y) =0forte[0,1]and y € CS;

(H3) fo= feo = +00;

(Hy) fo=fo=0;

(Hs) if there exists a constant m1 > ||ll—r,0] > 0, then

m
ft,y) < 0, (B_f) IYlleso € [0,m1], £ € [0,1],

(He) if there exists a constant m1g > ||pl[[-z0] > O, then

m
769 2 90 (), Wlhosor € Lumo,mol, £ € p, 1= pl
On C[-1, 1], let we define an operator T

i Gt 9@ (P £Gs, y)ds, te[0,1],

Ty = {¢(t), te[-7,0].

Lemma 3.1. Suppose that (H1), (H) hold and P is a cone in Banach space K = C[-1, 1] with norm ||yllj—x1] =
maXqe-,1] [y(#)| as follows;
P={yeK|y=>0,yis concave down on [0, 1]},

then the followings hold:

1. T(P)C P,
2. T : P — P is completely continuous.
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Proof. Trivially, Part 1 holds and T is continuous. We proceed to prove the validity of Part 2. If | is a
bounded subset in P, it implies that there exists b > 0 such that ||y|| < b for all y € ]. We let

My = sup [f(t,y)l+1.
t€[0,1],y€[0,b]

Then, for y € |, we get
M
2= (@)T@+ 1)t

Tyl = ‘ f G(t,9)pq(IP (s, ys))ds| <

Thus, T(J) is uniformly bounded.
WeletyeJandt; <ty t1,tp €[-7,1]. f 0 <t < £, <1, then

I(Tyy (B)] =

! 2(1 = s5)¥ Ha — k(1 - s)) 5 _ f(t—5)*2
fo C—prarn P SCyeds = | e )(qu £(5, y)ds

12(1-s)* Ya - k(1 - (t=sp?
Sfo 2-kla+1) D 1 5,y - f 1) o) 0P fGs, yo)ids

121 = sy a — k(1 - s)) ( S (s —1)f! )
=4 )d
Sj()\ (2 - k)r(a + 1) (Pq 0 r(ﬁ) f(T/]/ ) T
t (t— s)a—Z

0 F(D{ - 1) (Pq (f(; r(ﬁ) f(T/ yf)d’l' ds

121 - s)* Ya—k(1-s)) M;sP L (t—s)22 M;sP
Sfo 2-Pr@+1) (F(ﬁ T 1))‘1S ) Ta—n ¥ (F(ﬁ T 1))ds

Zan 1 1 ) -1
- k)T(a+1)(T(ﬂ+1))“f (=9 ds + o 1)(F(ﬁ+1))‘71f (b= 5)"ds
4—k M
[(z k)F(a)]

ds

T~ Mo

Therefore,

1)
ITy(t2) - Ty(t)] < f Ty (5)lds < Motz — ).

Suppose —t < t; <0 <, <1, then
ITy(t2) — Ty(t)l =ITy(t2) — Ty(0)| + [Ty(0) — Ty(t1)|
1
Sfo IG(t2,5) — G(O, s)ll@q(IP £(s, ys))lds + |p(0) — Pp(t1)]

M
=@ G+ Dy
M7
=2 -RT@T@+ Dy

+1p(0) = d(t)l

Itz — t1] + 1(0) — P(t1)l.

Thus, T(]) is equicontinuous. We can conclude that T(J) is relatively compact from the Ascoli-Arzela
theorem. O
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Theorem 3.2. Suppose that (H1), (Hz), (H3) and (Hs) hold, then the IBVP (1.1) has at least two positive solutions
y1 and y, with
0 < llyalli=1y < ma < |ly2lli-z13-

Proof. Suppose (Hs) holds, we let Q,,, = {y € P : [|yllj-z,1] < m1}, for any y € P N JdQ,,,, we get

Ty(t) = Iy Gt ) f(s, yods, € [0,1],
o(t), t e [-7,0].

< {M% i PGt s)ds, € [0,1],
lPlli—z,01, t € [-1,0],

. {ml, teo,1],

~ \Plli-z0), t€[-7,0],

<NYlli=z,11,

which gives
ITYll-z11 < IYll-z11, for y € PN IQyy,.
Suppose that (H3) holds. Since fy = 0o, we choose ||}ll|--,0) < #11 < my, such that

() = @p(Aollylli—z01) for 0 < |[Yll—r0) < 111, where Ag > 0 satisfies AgBy > 1.
Let Q,, ={y € P : |Iyll[-z1) < m}, for any y € P N JQ,,,, we get

1-p
@(3)2 [ 6(5s)etss v
p
Ao |
ZWJ; s G(E’S)(Pq((PP(”ys“[—LO]))dS
Aop 0 sy (1
exrgray ), 0 (it

Ao},l fl_p 1
= sPa-DG (—,S) lyll{-z11ds
2B +1)t J, 2
2[|Ylli-z11,
which gives
ITYll—711 = IYlli—c11, for y € PN dQ,,.

Also, since fo, = 00, we choose 11, > m; > ||pl|[-r,07, such that
ft,y) = @p(Aillylli—c0) for |[yll—c,0; = unz, where Ay > 0 satisfies A;By > 1. We let
Q,, ={y € P : ||Ylli=r1; < n2}, for any y € P N dQ,,,, we get

mwazﬁwceﬂ%meMh

Al 1=p _ 1
ZE@EWIL FIG(3,5) oa(@ylyll-con)ds
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A 1 1
L ﬁ(q—l)G(_ ) d
2(1“(ﬁ+1))‘71f =g Whonds

Ap 7 gang (1
- G (5.5 lh-cd
e, s

2|Yll-z11,
which gives
ITYll-711 = [IYll-z1, fory € PN IQYy,.
By Parts 1 and 2 of Lemma 3.1, the conclusion is proved. [

Theorem 3.3. If (H1), (Hz), (H4) and (He) are satisfied, then the IBVP (1.1) has at least two positive solutions 1
and y, with

0 < lyalli-z11 < mo < lly2ll-za1-
Proof. Suppose (Hg) holds, we let Q,,, = {y € P : |Yllj-z,1] < mo}, for any y € P N dQ,,,, we get

32 63tz 3 [ co o

p

1-p
MMoft Blg-1)
> G(1,s)d
_ZBQ(F(/B+1))V—1fp s (1,s)ds

=ty = ||Ylli-z11,
which gives
ITYll—<11 = IYll—z1) for y € P 0 9Oy,

If (H4) holds and also since fy = 0, we choose |[¢|l[--0] < M1 < my, such that
f(t,y) < @p(Nllyll—0p), for 0 < |[yll—c,0; < m1, where N > 0 satisfies NB; < 1. Welet Q,,, = {y € P : [[yll|-¢1) <
my}, for any y € P N 0Q,,, we get

Ty(t) <{fo G(t,)pq(IFf (s, ys))ds, t€[0,1],

o(t), t e [-7,0].
< Wﬁ) sPAVG(t, 9)llysll--0ds, t€[0,1],
llpll—z,01, te[-1,0],
<lylli=z1,

which gives
ITYll=z11 < [IYll-z11, for y € PN 9y,

Furthermore, since f., = 0, there exists Q > m,, such that f(t, y) < X||yllj-<,0), for
IYlli-z01 > Q, where X > 0 satisfies (X + 1)B; < 1. We choose a constant m, > 0, such that m, >

max{mo, [|Pll-01, max{f(s, ys) | 0 < @p(llyslli--,0) < Q}X}
We let Q,, = {y € P : ||yll—r,1] < m2}, for any y € P N dQy,,, we get

2aQ
S0 Tam G S)pq(IF £(5, ys))ds

2a
Ty <{ + fosllysMSQ k(a_%)ca,s QqIFf(s,ys))ds, te[0,1],

o), tel[-10]
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3 {{sz +max(f(s, y(s)) 10 < pp(lyslio) < QIBy, £ (0,1,
| I1Plli—<01, te[-7,0],
my, te[0,1],
{Ilqbll[ o tel-T0],

<my = |yl 11,

which gives
ITYlli-c11 < IYll-z), for y € P00y,

Thus, by Parts 1 and 2 of Lemma 2.10, the conclusion has been proved. [J
Similarly, from the proofs of Theorem 3.2 and Theorem 3.3, we get Theorem 3.4 and Theorem 3.5.

Theorem 3.4. If (H1), (Hy) are satisfied and the conditions fy = oo, fo = 0 hold, then IBVP (1.1) has at least one
positive solution.

Theorem 3.5. If (H1), (Hy) are satisfied and the conditions fy = 0, foo = oo hold, then IBVP (1.1) has at least one
positive solution.

Example 3.1. Consider the functional differential equation:

D (pa(DSy()) = —(yi(t— H+ys(t- 1),  telo,1],
]/(t) = tSI te [_%/ 0]/

% 3.1)
y(0) = y”’(0) = 0, y(l 3 fO y(s)ds
P2("D3y(0)) = [p2(‘D3y(O)]' =
wherea =%, =2, 1=4%,p= k:%,f(t,y): yi(=1) + y3(=1) thus
fy) DD IV g+ W B BT
Pp(lYll-zo1) P2(lYlli10) Iyl Lo Yl s g I g =
as ||y||[_%,01 — +o00, we get foo = 0.
Furthermore, there exists a constant a > 0 such that y(t) > allyllj--0;,
_fey -3
> | “1 — +00, as 191 — 0.
oy =2+ W 19110
Therefore, fo = +oo, which implies that the problem (3.1) has at least one positive solution by Theorem 3.4.
Example 3.2. Consider the functional differential equation:
Di(ps(Diy®) =~y (t-PD+y5(t-1),  telo],
=1, te[-1,0]
y(®) g [-3,0] (3.2)
YO =y ©=0, ym=}[ v
5
@1 (‘D2y(0)) = [¢§(CD2y(0))]’ =
wherea =3, p=3, =1, p=14 k=1, fit,y) = y3(=1) + y5(=1), and there exists a constant a such that

y(t) = uIIyII [=1,0] thus

1
5
[%]

foy _yehryich | Wiyt
= >a
pIyli=co)  @a(lyll_10)
s Il

a1y + 105 | = oo



T. G. Chakuvinga, F. S. Topal / Filomat 37:2 (2023), 567-583 576

as ||y||[_11,0] — 400, also

1 1
3 5
ft,y) a”y“[—im Iy o

PoIyl-eo) ~ -
I,

_2
1

= a[Wylly + WIS | = 400, as Ity = 0,
;

we get fo = +oo and fo, = +oo. Therefore, (Hs3) holds. In addition,

_ 2 ' e
Ty ¢ 0
~ 2 1 sPa-D(1 — 5)21(k[a — 2(1 — 5)]) i
“k(@—2)T B+ ) fo Q-kI(a+1) °
5
=

We set my=2, then if 0 < [|lylli_1 g < 2 we get, f(t,y) < 235 +25 < (%n)p_l, which means that condition (Hs)
holds. Thus, by Theorem 3.2, the problem (3.2) has at least two possible solutions yy and y, with 0 < |yll_1 ;) <2 <

||y2||[7%,1]-

4. Multiplicity result for BVP (1.1)

Suppose f : J X B — [0, +0) is a specified function which satisfies certain assumptions to be stated in
the next subsections and ¢ € B where 8 is a phasespace. For a function y and any ¢ € [0, 1], y; denotes the
element of B defined by 1:(0) = y(t + 0) for 0 € (-7, 0], we assume that y; are the histories belonging to 5.
We let P C K be a cone in K and (K, [|.||) be a Banach space. We show a continuous mapping

Y : P —[0,00)

by a concave, positive and continuous functional ¢ on P with
PAx+ (1 -Ay) =2 Ap(x) + (1 - A)Y(y) for all x,y € P and A € [0,1]. For K, L, r > 0 constants with P and ¢
as shown above, we let

Py ={y € P:|lyll < K}
and
Py, L,K)={yeP:y(y) = Land |yl < K)}.

The presented work is based on the fixed point theorem as presented by Leggett and Williams [39], see also
[38].

Theorem 4.1. Let P C K be a cone in K, which is a Banach space and R > 0 a constant. Suppose there exists a
concave positive continuous functional on P with P(y) < |lyl| for y € Pg and let N : Pg — Pg be a continuous
compact map. Assume that there are numbersr, Land K with0 <r < L< K < R:

(A1) {y € P, LK) : Y(y) > Lyl < K} # 0 and (N (y)) > L for y € Py, L, K);
(A2) INWIl <7 fory € Py;
(A3) Y(N(y) > Lfor y € P, £, K) with IN(y)Il > K.
Then N has at least three fixed point y1, y2, y3 in Pg. Also we get
neP, ypelye P, LR :P(y) > L)
and

Y3 € Pg — {P(1, L, R) U P,}.
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A solution to IBVP (1.1) is obtained by setting

B =1{y:(-7,1] = R: yl—0) € B, yly € C}(J,R)},
and let ||.||; the semi norm in B; defined by:

Iyl = llyolls + sup{ly(®)l : 0 <t <1}, y € By.
Definition 4.2. IBVP (1.1) has a solution y, which is a function y € B that satisfies the
equation Dﬁ((pp(CD“y(t))) = f(s, ys) on J and conditions y(0) = 0, y(0) = y”(0) =0,

1

y(1) =k [ y()ds, pp(-D*y(0)) = [pp(‘D*y(O)I' = 0 and y(t) = ¢(t), t € (~7,0].

We denote the Banach space of all continuous functions from J into R by C(J, R),
with the norm:

[Ylleo == sup{ly()] : t € T}.
Now, we present axioms for definition of the phase space 8.

(C1) Foreveryte[0,1],ify: (-7,1) = R, yo € B, then the following conditions hold:
(@ vy €8,
(b) There exists a positive constant H : |y(f)| < H||y:lls;

(c) There exist two functions K(.), M(.) : R+ — R,, independent of y, with K continuous and M
locally bounded:

lyellg < K(E) suplly(s)l : 0 < s <t} + M(Dllyolls-
(C2) y:is a B-valued continuous function on [0, 1] for the function y(.) in (A1).
(C3) The space 8B is complete. Denoted by

K = sup{K(t) : t € [0,1]} and M = sup{M(¢) : t € [0, 1]}.
The following assumptions are necessary for the underlying theorem:

(N1) f is a continuous function.
(N2) There exists a function g* : [0,00) — [0, o) which is continuous and non-decreasing and a function
h* : [0,00) — [0, 00) which is continuous and non-increasing, p1 € C(J,R+) and p» € C(J,R,) such
that
p2(OR*(lull) < £t u) < pr(®)g"(full),
for each (t,u) € J X B.
(N3) There exists a constant r > 0 such that
2
2 - (a) T +1)7!

(N4) There exists a constant L > r such that

[+ Mils)lpalle]” <

1

("KL + Miglis) llpalle] ™ x 4TB + 1))y

f sP4DG(1, s)ds > L.
sel

(N5) There exists a constant R such that 0 <7 < £ < oR, where ¢ = % and
2
2 -k (@)TE+ 1)

[77 KR+ Miglplipille] ™ <R

Theorem 4.3. If (N1) — (Ns) are satisfied. IBVP (1.1) has at least three positive solutions.
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Proof. Relying on Leggett-William fixed point theorem, we transform IBVP (1.1) into a fixed point problem.
Considering the operator

T: Bl - Bl
defined as the following:

T( )(t) _ (P(t)/ te (_Tr O]r
POV 6t 90,0 s, y)ds, e o],

G(t,s) is defined in (2.7). Obviously, the fixed points of the operator T are solutions of problem (1.1). We
define x(.) : (-7, 1] — R be the function defined as:

(o), ifte (=10,
x(t)_{o, if £ € [0,1].

Then, xg = ¢. For each z € B with zy = 0, we denote by z the function defined by

_ o, ifte(=r0]
Z(t)_{z(t), if £ [0,1].

Let y(.) satisfy the integral equation

1
Y = fo Glt,5)py (I s, ).

We partition y(.) into y(f) = z(t) + x(t), 0 < t < 1, which makes y; = z; + x;, for every t € [0,1], and the
function z(.) satisfies

1 S _
2(t) = fo G(t,s)(pq( j; %fﬁ,fr+x7)d7)ds.

Let By = {z € C([0,1], R) : zo = 0} and ||.||; be the seminorm in B, defined by
llzlli = llzollg + sup{lz(s)| : 0 <5 < 1} = |Iz]lo.

By is a Banach space with the norm ||.|lp. We let the operator N : By — B, be defined by

1 S (o _ \p-1
N@)(t) = fo G(fIS)(Pq( ; (SF(—Q)

It is easily seen that the operator T has a fixed point that is equivalent to the one A has, so we must prove
that AV has a fixed point. From Lemma 3.1, N is completely continuous.
Let

F(1,Z + xT)dfc)ds. 1)

0={z€By:z(t) =20 rrtﬁlnz(t) > gllzllo fort e J}
€.

be a cone in By. We show that N : p — pis well defined. Let z € g, then it follows from Lemma 2.9 and (4.1)
that

2a 1 * (s — 1)t _ )
IN(@)llo S—k(a—z) [) G(1,5)pq (fo Te (T, Z: + x7)d7 | ds

2a S(s—-1)f 1 _
<3 [m LI G(1,s)p, (j(; Tﬁ)f(’c, Ze + XT)dT) ds] .
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Also, considering Lemma 2.9, this means that for any ¢ € |

1 S (o _ \p-1
(Nz)(t) ZL G(t,5)p, (fo %J‘(LZT + xT)dT) ds

f G(1,5) q( f (s - F([S) f(T z. +xT)dT)ds
2a (s—7)f1  _
>0 [m LI G(l, S)(pq (L Tﬁ)f(’[,zn[ + XT)dT) dS]

o
>— .
_3||NZ||0

This 1mp11es that N : o — g is well defined. Using the assumptions (N1) — (Nz) and (Ns)
N : Pg — Pg is well defined and completely continuous. Let ¢ : g — [0, ) is defined by

Y(z) = mm z(t)
It is evident that ¢ is a non-negative concave continuous functional and
U(2) < |Izllo for z € Pg.

We are left to show that the hypotheses of Theorem 4.1 to be stated are satisfied.
We note that condition (A;) of Theorem 4.1 is valid for z € P,, and from (N,) and (N3), we get

IN@I = max|N(2)(?)]

1 — -1
Séﬂ%{ I IG(t,s)|<pq( E r(;)) q<||zT+xT||)|p1<T)|dT)ds}

<max{ f Gt s)|<pq( f e q(7(|Iz||o+MI|¢>I|B)P1(T)dT) }

0<t<

< k)r(a)(r(ﬁ Ty [+ M Il [

<r

7

where

lIzz + x:llg <Izllg + llx<ll5
<K (s) supflz(7)| : 0 < T < s} + M(s)llzolls
+ K(s) sup{lx(7)| : 0 < T < 5} + M(s)lIxolls
<K sup{lz(t)] : 0 < T < s} + M|l (4.2)
<Kr + M||¢lls.

We now proceed to show that condition (A1) of Theorem 4.1 is satisfied.
Evidently, if z € P(y, £, £) then £ < z(s) < £, s € I, and then {z € P(y, £, £),¢(z) > L} # 0. By condition
(N4) we have

_ T
Y(N(z)) = min {f G(t, s)py ( ) Tﬁ)f(’l', Zr + XT)dT) ds}

> mm {f G(t,8)pq (f i h*(IIET + XTH)pz(T)dT) ds}
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1
f sPaDG(1, s)ds.
sel

* q_l
> [1r L+ MISl) el % g5

Thus, condition (A1) of Theorem 4.1 is satisfied.

We also show that condition (A3) of Theorem 4.1 is satisfied. If z € P(¢, £, R) and |[Nz|| > f, we get

YN() =min { f G(t,9)p, ( f Gl T)ﬁ 1 Y (13 +x7)d’[) ds}

20|N7]|
>L.

Thus, condition (A3z) holds. By the Leggett and William fixed point theorem this implies that AV has at least
three fixed points z1, 2, z3 such that

21€P, mefze PO, LR): P(z) > L}, z3 € Pr — |, L,R) UP,).

Once more, condition (A3) of Theorem 4.1 is satisfied. By Theorem 4.1, there exist three positive solutions
z1,2,z3 such that ||z1|| <7, £ < a(zx(t)), and ||z3|| > 7, with a(z3()) < L.
Finally, IBVP (1.1) has three positive solutions y1, 2, y3 such that

o), ifte(-10],
yi(t) = {Zi(t), if telo,1], for i€e{1,2,3}.

O

Example 4.1. Consider the functional differential equation:

10]y, e

D3 (p2(‘Diy() = ~aim— teJ =10,1],
y(t) = o), te(-7,0],
YO =y© =0, y)=3 fO (s)ds

P2(‘D3y(0)) = [p2(D3y(0)]’ =

(4.3)

g 9 1 _ 3 _ 10||y ||€!7H.'/1H
wherea =5, B=z:,1=35,p=2k=1%, ft,y) = W

We set ¢ such that |||l = 15, B, to be defined by:
B, = {ueC((-1,0],R): Qlim e"%u(6) exists)
with the norm

llully = sup e®u(O)!.
0e(—1,0]

Let u : (—7,1] — R be such that uy € B,. Then

61im eud) = elim e"%u(t + 6)

lim "@"u(6)
6—--1

e’ lim e77%uy(0) < +co.
0—--1

Therefore, u; € B,. We now prove that

llell < K () sup{lu(s)l : 0 < s < £} + M(®)llyolly,
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where K = M =1and H = 1. we get u(t) = u(t + ¢).
Ift + 0 < 0 we have

lu:(0)]] < sup{lu(s)| : 0 < s < t}.
Hence, for all t + 0 € [0, 1], we get

lu¢(0)]] < sup{lu(s)| : =7 <5 < 0} +supflu(s)| : 0 < s < t).
Therefore,

lluelly < llullo + supflu(s)l : 0 < s < £}

1t is evident that (B,, ||ull,) is a Banach space, we conclude that B, is a phase space. Since

10|[y¢] et Nl
f(t;}/) zﬁl (tly)eijy

We choose

q*(y)=%, pi)=¢, H(y) =100, pat)= ——, y>0, te[0,1].

1+1¢2

By the definitions of f, q*, p1, ", pa, it follows that:
p2(O (vl < f(t y) < pr®a (lyl).

By calculations, we obtain

m LI sSP07VG(1, s)ds = 0.0022194.
Also,

[ £+ Miha) pal] = (£+ 755)
and then

1

e+ Migta) o] x g

f SfaVG(,s)ds > L,
sel

which gives

100eC-1£) x 0.0022194 > £ and we choose L = 0.10.

Also,
[+ Migllpile] ™ = 5 (r+ 155 )¢
and
2 = 0.80159
2 =T (@) + 1))t '
then

2
2 - ()T @+ 1)

-1
g (Kr + Miglis)ipills]” <,
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which gives

1 11,
— — . < =0.15.
T (r+ 100)6 % 0.80159 < r and we choose r = 0.15

Also,

1 1\,
_ . <R R =0.18.
10 (R+ 100)6 % 0.80159 and we choose 0.18

Since all assumptions of Theorem 4.3 are satisfied, Problem (4.3) has three positive solutions y1, y» and ys.

Acknowledgments. The authors would like to thanks to referee for their encouragements and sugges-
tions.
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