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Abstract. In this paper, we introduce several various classes of (ω, c)-almost periodic type functions and
their Stepanov generalizations. We also consider the corresponding classes of (ω, c)-almost periodic type
functions depending on two variables and related composition principles. We provide several illustrative
examples and applications to the abstract Volterra integro-differential equations in Banach spaces.

1. Introduction and preliminaries

The theory of almost periodic functions is an active area of research of many mathematicians. The
notion of almost periodicity was studied by H. Bohr around 1925 and later generalized by many others.
The interested reader may consult the monographs by Besicovitch [5], Diagana [8], Fink [9], Guérékata
[11], Kostić [15], Levitan, Zhikov [20] and Zaidman [26] for the basic introduction to the theory of almost
periodic functions. Almost periodic functions and almost automorphic functions play a significant role in
the qualitative theory of differential equations, physics, mathematical biology, control theory and technical
sciences.

As is well known, the class of Bloch periodic functions extends the classes of periodic functions and
anti-periodic functions. The Bloch periodic functions are incredible important in the quantum mechanics
and solid state physics. For more details about this class of functions, we refer the reader to [7], [18] and
references cited therein.

The class of (ω, c)-periodic functions, which extends the class of Bloch periodic functions, has recently
been introduced and investigated by Alvarez, Gómez and Pinto [2] and Alvarez, Castillo, Pinto [3]. The
(ω, c)-periodic functions is of major relevance in the qualitative analysis of solutions to the Mathieu linear
differential equation

y′′(t) + [a − 2q cos 2t]y(t) = 0,

arising in modeling of seasonally forced population dynamics. The linear delayed equations can have
(ω, c)-periodic solutions, as well (see e.g., [2, Example 2.5]). Furthermore, the authors of [3] have proved the
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existence of positive (ω, c)-pseudo periodic solutions to the Lasota–Wazewska equation with (ω, c)-pseudo
periodic coefficients

y′(t) = −δy(t) + h(t)e−a(t)y(t−τ), t ≥ 0.

This equation describes the survival of red blood cells in the blood of an animal (see, e.g.,
Wazewska–Czyzewska and Lasota [25]).

Let (E, ∥ · ∥) be a complex Banach space. In a more abstract context, the authors of [2] have analyzed
the existence and uniqueness of mild (ω, c)-periodic solutions to the abstract semilinear integro-differential
equation

Dαu(t) = Au(t) +
∫ t

−∞

a(t − s)Au(s) ds + f (t,u(t)), t ∈ R,

where Dαu(t) denotes the Weyl-Liouville fractional derivative of order α > 0, a ∈ L1
loc([0,∞)) is a scalar-

valued kernel, the function f (·, ·) enjoys some properties and A generates an α-resolvent operator family
on E. Further on, Alvarez, Castillo and Pinto have analyzed in [3] the existence and uniqueness of mild
(ω, c)-pseudo periodic solutions to the abstract semilinear differential equation of first order

u′(t) = Au(t) + f (t,u(t)), t ∈ R,

where A generates a strongly continuous semigroup of operators. Concerning the applications to time
varying impulsive differential equations, mention should be made of the article [24] by Wang, Ren and
Zhou; cf. also the article [1] by Agaoglou, Fečkan, Panagiotidou, the article [23] by Mophou, Guérékata
and the article [21] by Li, Wang and Fečkan for some other applications.

The main purpose of this paper is to continue the above mentioned researches by introducing and
investigating the various spaces of (ω, c)-almost periodic type functions and their Stepanov generalizations.
As mentioned in the abstract, we also consider the corresponding spaces of (ω, c)-almost periodic type
functions depending on two variables and related composition principles, providing several applications
to the abstract Volterra integro-differential equations.

The organization and main ideas of paper can be briefly described as follows. After recalling the basic
definitions and results about almost periodic functions, almost automorphic functions and uniformly re-
current functions (cf. Subsection 1.1, where the only novelties are Proposition 1.2 and a simple computation
of the Bohr spectrum of an (ω, c)-almost periodic function with |c| = 1), we introduce the spaces of (ω, c)-
uniformly recurrent functions, (ω, c)-almost periodic functions and (compactly) (ω, c)-almost automorphic
functions. In Definition 2.1, we use a simple trick from [2]; a continuous function f : I → E is said to be
(ω, c)-almost periodic if and only if the function

fω,c(t) := c−(t/ω) f (t), t ∈ I, (1)

is almost periodic (in contrast to [2]-[3], we consider the case in which I = R or I = [0,∞)). The main
aim of Definition 2.6 is to introduce the classes of asymptotically (ω, c)-uniformly recurrent functions,
asymptotically (ω, c)-almost periodic functions and asymptotically (compactly) (ω, c)-almost automorphic
functions; in Definition 2.9, we extend the notion from Definition 2.1 and Definition 2.6 by introducing the
corresponding Stepanov classes of (ω, c)-almost periodic functions. In the remainder of Section 2, we state
and prove several results about the introduced classes of functions.

Our main contributions are given in Section 3, where we introduce and analyze (ω, c)-uniformly recurrent
functions of type 1 (type 2) and (ω, c)-almost periodic functions of type 1 (type 2). The main result of paper is
Theorem 3.2, in which we completely profile the introduced classes of (ω, c)-uniformly recurrent functions
and (ω, c)-almost periodic functions in the case that I = R and |c| , 1 (if |c| = 1, then the concept of (ω, c)-
almost periodicity of type 1 (type 2) is equivalent with the concept of almost periodicity): any of the spaces
URω,c,i(I : E) and APω,c,i(I : E) for i = 1, 2 equals to the set Mω,c(I : E) in the set-theoretical sense, which consists
of all continuous functions f : I→ E such that c−·/ω f (·) is periodic. Furthermore, in the case that i = 1, then
the same statement continues to hold in the case that I = [0,∞). After that, we analyze the remaining case
I = [0,∞) and |c| < 1 in more detail. We show that the classes APω,c,1([0,∞) : E) and URω,c,1([0,∞) : E) are
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rather non-attractive (see Corollary 3.8 and Proposition 3.11): the class APω,c,1([0,∞) : E) consists of those
continuous functions f : [0,∞) → E for which the function fω,c(·) is bounded and continuous, while the
class URω,c,1([0,∞) : E) coincides with the class C0([0,∞) : E). The space APω,c,2([0,∞) : E) is much more
interested for further analyses bacause it actually consists of those continuous functions f : [0,∞)→ E for
which the function fω,c : [0,∞) → E is bounded and recurrent in the sense of [20, Definition 2, p. 80] with
I = [0,∞); see Proposition 3.12. The space URω,c,2([0,∞) : E) is also interested for further analyses becuase
for any uniformly recurrent function f : [0,∞) → E, the function fω,c(·) belongs to this space (in fact, with
the notation explained below, we have URω,c([0,∞) : E) ⊆ URω,c,2([0,∞) : E) ⊆ URω,c,1([0,∞) : E)). If a
function f (·) is (ω, c)-almost periodic of type 1 or 2, then it vanishes at plus infinity so that the case |c| < 1
is important because its analysis leads to some new spaces of ergodic components that are contained in
the usually considered class C0([0,∞) : E); for simplicity, we will not analyze here the (weighted) pseudo-
ergodic components and Weyl (Besicovitch) ergodic components which generalize the ergodic components
from the space C0([0,∞) : E) in the opposite direction. The Stepanov classes of (ω, c)-uniformly recurrent
functions and (ω, c)-almost periodic functions are introduced in Definition 3.14. Subsection 3.1 examines the
composition principles for (ω, c)-almost periodic type functions. In Section 4, we analyze the invariance of
(ω, c)-almost periodicity under the actions of convolution products and provide a few relevant applications
of our abstract theoretical results to the abstract Volterra integro-differential equations and inclusions in the
Banach spaces. The final section of paper is deserved for offering several conclusions and useful remarks
about the results obtained.

We use the standard notation throughout the paper. Unless stated otherwise, we will always assume
that f : I → E is a continuous function. By C(I : E), Cb(I : E) and C0(I : E) we denote the vector spaces
consisting of all continuous functions f : I→ E, all bounded continuous functions f : I→ E and all bounded
continuous functions f : I → E satisfying that lim|t|→+∞ ∥ f (t)∥ = 0. As is well known, Cb(I : E) and C0(I : E)
are Banach spaces equipped with the sup-norm, denoted by ∥ · ∥∞. If X is also a complex Banach space, then
L(E,X) stands for the space of all continuous linear mappings from E into X; L(E) ≡ L(E,E). The principal
branches are always used for taking the powers of complex numbers.

1.1. Almost periodic type functions and generalizations
Given ϵ > 0, we call τ > 0 an ϵ-period for f (·) if

∥ f (t + τ) − f (t)∥ ≤ ϵ, t ∈ I.

The set constituted of all ϵ-periods for f (·) is denoted by ϑ( f , ϵ). It is said that f (·) is almost periodic if for each
ϵ > 0 the set ϑ( f , ϵ) is relatively dense in [0,∞),which means that there exists l > 0 such that any subinterval
of I of length l meets ϑ( f , ϵ). The vector space consisting of all almost periodic functions is denoted by
AP(I : E). This space contains the space P(I : E) consisting of all continuous periodic functions f : I→ E.

Let f ∈ AP(I : E). Then the Bohr-Fourier coefficient

Pr( f ) := lim
t→∞

1
t

∫ t

0
e−irs f (s) ds

exists for all r ∈ R; furthermore, if Pr( f ) = 0 for all r ∈ R, then f (t) = 0 for all t ∈ R, and σ( f ) := {r ∈ R :
Pr( f ) , 0} is at most countable. The function f : I → E is said to be asymptotically almost periodic if and only
if there exist an almost periodic function h : I→ E and a function ϕ ∈ C0(I : E) such that f (t) = h(t)+ϕ(t) for
all t ∈ I. This is equivalent to saying that, for every ϵ > 0, we can find numbers l > 0 and M > 0 such that
every subinterval of I of length l contains, at least, one number τ such that ∥ f (t + τ) − f (t)∥ ≤ ϵ provided
|t|, |t + τ| ≥M.

Let f : I→ E be continuous. Following Haraux and Souplet [13], we say that the function f (·) is uniformly
recurrent if and only if there exists a strictly increasing sequence (αn) of positive real numbers such that
limn→+∞ αn = +∞ and

lim
n→∞

sup
t∈R

∥∥∥ f (t + αn) − f (t)
∥∥∥ = 0. (2)
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It is well known that any almost periodic function is uniformly recurrent, while the converse statement is
not true in general. We say that the function f (·) is asymptotically uniformly recurrent if and only if there exist
a uniformly recurrent function h : I → E and a function ϕ ∈ C0(I : E) such that f (t) = h(t) + ϕ(t) for all t ∈ I.
Let us recall that, if ( fn(·)) is a sequence of uniformly recurrent functions and ( fn(·)) converges uniformly to
a function f : I → E, then the function f (·) is uniformly recurrent ([16]). But, it is not clear whether we can
deduce the corresponding statement for asymptotically uniformly recurrent functions because uniformly
recurrent functions do not form a vector space, so that the proof given for asymptotically almost periodic
functions does not work in this extended framework (see e.g., [26, Theorem 1, pp. 37-38] as well as the
proof of [16, Theorem 2.16(i)] and the point [7.] below).

Let c ∈ C\{0} and ω > 0. A continuous function f : I → E is said to be (ω, c)-periodic if and only if
f (t + ω) = c f (t) for all t ∈ I; see [2]-[3] for more details. The number ω is said to be a c-period of f (·). The
space of all (ω, c)-periodic functions f : I → E will be denoted with Pω,c(I : E). Let we note that, by putting
c = 1, we obtain the space of ω-periodic functions f : I → E; by putting c = −1, we obtain the space of
ω-antiperiodic functions f : I→ E; by putting c = eikω,we obtain the space of Bloch (ω, k)-periodic functions.

The following facts about the (ω, c)-periodic functions should be stated at the very beginning (see also
[2]-[3]):

(i) If f ∈ Pω,c([0,∞) : E), f (·) is not identically equal to zero and |c| > 1, then lim supt→+∞ ∥ f (t)∥ = +∞;
if f ∈ Pω,c(R : E) and |c| > 1, then limt→−∞ f (t) = 0 and, if f (·) is not identically equal to zero, then
lim supt→+∞ ∥ f (t)∥ = +∞.

(ii) If f ∈ Pω,c(I : E) and f (x) , 0 for all x ∈ I, then the function (1/ f )(·) belongs to the class Pω,1/c(I : E).

(iii) If f ∈ Pω,c(I : E) and |c| = 1, then the function is almost periodic. To see this, observe that there exists a
real number k ∈ R such that f (x + ω) = eikω f (x), x ∈ I, so that the function f (·) is Bloch (ω, k)-periodic.
After that, the conclusion follows from [7, Remark 2.2]. In this case, we can simply compute the Bohr
spectrum by using the computation:

Pr( f ) = lim
t→∞

1
t

∫ t

0
e−irs f (s) ds = lim

n→+∞

1
nω

∫ nω

0
e−irs f (s) ds

= lim
n→+∞

1
nω

n−1∑
j=0

∫ ( j+1)ω

jω
e−irs f (s) ds

= lim
n→+∞

1
nω

n−1∑
j=0

∫ ω

0
e−ir(s+ jω)c j f (s) ds

=
1
ω

∫ ω

0
e−irs f (s) ds × lim

n→+∞

∑n−1
j=0

(
ce−irω

) j

n
.

Therefore, if c = eirω, then Pr = 1; otherwise, we have Pr = 0 because:∣∣∣∣∣∣n−1∑
j=0

(
ce−irω

) j
∣∣∣∣∣∣ =

∣∣∣∣∣∣cne−irnω
− 1

ce−irω − 1

∣∣∣∣∣∣ ≤ 2
ce−irω − 1

, n ∈N.

Furthermore, arguing as in the above-mentioned remark, we may deduce that for each k ∈ R the existence
of a strictly increasing sequence (αn) of positive reals tending to plus infinity such that

lim
n→+∞

∥∥∥ f (· + αn) − eikαn f (·)
∥∥∥
∞
= 0

is equivalent to saying that the function F(·) := e−ik· f (·) is uniformly recurrent. Due to the argumentation
given in the proof of [2, Proposition 2.2], with I = R, we have that the function f (·) is (ω, c)-periodic if and
only if the function c−

·

ω f (·) belongs to the space Pω(I : E).
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Let 1 ≤ p < ∞. We continue by recalling that a function f ∈ Lp
loc(I : E) is said to be Stepanov p-bounded if

and only if

∥ f ∥Sp := sup
t∈I

(∫ t+1

t
∥ f (s)∥p ds

)1/p

< ∞.

Equipped with the above norm, the space Lp
S(I : E) consisted of all Stepanov p-bounded functions is a

Banach space. A function f ∈ Lp
S(I : E) is said to be Stepanov p-almost periodic if and only if the function

f̂ : I→ Lp([0, 1] : E), defined by

f̂ (t)(s) := f (t + s), t ∈ I, s ∈ [0, 1], (3)

is almost periodic. Furthermore, we say that a function f ∈ Lp
S(I : E) is asymptotically Stepanov p-almost periodic

if and only if there exist a Stepanov p-almost periodic function 1 ∈ Lp
S(I : E) and a function q ∈ Lp

S(I : E) such
that f (t) = 1(t) + q(t), t ∈ I and q̂ ∈ C0(I : Lp([0, 1] : E)). It is well known that, if 1 ≤ p ≤ q < ∞ and f (·) is
(asymptotically) Stepanov q-almost periodic, then f (·) is (asymptotically) Stepanov p-almost periodic.

We need the following definition from [16].

Definition 1.1. Let 1 ≤ p < ∞.

(i) A function f ∈ Lp
loc(I : E) is said to be Stepanov p-uniformly recurrent if and only if the function f̂ : I →

Lp([0, 1] : E), defined by (3), is uniformly recurrent.

(ii) A function f ∈ Lp
loc(I : E) is said to be asymptotically Stepanov p-uniformly recurrent if and only if there exist

a Stepanov p-uniformly recurrent function h(·) and a function q ∈ Lp
S(I : E) such that f (t) = h(t) + q(t), t ∈ I

and q̂ ∈ C0(I : Lp([0, 1] : E)).

Let f : R → E be continuous. Then it is said that f (·) is almost automorphic if and only if for every real
sequence (bn) there exist a subsequence (an) of (bn) and a map 1 : R→ E such that

lim
n→∞

f
(
t + an

)
= 1(t) and lim

n→∞
1
(
t − an

)
= f (t), (4)

pointwise for t ∈ R. If the convergence of limits appearing in (4) is uniform on compact subsets of R, then
we say that f (·) is compactly almost automorphic. It is worth noting that an almost automorphic function
f (·) is compactly almost automorphic if and only if it is uniformly continuous as well as that an almost
automorphic function is always bounded. The function f : I → E is said to be asymptotically (compactly)
almost automorphic if and only if there exist a (compactly) almost automorphic function h : R → E and
a function ϕ ∈ C0(I : E) such that f (t) = h(t) + ϕ(t) for all t ∈ I. The space consisting of all (compactly)
almost automorphic functions will be denoted by (AAc(R : E)) AA(R : E), while the space consisting of all
asymptotically almost automorphic functions will be denoted by AAA(I : E).

For the sake of completeness, we will include the proof of following simple proposition:

Proposition 1.2. (i) Suppose that f ∈ AA(R : C) and 1 ∈ AA(R : E). Then f1 ∈ AA(R : E).

(ii) Suppose that f ∈ AAc(C : R) and 1 ∈ AAc(R : E). Then f1 ∈ AAc(R : E).

Proof. Suppose that (bn) is a given real sequence. Then there exist a subsequence (an) of (bn) and a map
1 : R→ E such that (4) holds pointwise for t ∈ R, with the function 1(·) replaced therein with the function
h1(·). Further on, there exist a subsequence (ank ) of (an) and a map h2 : R→ C such that limk→∞ f (t+ank ) = h2(t)
and limk→∞ h2(t−ank ) = f (t),pointwise for t ∈ R.This simply implies that limk→∞ f (t+ank )1(t+ank ) = h1(t)h2(t)
and limk→∞ h1(t − ank )h2(t − ank ) = f (t)1(t), pointwise for t ∈ R, finishing the proof of (i). The proof of (ii)
follows from (i) and the fact that the pointwise product of two bounded uniformly continuous functions is
a uniformly continuous function, provided that one of them is scalar-valued.
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Let 1 ≤ p < ∞. A function f ∈ Lp
loc(R : E) is called Stepanov p-almost automorphic (see e.g., Guérékata

and Pankov [12]) if and only if for every real sequence (an), there exist a subsequence (ank ) and a function
1 ∈ Lp

loc(R : E) such that

lim
k→∞

∫ t+1

t

∥∥∥∥ f
(
ank + s

)
− 1(s)

∥∥∥∥p
ds = 0 and lim

k→∞

∫ t+1

t

∥∥∥∥1(s − ank

)
− f (s)

∥∥∥∥p
ds = 0

for each t ∈ R; a function f ∈ Lp
loc(I : E) is called asymptotically Stepanov p-almost automorphic if and only if

there exist an Sp-almost automorphic function 1(·) and a function q ∈ Lp
S(I : E) such that f (t) = 1(t) + q(t),

t ∈ I and q̂ ∈ C0(I : Lp([0, 1] : E)). Any Stepanov p-almost automorphic function f (·) has to be Stepanov
p-bounded. Furthermore, if 1 ≤ p ≤ q < ∞ and a function f (·) is (asymptotically) Stepanov q-almost
automorphic, then f (·) is (asymptotically) Stepanov p-almost automorphic. Let us recall that any uniformly
continuous Stepanov almost periodic (automorphic) function f (·) is almost periodic (automorphic).

Let us finally recall ([17]) that a continuous function F : I × X → E is called uniformly recurrent if and
only if for every ϵ > 0 and every compact K ⊆ X there exists a strictly increasing sequence (αn) of positive
reals tending to plus infinity such that

lim
n→+∞

sup
t∈I

∥∥∥F(t + αn, x) − F(t, x)
∥∥∥ = 0, x ∈ K.

A function F : I × X → E is called Stepanov p-uniformly recurrent if and only if the function F̂ : I × X →
Lp([0, 1] : E) is uniformly recurrent, where F̂ : I × X → Lp([0, 1] : E) is defined by F̂(t, x) := F(t + ·, x), t ∈ I,
x ∈ X.

2. (ω, c)-Almost periodic type functions and their Stepanov generalizations

In this section, we will consider three different approaches for introducing the spaces of (ω, c)-almost
periodic type functions and their Stepanov generalizations. The first approach is the simplest one (in the
case of consideration of (ω, c)-almost automorphic functions and their Stepanov generalizations, we will
always tactily assume that I = R):

Definition 2.1. Let c ∈ C\{0} and ω > 0. Then it is said that a continuous function f : I → E is (ω, c)-
uniformly recurrent ((ω, c)-almost periodic/(ω, c)-almost automorphic/compactly (ω, c)-almost automorphic) if and
only if the function fω,c(·), defined by (1), is uniformly recurrent (almost periodic/almost automorphic/compactly
almost automorphic). By URω,c(I : E), APω,c(I : E), AAω,c(I : E) and AAω,c;c(I : E) we denote the space of all
(ω, c)-uniformly recurrent functions, the space of all (ω, c)-almost periodic functions, the space of all (ω, c)-almost
automorphic functions and the space of all compactly (ω, c)-almost automorphic functions, respectively.

It is clear that the space Pω,c(I : E) is contained in any of the above introduced spaces. With c = 1
and ω > 0 arbitrary, the class of (ω, c)-almost periodic functions reduces to the class of almost periodic
functions; in this case, the class of (ω, c)-uniformly recurrent functions has recently been analyzed in [16],
where the author also examined the class of ⊙1-almost periodic functions. The class of (ω, c,⊙1)-almost
periodic functions can be also introduced and analyzed but we will skip all related details concerning this
class of functions for simplicity.

For positive real numbers c1, ω1 > 0 and c2, ω2 > 0, we have the identity

c
−

t
ω1

1 c
−

t
ω2

2 =
(
c
ω
ω1
1 c

ω
ω2
2

) −t
ω
, t ∈ I.

With the help of [15, Theorem 2.1.1(ii)], Proposition 1.2 and this equality, we can simply deduce the following

Proposition 2.2. Suppose that ω > 0, c1, ω1 > 0, c2, ω2 > 0, f (·) is (ω1, c1)-almost periodic ((ω1, c1)-almost auto-
morphic/compactly (ω1, c1)-almost automorphic), 1(·) is (ω2, c2)-almost periodic ((ω2, c2)-almost automorphic/compactly

(ω2, c2)-almost automorphic) and the function f (·) or the function 1(·) is scalar-valued. Set c := c
ω
ω1
1 c

ω
ω2
2 . Then the

function f1(·) is (ω, c)-almost periodic ((ω, c)-almost automorphic/compactly (ω, c)-almost automorphic).
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Since the sum of two uniformly recurrent functions need not be uniformly recurrent, URω,c(I : E) is not
a vector space together with the usual operations of addition of functions and pointwise multiplication of
functions with scalars ([16]). But, APω,c(I : E), AAω,c(I : E) and AAω,c;c(I : E) are vector spaces together with
the above operations.

Remark 2.3. If the function fω,c(·) is bounded and |c| < 1, then limt→+∞ f (t) = 0; moreover, if I = R, the function
fω,c(·) is bounded and |c| > 1, then limt→−∞ f (t) = 0.

Remark 2.4. In the equation (1), one can consider an arbitrary function c(·) in place of function c−(·/ω) but the things
then become much more complicated. For example, following the examination from the previous remark, it seems
reasonable to use the function c−(|·|/ω) in place of function c−(·/ω). We will not follow this approach for simplicity and
we will consider here only the asymptotically (ω, c)-almost periodic type functions defined on the non-negative real
axis.

Since the spaces of uniformly recurrent, almost periodic and (compactly) almost automorphic functions
are closed under reflections at zero ([8], [16]), the following proposition simply follows:

Proposition 2.5. Suppose that I = R and f : R → E. Then f (·) is (ω, c)-uniformly recurrent ((ω, c)-almost
periodic/(ω, c)-almost automorphic/compactly (ω, c)-almost automorphic) if and only if the function f̌ (·) ≡ f (−·) is
(ω, 1/c)-uniformly recurrent ((ω, 1/c)-almost periodic/(ω, 1/c)-almost automorphic/compactly (ω, 1/c)-almost auto-
morphic).

It is clear that any (ω, c)-almost periodic function is (ω, c)-uniformly recurrent and compactly (ω, c)-almost
automorphic, as well as that any compactly (ω, c)-almost automorphic function is (ω, c)-almost automorphic.
Even in the case that c = 1 and ω > 0 is arbitrary, there exists a compactly almost automorphic function
which is not uniformly recurrent and therefore not almost periodic; the first example of a bounded uniformly
continuous, uniformly recurrent function that is not asymptotically almost periodic (automorphic) has been
constructed by in [13, Theorem 2.2] (see also [16] for more details).

Definition 2.6. Let c ∈ C, |c| ≥ 1 and ω > 0. Then it is said that a continuous function f : [0,∞) → E is
asymptotically (ω, c)-uniformly recurrent (asymptotically (ω, c)-almost periodic, asymptotically (compactly) (ω, c)-
almost automorphic) if and only if there exist an (ω, c)-uniformly recurrent ((ω, c)-almost periodic, (compactly)
(ω, c)-almost automorphic) function h : [0,∞)→ E and a function q ∈ C0([0,∞) : E) such that f (t) = h(t) + q(t) for
all t ≥ 0.

The following facts concerning the introduced classes of functions should be stated:

1. Suppose that |c| = 1 and ω > 0. Then we can use [15, Theorem 2.1.1(ii)] and Proposition 1.2 in order
to see that the function f : I → E is (ω, c)-almost periodic ((compactly) (ω, c)-almost automorphic) if
and only if f (·) is almost periodic ((compactly) almost automorphic). In the case that I = [0,∞), the
same assertion holds for the asymptotically (ω, c)-almost periodic functions and the asymptotically
(compactly) (ω, c)-almost automorphic functions.

2. Suppose that |c| > 1, ω > 0 and f : I → E is (ω, c)-uniformly recurrent or (ω, c)-almost automorphic.
If f (·) is not identically equal to zero, then the supremum formula (see [16, Proposition 2.2] and [15,
Lemma 3.9.9]) and the fact that the only uniformly recurrent function h : I→ E such that limt→+∞ h(t) =
0 is the zero-function ([16, point (ix)]), together imply that the function f (t) is unbounded as t→ +∞.
Similarly, if |c| < 1, ω > 0 and f : R → E is (ω, c)-uniformly recurrent [(ω, c)-almost automorphic],
then the function f̌ (·) is (ω, 1/c)-uniformly recurrent [(ω, 1/c)-almost automorphic] and we easily get
from the above that f (t) is unbounded as t → −∞. In the case that I = [0,∞), similar assertions hold
for the asymptotically (ω, c)-uniformly recurrent functions and the asymptotically (compactly) (ω, c)-
almost automorphic functions; in particular, a constant non-zero function cannot be asymptotically
(ω, c)-uniformly recurrent or asymptotically (ω, c)-almost automorphic.
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3. Suppose c ∈ C\{0}, ω > 0 and f : [0,∞) → E is (ω, c)-almost periodic. Then it is well known that
there exists a unique almost periodic function Fω,c : R → E such that Fω,c(t) = fω,c(t), t ≥ 0. Define
F(t) := ct/ωFω,c(t), t ∈ R. Then it simply follows that the function F(·) is a unique (ω, c)-almost periodic
function which extends the function f (·) to the whole real line.

4. Let c ∈ R andω > 0.Then, for every (ω, c)-uniformly recurrent ((compactly) (ω, c)-almost automorphic)
function f (·),we have that the function ∥ f (·)∥ is (ω, |c|)-uniformly recurrent ((compactly) (ω, |c|)-almost
automorphic). In the case that I = [0,∞), then the same assertion holds for the asymptotically
(ω, c)-uniformly recurrent functions and the asymptotically (compactly) (ω, c)-almost automorphic
functions.

5. The spaces URω,c(I : E), APω,c(I : E), AAω,c(I : E) and AAω,c;c(I : E) are invariant under pointwise
multiplications with scalars. In the case that I = [0,∞), the same holds for the corresponding spaces
of asymptotically (ω, c)-almost periodic type functions.

6. The spaces URω,c(I : E), APω,c(I : E), AAω,c(I : E) and AAω,c;c(I : E) are translation invariant. In the case
that I = [0,∞), the same holds for the corresponding spaces of asymptotically (ω, c)-almost periodic
type functions.

7. If I = [0,∞), |c| ≥ 1, ω > 0 and the sequence ( fn(·)) in URω,c(I : E) (APω,c(I : E)/AAω,c(I : E)/AAω,c;c(I : E))
converges uniformly to a function f : I → E, then the function f (·) belongs to the space URω,c(I : E)
(APω,c(I : E)/AAω,c(I : E)/AAω,c;c(I : E)). In the case that I = [0,∞), then the same assertion holds for the
asymptotically (ω, c)-almost periodic type function spaces (as already mentioned in the introductory
part, the only exception is the space of asymptotically uniformly recurrent functions).

For completeness, we will include the most relevant details of the proofs of the following two proposi-
tions:

Proposition 2.7. Suppose E = C, c ∈ C \ {0}, ω > 0, f : I→ C and infx∈I | f (x)| > m > 0. Then the following holds:

(i) If |c| = 1 and f (·) is (ω, c)-uniformly recurrent ((ω, c)-almost periodic/(ω, c)-almost automorphic/compactly
(ω, c)-almost automorphic), then the function (1/ f )(·) is (ω, 1/c)-uniformly recurrent ((ω, 1/c)-almost periodic/
(ω, 1/c)-almost automorphic/compactly (ω, 1/c)-almost automorphic).

(ii) If |c| ≤ 1, I = [0,∞) and f (·) is (ω, c)-uniformly recurrent ((ω, c)-almost periodic), then the function (1/ f )(·) is
(ω, 1/c)-uniformly recurrent ((ω, 1/c)-almost periodic).

Proof. The proof of (i) essentially follows from the simple argumentation and the conclusions obtained in
the point [1.], while the proof of (ii) can be deduced as follows. Suppose that the function f (·) is (ω, c)-almost
periodic, i.e., the function fω,c(·) is almost periodic. This implies that for each number ϵ > 0 there exists a
finite number l > 0 such that any subinterval I′ of I contains at least one point τ such that∣∣∣∣c− t+τ

ω f (t + τ) − c−
t
ω f (t)

∣∣∣∣ ≤ ϵ, t ≥ 0.

This implies ∣∣∣∣ f (t + τ) − c−
τ
ω f (t)

∣∣∣∣ ≤ ϵ∣∣∣∣c t+τ
ω

∣∣∣∣, t ≥ 0.

Then the final conclusion is a consequence of the following simple calculation:∣∣∣∣∣∣ c
t+τ
ω

f (t + τ)
−

c
t
ω

f (t)

∣∣∣∣∣∣ = ∣∣∣∣c t
ω

∣∣∣∣ · ∣∣∣∣∣∣ f (t + τ) − c−
τ
ω f (t)

f (t + τ) · f (t)

∣∣∣∣∣∣
≤

ϵ

m2

∣∣∣∣c 2t+τ
ω

∣∣∣∣ ≤ ϵ

m2 , t ≥ 0.

The proof for (ω, c)-uniform recurrence is similar and therefore omitted.
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Proposition 2.8. Suppose that I = R, f : R→ E satisfies that the function fω,c(·) is a bounded uniformly recurrent
(almost periodic, (compactly) almost automorphic) and c−

·

ωψ(·) ∈ L1(R). Then the function c−
·

ω (ψ ∗ f )(·) is bounded
uniformly continuous and the function (ψ ∗ f )(·) is (ω, c)-uniformly recurrent ((ω, c)-almost periodic/(compactly)
(ω, c)-almost automorphic).

Proof. For every x ∈ R, the convolution (ψ ∗ f )(x) is well defined and we have

c−
x
ω (ψ ∗ f )(x) =

∫
∞

−∞

[
c−

x−y
ω ψ(x − y)

]
·

[
c−

y
ω f (y)

]
dy, x ∈ R.

Then the corresponding statement follows from the fact that the space of all almost periodic ((compactly)
almost automorphic) functions and the space of all bounded uniformly recurrent functions are convolution
invariant (see [8] and [15]-[16]).

The following definitons are logical analogues of Definition 2.1 and Definition 2.6 for Stepanov classes:

Definition 2.9. Let p ∈ [1,∞), c ∈ C\{0} and ω > 0. Then it is said that a function f ∈ Lp
loc(I : E) is Stepanov

(p, ω, c)-uniformly recurrent (Stepanov (p, ω, c)-almost periodic/Stepanov (p, ω, c)-almost automorphic) if and only
if the function fω,c(·), defined by (1), is Stepanov p-uniformly recurrent (Stepanov p-almost periodic/Stepanov p-
almost automorphic). By SpURω,c(I : E), SpAPω,c(I : E) and SpAAω,c(I : E) we denote the space of all Stepanov
(p, ω, c)-uniformly recurrent functions, the space of all Stepanov (p, ω, c)-almost periodic functions and the space of
all Stepanov (p, ω, c)-almost automorphic functions, respectively.

Definition 2.10. Let p ∈ [1,∞), c ∈ C, |c| ≥ 1 and ω > 0. Then it is said that a function f ∈ Lp
loc([0,∞) : E)

is asymptotically Stepanov (p, ω, c)-uniformly recurrent (asymptotically Stepanov (p, ω, c)-almost periodic, asymp-
totically Stepanov (p, ω, c)-almost automorphic) if and only if the function fω,c(·), defined by (1), is asymptotically
Stepanov p-uniformly recurrent (asymptotically Stepanov p-almost periodic, asymptotically Stepanov p-almost au-
tomorphic). By ASpURω,c(I : E), ASpAPω,c(I : E) and ASpAAω,c(I : E) we denote the space of all asymptotically
Stepanov (p, ω, c)-uniformly recurrent functions, the space of all asymptotically Stepanov (p, ω, c)-almost periodic
functions and the space of all asymptotically Stepanov (p, ω, c)-almost automorphic functions, respectively.

The conclusion established in the points [1.-2., 4.-7.] can be simply reformulated for the Stepanov classes.
For example, in the case of point [2.], we may conclude the following: Suppose that |c| > 1, ω > 0 and
f : I → E is Stepanov (p, ω, c)-uniformly recurrent or Stepanov (p, ω, c)-almost automorphic. If f (·) is not
almost everywhere equal to zero, then the function f (·) is not Stepanov p-bounded; moreover, in the case of
consideration of Stepanov (p, ω, c)-almost automorphicity, the function f̂ (·) is unbounded as t→ +∞ so that
a constant non-zero function cannot be Stepanov (p, ω, c)-uniformly recurrent or Stepanov (p, ω, c)-almost
automorphic.

Basically, any established result for almost periodic type functions and their Stepanov generalizations
can be straightforwardly reformulated for (ω, c)-almost periodic type functions and their Stepanov gener-
alizations (in the sequel, we will try not to consider such statements). For example, using [16, Theorem
2.16(iii)] we can immediately deduce the following:

Proposition 2.11. Let p ∈ [1,∞). If f : [0,∞) → E satisfies that the function fω,c(·) is uniformly continuous and
asymptotically Stepanov p-uniformly recurrent, then the function f (·) is asymptotically (ω, c)-uniformly recurrent.

Let us only note that the uniform continuity of function fω,c(·) is ensured provided that |c| ≥ 1 and f (·) is
a bounded uniformly continuous function. This follows from the fact that, for every two non-negative real
numbers t1, t2 ≥ 0 such that t1 < t2, the Darboux inequality yields∥∥∥∥c−

t1
ω f

(
t1

)
− c−

t2
ω f

(
t2

)∥∥∥∥ ≤ ∥∥∥∥c−
t1
ω

[
f
(
t1

)
− f

(
t2

)]∥∥∥∥ + ∥∥∥∥[c− t1
ω − c−

t2
ω

]
f
(
t2

)∥∥∥∥
≤

∥∥∥ f
(
t1

)
− f

(
t2

)∥∥∥ + 1
ω

(ln |c| + π) ·
∣∣∣t1 − t2

∣∣∣ · ∥ f ∥∞.
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Now we would like to endow the introduced spaces of (asymptotically) (ω, c)-almost periodic type
functions with certain norms. We start with the notion introduced in Definition 2.1 and Definition 2.6.
Define

∥ f ∥ω,c := sup
t∈I

∥∥∥∥c−
t
ω f (t)

∥∥∥∥.
Proposition 2.12. The spaces APω,c(I : E), AAω,c(I : E), AAω,c;c(I : E), AAPω,c([0,∞) : E), AAAω,c([0,∞) : E) and
AAAω,c;c([0,∞) : E), equipped with the norm ∥ · ∥ω,c, are Banach spaces.

Proof. Denote byX any of the above spaces. Suppose that ( fn)n is a Cauchy sequence inX. Hence, for every
ε > 0, there exists N ∈ N such that for all m, n ≥ N, we have ∥ fn − fm∥ω,c < ε. So, there exist um, un ∈ c−

·

ωX

(with the meaning clear) such that fm(t) = c
t
ω um(t) and fn(t) = c

t
ω un(t) for all t ∈ I. For m, n ≥ N, we have∥∥∥um − un

∥∥∥
∞
= sup

t∈I

∥∥∥um(t) − un(t)
∥∥∥

= sup
t∈I

∥∥∥∥c−
t
ω fm(t) − c−

t
ω fn(t)

∥∥∥∥
= sup

t∈I

∥∥∥∥|c|− t
ω

[
fm(t) − fn(t)

]∥∥∥∥
=

∥∥∥ fn − fm
∥∥∥
ω,c < ε.

Hence, (un)n is a Cauchy sequence in c−
·

ωX, which is a complete space. Then, there exists u ∈ c−
·

ωX such
that limn→+∞ un = u. Define f (t) := c

t
ω u(t), t ∈ I. Thus,∥∥∥ fn − f

∥∥∥
ω,c = sup

t∈I

∥∥∥∥|c|− t
ω

[
fn(t) − f (t)

]∥∥∥∥
= sup

t∈I

∥∥∥∥|c|− t
ω c

t
ω un(t) − |c|−

t
ω c

t
ω u(t)

∥∥∥∥
= sup

t∈I

∥∥∥un(t) − u(t)
∥∥∥→ 0,

when n→∞. Hence, X is a Banach space.

For any c ∈ C \ {0} and p ∈ [1,∞),we denote by Lp
S,c(I : E) the space of all functions f ∈ Lp

loc(I : E) such that

∥ f ∥p,ω,c := sup
t∈I

(∫ t+1

t
|c|−

s
ω f (s) ds

)1/p

.

Then (Lp
S,c(I : E), ∥ · ∥p,ω,c) is a Banach space. Arguing as above, we may conclude that SpAPω,c(I : E)

(SpAAω,c(I : E)/ASpAPω,c(I : E), ASpAAω,c(I : E)) is a closed subspace of Lp
S,c(I : E) and therefore the Banach

space itself.

3. (ω, c)-Uniform recurrence of type i and (ω, c)-almost periodicity of type i (i = 1, 2)

Suppose temporarily that f ∈ Pω,c(I : E) and n ∈ N. Then we have f (t + nω) = cn f (t), t ∈ I. Setting
αn = nω, we get that for each ϵ > 0 and t ∈ I we have∥∥∥∥ f (t + αn

)
− c

αn
ω f (t)

∥∥∥∥ ≤ ϵ and
∥∥∥∥c
−αn
ω f (t + αn

)
− f (t)

∥∥∥∥ ≤ ϵ. (5)

The equation (5) motivates us to introduce the following concepts of (ω, c)-uniform recurrence and (ω, c)-
almost periodicity [it is not clear how we can do that for (compact) (ω, c)-almost automorphicity in a
satisfactory way].
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Definition 3.1. Suppose that f : I→ E is continuous, c ∈ C \ {0} and ω > 0.

(i) We say that f (·) is (ω, c)-uniformly recurrent of type 1 (type 2) if and only if there exists a strictly increasing
sequence (αn) of positive reals tending to plus infinity such that

lim
n→+∞

sup
t∈I

∥∥∥∥ f (t + αn) − c
αn
ω f (t)

∥∥∥∥ = 0
(

lim
n→+∞

sup
t∈I

∥∥∥∥c
−αn
ω f (t + αn) − f (t)

∥∥∥∥ = 0
)
.

(ii) We say that f (·) is (ω, c)-almost periodic of type 1 (type 2) if and only if for each ϵ > 0 the set

{
τ > 0 : sup

t∈I

∥∥∥∥ f (t + τ) − c
τ
ω f (t)

∥∥∥∥ < ϵ} ({
τ > 0 : sup

t∈I

∥∥∥∥c
−τ
ω f (t + τ) − f (t)

∥∥∥∥ < ϵ})
is relatively dense in [0,∞).

By URω,c,i(I : E) and APω,c,i(I : E), we denote the space of all (ω, c)-uniformly recurrent functions of type i and
the space of all (ω, c)-almost periodic functions of type i, respectively (i = 1, 2).

It is clear that the set {nω : n ∈ N} is relatively dense in [0,∞). Taking into account this observation,
it follows that the space Pω,c(I : E) is contained in the spaces URω,c,i(I : E) and APω,c,i(I : E), for i = 1, 2;
moreover, URω,c,i(I : E) ⊇ APω,c,i(I : E) for i = 1, 2 and it is clear that for any t ∈ I and τ ≥ 0 we have∥∥∥∥c

−τ
ω f (t + τ) − f (t)

∥∥∥∥ = ∥∥∥∥c
−τ
ω

[
f (t + τ) − c

τ
ω f (t)

]∥∥∥∥
= |c|

−τ
ω

∥∥∥∥ f (t + τ) − c
τ
ω f (t)

∥∥∥∥.
Therefore, in the case that |c| = 1, it simply follows that the (ω, c)-almost periodicity of type 1 (type 2) is
equivalent with the usual almost periodicity as well as that the notion of (ω, c)-uniform recurrence of type
1 is equivalent with the notion of (ω, c)-uniform recurrence of type 2.

But, in the case that |c| , 1, the concepts introduced in Definition 3.1 are not satisfactory to a great
extent. Before stating the corresponding result which justifies this fact, let us denote by Mω,c(I : E) the space
consisting of all functions f : I → E such that c−·/ω f (·) ∈ P(I : E). It is clear that Mω,c(I : E) is not a vector
space together with the usual operations.

Theorem 3.2. Let c ∈ C \ {0} and ω > 0.

(i) Suppose that |c| > 1. Then URω,c,i(I : E) = APω,c,i(I : E) =Mω,c(I : E) for i = 1, 2.

(ii) Suppose that |c| < 1 and I = R. Then URω,c,i(I : E) = APω,c,i(I : E) =Mω,c(I : E) for i = 1, 2.

Before giving the proof of Theorem 3.2, we will state two lemmas. The first one is simple and follows
almost immediately from Definition 3.1:

Lemma 3.3. Suppose that f : I→ E is continuous, c ∈ C \ {0} and ω > 0.

(i) If |c| ≥ 1, then URω,c,1(I : E) ⊆ URω,c,2(I : E) and APω,c,1(I : E) ⊆ APω,c,2(I : E).

(ii) If |c| ≤ 1, then URω,c,1(I : E) ⊇ URω,c,2(I : E) and APω,c,1(I : E) ⊇ APω,c,2(I : E).

(iii) In the case that I = [0,∞) and |c| ≥ 1, then URω,c,2(I : E) ⊆ URω,c(I : E) and APω,c,2(I : E) ⊆ APω,c(I : E).

Lemma 3.4. (see also Proposition 2.5) Suppose that I = R and f : R→ E. Then f (·) is (ω, c)-uniformly recurrent of
type 1 (type 2) [(ω, c)-almost periodic of type 1 (type 2)] if and only if the function f̌ (·) is (ω, 1/c)-uniformly recurrent
of type 2 (type 1) [(ω, c)-almost periodic of type 2 (type 1)].
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Proof. The proof simply follows by observing that, for every τ > 0 and ϵ > 0, we have:

sup
t∈I

∥∥∥∥ f (t + τ) − c
τ
ω f (t)

∥∥∥∥ < ϵ⇔ sup
t∈I

∥∥∥∥ f (−t + τ) − c
τ
ω f (−t)

∥∥∥∥ < ϵ
⇕

sup
t∈I

∥∥∥∥ f̌ (t − τ) − c
τ
ω f̌ (t)

∥∥∥∥ < ϵ⇔ sup
t∈I

∥∥∥∥ f̌ (t) − c
τ
ω f̌ (t + τ)

∥∥∥∥ < ϵ
⇕

sup
t∈I

∥∥∥∥(1/c)−
τ
ω f̌ (t + τ) − f̌ (t)

∥∥∥∥ < ϵ.
Proof of Theorem 3.2. Keeping in mind Lemma 3.4, it suffices to prove (i). Towards this end, we recognize
two cases: I = [0,∞) and I = R. In the first case, it suffices to show that URω,c,2([0,∞) : E) ⊆ Mω,c([0,∞) : E)
and Mω,c([0,∞) : E) ⊆ APω,c,1([0,∞) : E). So, let f ∈ URω,c,2([0,∞) : E). This implies that there exist a finite
constant M > 0 and a strictly increasing sequence (αn) of positive reals tending to plus infinity such that

sup
t∈I,n∈N

∥∥∥∥c
−αn
ω f (t + αn) − f (t)

∥∥∥∥ ≤M.

Since f (t) = ct/ω fω,c(t), t ≥ 0, the above implies∥∥∥∥ fω,c(t + αn) − fω,c(t)
∥∥∥∥ ≤ |c|−(t/ω)M, t ≥ 0, n ∈N.

Hence, for every n ∈N,we have limt→+∞[ fω,c(t+ αn)− fω,c(t)] = 0.On the other hand, Lemma 3.3(iii) yields
that, for every n ∈ N, we have that the function fω,c(· + αn) − fω,c(·) is uniformly recurrent; hence, for every
n ∈N,we have fω,c(·+αn) ≡ fω,c(·) and therefore fω,c(·) belongs to the space P([0,∞) : E), as claimed (cf. [16,
points (ix) and (xi)]). To see that Mω,c([0,∞) : E) ⊆ APω,c,1([0,∞) : E), suppose that fω,c(t + T) = fω,c(t) for all
t ≥ 0 and some T > 0. This simply implies that f (t+nT) = cnT/ω f (t) for all n ∈N so that f ∈ APω,c,1([0,∞) : E)
because the set {nT : n ∈ N} is relatively dense in [0,∞). Suppose now that I = R. Similarly as above, it
follows that URω,c,i(R : E) ⊇ APω,c,i(R : E) ⊇ Mω,c(R : E) for i = 1, 2. Therefore, it suffices to show that
URω,c,2(R : E) ⊆Mω,c(R : E). Let f ∈ URω,c,2(R : E). Since the restriction of f (·) on [0,∞) belongs to the space
URω,c,2([0,∞) : E), it readily follows that there exists a number T > 0 such that fω,c(t + T) = fω,c(t) for all
t ≥ 0. To complete the proof, it suffices to prove that this equality holds for all real numbers t < 0. Let ϵ > 0
be fixed. Due to our assumption, we have the existence of an integer n0 ∈N such that t + αn > 0 as well as
that ∥∥∥∥ct/ω fω,c(t + αn) − ct/ω fω,c(t)

∥∥∥∥ ≤ ϵ
and

∥∥∥∥c(t+T)/ω fω,c(t + T + αn) − c(t+T)/ω fω,c(t + T)
∥∥∥∥ ≤ ϵ,

i.e., ∥∥∥∥ct/ω fω,c(t + αn) − ct/ω fω,c(t)
∥∥∥∥ ≤ ϵ

and
∥∥∥∥ct/ω fω,c(t + αn) − ct/ω fω,c(t + T)

∥∥∥∥ ≤ ϵ|c|−T/ω.

This implies ∥∥∥∥ct/ω
[

fω,c(t + T) − fω,c(t)
]∥∥∥∥ ≤ ϵ(1 + |c|−T/ω

)
.

Letting ϵ→ 0+, we get fω,c(t + T) = fω,c(t), as claimed. □
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Corollary 3.5. Suppose that i = 1, 2, |c| < 1, ω > 0 and f ∈ APω,c,i([0,∞) : E). Then there exists a function
F ∈ APω,c,i(R : E) such that F(t) = f (t) for all t ≥ 0 if and only if f ∈Mω,c([0,∞) : E).

Further on, the points [4., 5., 6., 7.] can be restated as follows:

4’. Let c ∈ R and ω > 0. Then, for every (ω, c)-uniformly recurrent function f (·) of type 1 (type 2), we
have that the function ∥ f (·)∥ is (ω, |c|)-uniformly recurrent of type 1 (type 2).

5’. The spaces URω,c,i(I : E) and APω,c,i(I : E) are invariant under pointwise multiplications with scalars
(i = 1, 2).

6’. The spaces URω,c,i(I : E) and APω,c,i(I : E) are translation invariant (i = 1, 2).

7’. If I = [0,∞), |c| ≥ 1, ω > 0 and the sequence ( fn(·)) in URω,c,2(I : E) converges uniformly to a function
f : I → E, then the function f (·) belongs to the space URω,c,2(I : E). Furthermore, if I = [0,∞), |c| ≤ 1,
ω > 0 and the sequence ( fn(·)) in URω,c,1(I : E) (APω,c,1(I : E)) converges uniformly to a function
f : I→ E, then the function f (·) belongs to the space URω,c,1(I : E) (APω,c,1(I : E)).

Now we will prove the following

Proposition 3.6. Suppose that i = 1, 2, |c| < 1, ω > 0 and f ∈ APω,c,i(I : E). Then the function fω,c(·) is bounded
and limt→+∞ f (t) = 0.

Proof. By Theorem 3.2(ii) and Lemma 3.3(iv) it suffices to consider the case I = [0,∞) and the class
APω,c,1([0,∞) : E). Let ϵ = 1. Then there exists a finite number l > 0 such that any subinterval I′ of
[0,∞) contains a point τ such that ∥c

−τ
ω f (t + τ) − f (t)∥ < 1 for all t ≥ 0. Suppose that t ∈ [nl, (n + 1)l] for some

n ∈ N. Then there exists τn ∈ [(n − 1)l,nl] such that ∥c
−τn
ω f (t′ + τn) − f (t′)∥ < 1 for all t′ ≥ 0. In particular,

t − τn = t′ ∈ [0, 2l] and the above implies ∥ f (t)∥ ≤ (1 +M)|c|τn/ω ≤ (1 +M)[maxt′′∈[0,2l] |c|−t′′/ω]|c|t/ω, where
M := supx∈[0,2l] ∥ f (x)∥. This yields the required limit equality.

Example 3.7. The first example of an even, unbounded, uniformly continuous, uniformly recurrent function f :
R → R has been constructed in [13, Theorem 2.1]. Denote its restriction to the non-negative real axis by the same
symbol. Then Proposition 3.6 implies that the function c−·/ω f (·) cannot belong to the space APω,c,i([0,∞) : C) for
i = 1, 2. On the other hand, it is clear that c−·/ω f (·) ∈ URω,c([0,∞) : C) ⊆ URω,c,i([0,∞) : C) for i = 1, 2.

Corollary 3.8. Suppose that |c| < 1 and ω > 0. Then f ∈ APω,c,1([0,∞) : E) if and only if the function fω,c(·) is
bounded and continuous.

Proof. Due to Proposition 3.6, it suffices to show that the boundedness of function fω,c(·) implies that
f ∈ APω,c,1([0,∞) : E). If so, then we need to prove that for each ϵ > 0 the set consisting of all positive reals
t > 0 such that ∥∥∥∥c(t+τ)/ω fω,c(t + τ) − c(t+τ)/ω fω,c(t)

∥∥∥∥ ≤ ϵ, t ≥ 0

is relatively dense in [0,∞). But, this simply follows from the fact that this set contains a ray [a(ϵ),∞) for
a sufficiently large real number a(ϵ) > 0, which can be proved by using the boundedness of fω,c(·) and the
simple inequality |c|t/ω ≤ 1, t ≥ 0.

Remark 3.9. Suppose that |c| < 1 and ω > 0. Using Corollary 3.8, we can simply prove that f ∈ APω,c,1([0,∞) : E)
if and only if for every (there exists) strictly increasing sequence (αn) of positive reals tending to plus infinity such
that limn→+∞ supt≥0 ∥ f (t + αn) − c

αn
ω f (t)∥ = 0.

Example 3.10. Suppose that f (t) := 2−t[1 + (1/ ln(2 + t))], t ≥ 0. Due to Corollary 3.8, this function belongs
to the space AP1,1/2,1([0,∞) : C) ⊆ UR1,1/2,1([0,∞) : C). On the other hand, f (·) does not belong to the space
UR1,1/2,2([0,∞) : C). Otherwise, we would have the existence of an arbitrarily large positive real number α > 0 such
that

sup
t≥0

∣∣∣∣∣∣2−t ln(1 + (α/(1 + t)))
ln(2 + t) · ln(2 + t + α)

∣∣∣∣∣∣ ≤ ϵ.
Taking t = 0, this simply leads us to a contradiction.
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The class URω,c,1([0,∞) : E) is also extremely non-interesting due to the following characterization:

Proposition 3.11. Suppose c ∈ C \ {0}, |c| < 1 and ω > 0. Then URω,c,1([0,∞) : E) = C0([0,∞) : E).

Proof. If f ∈ C0([0,∞) : E), then for each strictly increasing sequence (αn) tending to plus infinity and for each
real number ϵ > 0 we can always find an integer n0 ∈N such that ∥ f (t+αn)−cαn/ω f (t)∥ ≤ (ϵ/2)+ |c|αn/ω∥ f (t)∥ ≤
(ϵ/2) + |c|αn/ω∥ f ∥∞ ≤ ϵ, t ≥ 0, n ≥ n0, which implies f ∈ URω,c,1([0,∞) : E). To prove the converse, let us
first show that the assumption f ∈ URω,c,1([0,∞) : E) implies the boundedness of f (·). If (αn) satisfies the
requirements of definition of space URω,c,1([0,∞) : E), then we may assume without loss of generality that
αn+1 − αn > 3 for all n ∈N and∥∥∥ f (t + αn)

∥∥∥ ≤ 1 + |c|αn/ω∥ f (t)∥, t ≥ 0, n ∈N. (6)

Let n ∈ N be fixed and let M0 := maxt∈[0,αn] ∥ f (t)∥. Then (6) inductively implies that for arbitrary T ∈ (0, αn]
and for arbitrary k ∈Nwe have

∥∥∥ f (T + kαn)
∥∥∥ ≤ k−1∑

j=0

|c|αn j/ω + |c|kαn/ωM0 ≤

∞∑
j=0

|c| j/ω +M0.

Therefore, ∥ f (t)∥ ≤
∑
∞

j=0 |c| j/ω +M0, t ≥ 0, as claimed. The remainder of proof is simple; since the function
f (·) is bounded, then we have the existence of an integer n1 ∈N such that∥∥∥ f (t + αn)

∥∥∥ ≤ |c|αn/ω∥ f ∥∞ + (ϵ/2) < ϵ, t ≥ 0, n ≥ n1,

and therefore f ∈ C0([0,∞) : E).

Now we will prove the following result:

Proposition 3.12. Suppose that |c| < 1 and ω > 0. Then f ∈ APω,c,2([0,∞) : E) if and only if the function fω,c(·) is
bounded continuous and for each ϵ > 0 and N > 0 the set of all positive real numbers τ > 0 such that

∥ fω,c(t + τ) − fω,c(t)∥ ≤ ϵ, t ∈ [0,N] (7)

is relatively dense in [0,∞).

Proof. Suppose first that f ∈ APω,c,2([0,∞) : E). Due to Proposition 3.6, the function fω,c(·) is bounded.
Let ϵ > 0 and N > 0 be fixed, and let ϵ0 > 0 be such that ϵ0|c|−N/ω

≤ ϵ. By our assumption, the set
of all positive reals τ > 0 such that ∥ fω,c(t + τ) − fω,c(t)∥ ≤ ϵ0|c|−t/ω, t ≥ 0 is relatively dense in [0,∞). If
τ belongs to this set, then we have ∥ fω,c(t + τ) − fω,c(t)∥ ≤ ϵ0|c|−t/ω

≤ ϵ, t ∈ [0,N]. For the converse, it
suffices to consider the case in which fω,c , 0. Fix a number ϵ > 0. In this case, we can find a number
N > 0 such that |c|t/ω ≤ ϵ/(2(1 + ∥ fω,c∥∞)) for all t ≥ N. For this ϵ > 0 and N > 0 we can find a relatively
dense set of positive reals τ satisfying (7). If τ belongs to this set, then there exist two possibilities:
t ≥ N or t ∈ [0,N). In the first case, we have ∥ct/ω[ fω,c(t + τ) − fω,c(t)]∥ ≤ ϵ|c|t/ω ≤ ϵ; in the second case,
we have ∥ct/ω[ fω,c(t + τ) − fω,c(t)]∥ ≤ (2ϵ∥ fω,c∥∞)/(2(1 + ∥ fω,c∥∞)) < ϵ. Summa summarum, we have that
∥ fω,c(t + τ) − fω,c(t)∥ ≤ ϵ0|c|−t/ω, t ≥ 0. The proof of the proposition is thereby complete.

Remark 3.13. (i) Let us recall that any Levitan N-almost periodic function fω,c : [0,∞) → E satisfies that for
each ϵ > 0 and N > 0 the set of all positive reals τ > 0 such that (7) holds is relatively dense in [0,∞) (cf.
[20, Definition 2, p. 53]). In particular, the restriction of any almost automorphic function fω,c : R → E
to [0,∞) satisfies this condition. Denote by AA[0,∞)(E) the vector space consisting of such functions; thus,
c·/ωAA[0,∞)(E) ⊆ APω,c,2([0,∞) : E). Recall also that the function t 7→ 1/(2 + cos t + cos(

√
2t)), t ≥ 0 is

Levitan N-almost periodic and unbounded.
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(ii) According to [20, Definition 2, p. 80], a continuous function f : I → E is called recurrent if and only if for
each ϵ > 0 and N > 0 the set of all positive reals τ > 0 such that (7) holds is relatively dense in [0,∞) (the
case I = R has been considered in [20], only). The Stepanov generalizations of recurrent functions can be also
introduced but then it is not clear how one can consider the invariance of recurrence under the action of infinite
convolution product given by (14) since the methods proposed in the proof of [15, Proposition 2.6.11] and related
results do not work in this framework. Note also that we can extend the notion of (ω, c)-almost automorphicity
by requiring that the function fω,c(·) is recurrent.

(iii) Due to Corollary 3.8, APω,c,1([0,∞) : E) is the vector space together with the usual operations. This is not
longer true for the space APω,c,2([0,∞) : E), which can be deduced from Proposition 3.12 and a counterexample
constructed by Veech (see e.g., [4, Example 2.8], and the corresponding example given in the pioneering paper
[19] by Levin). In particular, APω,c,2([0,∞) : E) ⊆ URω,c,2([0,∞) : E) strictly contains c·/ωAA[0,∞)(E). On
the other hand, the compactly almost automorphic function constructed by Fink in [10] is not asymptotically
uniformly recurrent, as shown in [16, Example 2.23]. This implies that there exists a function f ∈ c·/ωAA[0,∞)(E)
such that fω,c(·) is not uniformly recurrent; in particular, URω,c,2([0,∞) : E) strictly contains URω,c([0,∞) : E).

(iv) As shown by Bohr by a counterexample constructed on [6, pp. 113-118], there exist two bounded, even, uniformly
continuous, uniformly recurrent functions f : R → R and 1 : R → R such that its sum is not uniformly
recurrent. Furthermore, we can choose f (·) and 1(·) such that f (0) = 1(0) = 1 and | f (t) + 1(t)| ≤ 1 for |t| ≥ 1.
Denote the restrictions of such functions to the non-negative real axis by the same symbols, and define after
that F(t) := 2−t f (t), t ≥ 0 and G(t) := 2−t1(t), t ≥ 0. Then F, G ∈ UR1,1/2([0,∞) : C) ⊆ UR1,1/2,2([0,∞) : C)
but F + G < UR1,1/2,2([0,∞) : C). If we suppose the contrary, then we would have the existence of a strictly
increasing sequence (αn) of positive reals tending to plus infinity such that

lim
n→+∞

sup
t≥0

∣∣∣∣2−t
[

f (t + αn) + 1(t + αn)
]
− 2−t[ f (t) + 1(t)]

∣∣∣∣ = 0,

which is impossible because for each n ∈N such that αn ≥ 1 we have that supt≥0 |2
−t[ f (t + αn) + 1(t + αn)] −

2−t[ f (t) + 1(t)]| ≥ | f (0) + 1(0) − [ f (αn) + 1(αn)]| = |2 − [ f (αn) + 1(αn)]| ≥ 1. In particular, this example can
be used to show that the set URω,c,2([0,∞) : C) does not form a vector space together with the usual operations.

(v) Using Proposition 3.12, as well as the arguments contained in the proofs of Proposition 2.12 and [5, Theorem 8◦,
pp. 3-4], it follows that APω,c,2([0,∞) : E) is a complete metric space equipped with the distance d(·, ·) := ∥·−·∥ω,c.

Keeping in mind the proved results, we will consider the following notion for Stepanov classes, only:

Definition 3.14. Let p ∈ [1,∞), c ∈ C\{0}, |c| ≤ 1 and ω > 0. Then it is said that a function f ∈ Lp
loc([0,∞) : E) is

Stepanov (p, ω, c)-uniformly recurrent of type 2, resp. Stepanov (p, ω, c)-almost periodic of type 2 if and only if

lim
n→+∞

sup
t≥0

∫ t+1

t

∥∥∥∥c
−αn
ω f (s + αn) − f (s)

∥∥∥∥p
ds = 0,

resp. for each ϵ > 0 the set{
τ > 0 : sup

t≥0

∫ t+1

t

∥∥∥∥c
−τ
ω f (s + τ) − f (s)

∥∥∥∥p
ds < ϵ

}
is relatively dense in [0,∞).

By SpURω,c,2([0,∞) : E) and SpAPω,c,2([0,∞) : E) we denote the space of all Stepanov (p, ω, c)-uniformly recurrent
functions of type 2 and the space of all Stepanov (p, ω, c)-almost periodic functions of type 2, respectively.

If 1 ≤ p ≤ q < ∞ and f ∈ SqURω,c,2([0,∞) : E), resp. f ∈ SqAPω,c,2([0,∞) : E), then f ∈ SpURω,c,2([0,∞) : E),
resp. f ∈ SpAPω,c,2([0,∞) : E); furthermore, the space SpURω,c,2([0,∞) : E), resp. SpAPω,c,2([0,∞) : E), contains
the space URω,c,2([0,∞) : E), resp. APω,c,2([0,∞) : E). It is simply verified that the space SpURω,c,2([0,∞) : E),
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resp. SpAPω,c,2([0,∞) : E), consists of those locally p-integrable functions f : I→ E for which f̂ (·) belongs to
the space URω,c,2([0,∞) : Lp([0, 1] : E)), resp. APω,c,2([0,∞) : Lp([0, 1] : E)). Keeping in mind this observation,
it is straightforward to transfer the previously proved results and the points [4’.-7’.] for the introduced
Stepanov classes; details can be omitted. Note, finally, that SpAPω,c,2([0,∞) : E) is a complete metric spaces
equipped with the distance d(·, ·) := ∥ · − · ∥p,ω,c.

3.1. Composition principles for (ω, c)-almost periodic type functions
In [17], the second named author has recently investigated composition principles for uniformly re-

current functions and ⊙1-almost periodic functions. The methods established in this paper enable one to
formulate a great number of composition principles for the classes introduced in Definition 2.1, Definition
2.6 and Definition 2.9-Definition 2.10. We will explain this fact only in the case of consideration of [17,
Theorem 2.9] for Stepanov uniformly recurrent functions. So, let us assume that the function F : I × X→ E
is continuous and the function fω,c(·) is Stepanov p-uniformly recurrent, i.e., the function f (·) is Stepanov
(p, ω, c)-almost periodic (p > 1, ω > 0, c ∈ C \ {0}). Define the function G : I × X→ E by

G(t, x) := c
−

t
ω1

1 F
(
t, ct/ωx

)
, t ∈ I, x ∈ X,

where c1 ∈ C \ {0} and ω1 > 0. If the requirements of the above-mentioned theorem hold with the functions
f (·) and F(·, ·) replaced respectively with the functions fω,c(·) and G(·, ·), then the resulting function

t 7→ G
(
t, fω,c(t)

)
= c−t1/ω1

1 F(t, f (t)), t ∈ I

is Stepanov q-uniformly recurrent so that the function t 7→ F(t, f (t)), t ∈ I is Stepanov (q, ω1, c1)-uniformly
recurrent. More precisely, we have:

Theorem 3.15. Let I = R or I = [0,∞). Suppose that the following conditions hold:

(i) The function G : I × X → E is Stepanov p-uniformly recurrent, with p > 1, and there exist a number
r ≥ max(p, p/p − 1) and a function LG ∈ Lr

S(I) such that:

∥G(t, x) − G(t, y)∥ ≤ LG(t)∥x − y∥X, t ∈ I, x, y ∈ X. (8)

(ii) The function fω,c : I → X is Stepanov p-uniformly recurrent and there exists a set E ⊆ I with m(E) = 0 such
that K := { fω,c(t) : t ∈ I \ E} is relatively compact in X.

(iii) For every compact set K ⊆ X, there exists a strictly increasing sequence (αn) of positive real numbers tending
to plus infinity such that

lim
n→+∞

sup
t∈I

sup
u∈K

∫ 1

0

∥∥∥G(t + s + αn,u) − G(t + s,u)
∥∥∥p

ds = 0 (9)

and (2) holds with the function fω,c(·) and the norm ∥ · ∥ replaced respectively by the function ˆfω,c(·) and the
norm ∥ · ∥Lp([0,1]:X) therein.

Then q := pr/p + r ∈ [1, p) and F(·, f (·)) is Stepanov (q, ω1, c1)-uniformly recurrent.

In the remainder of this subsection, we will state and prove some composition principles for (ω, c)-
uniformly recurrent functions of type 2; see also Corollary 3.8 and Proposition 3.11 (we can simply re-
formulate these results for (ω, c)-almost periodic functions of type 2). Hence, in the continuation of this
subsection, we will assume that |c| ≤ 1, I = [0,∞) and i = 2.

Suppose that F : I × X→ E is a continuous function and there exists a finite constant L > 0 such that

∥F(t, x) − F(t, y)∥ ≤ L∥x − y∥X, t ∈ I, x, y ∈ X. (10)
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Define F (t) := F(t, f (t)), t ∈ I. We will use the following estimate (τ ≥ 0, ω > 0, c ∈ C \ {0}, t ∈ I):∥∥∥∥c(−τ)/ωF(t + τ, f (t + τ)) − F(t, f (t))
∥∥∥∥

≤

∥∥∥∥c(−τ)/ωF(t + τ, f (t + τ)) − F
(
t, c(−τ)/ω f (t + τ)

)∥∥∥∥
+

∥∥∥∥F
(
t, c(−τ)/ω f (t + τ)

)
− F(t, f (t))

∥∥∥∥
≤

∥∥∥∥c(−τ)/ωF(t + τ, f (t + τ)) − F
(
t, c(−τ)/ω f (t + τ)

)∥∥∥∥+L
∥∥∥∥c(−τ)/ω f (t + τ) − f (t)

∥∥∥∥. (11)

Remark 3.16. Albeit we will not employ this estimate henceforth, it should be noticed that we also have∥∥∥∥F(t + τ, f (t + τ)) − cτ/ωF(t, f (t))
∥∥∥∥

≤

∥∥∥∥F(t + τ, f (t + τ)) − F
(
t + τ, cτ/ω f (t)

)∥∥∥∥+∥∥∥∥F
(
t + τ, cτ/ω f (t)

)
− cτ/ωF(t, f (t))

∥∥∥∥
≤ L

∥∥∥∥ f (t + τ) − cτ/ω f (t)
∥∥∥∥ + ∥∥∥∥F

(
t + τ, cτ/ω f (t)

)
− cτ/ωF(t, f (t))

∥∥∥∥.
Using the proof of [15, Theorem 3.29] and (11), we can simply deduce the following result:

Theorem 3.17. Suppose that F : I × X → E is a continuous function and there exists a finite constant L > 0 such
that (10) holds.

(i) Suppose that f : I → X is (ω, c)-uniformly recurrent of type 2. If there exists a strictly increasing sequence
(αn) of positive reals tending to plus infinity such that

lim
n→+∞

sup
t∈I

∥∥∥∥c
−αn
ω f (t + αn) − f (t)

∥∥∥∥ = 0

and
lim

n→+∞
sup

t∈I

∥∥∥∥c(−αn)/ωF
(
t + αn, f (t + αn)

)
− F

(
t, c(−αn)/ω f (t + αn)

)∥∥∥∥= 0,

then the mapping F (t) := F(t, f (t)), t ∈ I is (ω, c)-uniformly recurrent of type 2.

(ii) Suppose that f : I → X is (ω, c)-almost periodic of type 2. If for each ϵ > 0 the set of all positive real numbers
τ > 0 such that

sup
t∈I

∥∥∥∥c
−τ
ω f (t + τ) − f (t)

∥∥∥∥ < ϵ,
and

sup
t∈I

∥∥∥∥c(−τ)/ωF(t + τ, f (t + τ)) − F
(
t, c(−τ)/ω f (t + τ)

)∥∥∥∥< ϵ
is relatively dense in [0,∞), then the mapping F (t) := F(t, f (t)), t ∈ I is (ω, c)-almost periodic of type 2.

We can similarly reformulate the statements of [15, Theorem 3.30, Theorem 3.31] in our context (cf. also
[2, Theorem 2.11] and [9, Theorem 2.11]).

Now we will provide two results for Stepanov classes of (ω, c)-uniformly recurrent functions of type 2,
thus continuing the analysis raised in [17, Theorem 2.9, Theorem 2.10, Theorem 2.11]. We will first state an
analogue of the last mentioned theorem:

Theorem 3.18. Let I = [0,∞), |c| ≤ 1, ω > 0, p, q ∈ [1,∞), r ∈ [1,∞], 1/p = 1/q+1/r and the following conditions
hold:

(i) The function F : I ×X→ E is Stepanov p-uniformly recurrent and there exists a function LF ∈ Lr
S(I) such that

(8) holds with the function G(·, ·) replaced with the function F(·, ·) therein.
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(ii) There exists a strictly increasing sequence (αn) of positive real numbers tending to plus infinity such that

lim
n→+∞

sup
t≥0

∫ t+1

t

(
sup

u∈R( f )

∥∥∥∥c−αn/ωF
(
s + αn,u

)
− F

(
s, cαn/ωu

)∥∥∥∥)p

ds = 0 (12)

and

lim
n→+∞

sup
t≥0

∫ t+1

t

∥∥∥∥c
−αn
ω f (s + αn) − f (s)

∥∥∥∥q
ds = 0.

Then the function F(·, f (·)) is Stepanov (p, ω, c)-uniformly recurrent of type 2. Furthermore, the assumption that
F(·, 0) is Stepanov p-bounded implies that the function F(·, f (·)) is Stepanov p-bounded, as well.

Proof. We will only provide the main details of proof since it is very similar to the proof of [22, Theorem
2.2]. Using the arguments contained for proving the estimate (11), we get that (t ≥ 0, n ∈N):∥∥∥∥c−αn/ωF

(
t + αn, f (t + αn)

)
− F(t, f (t))

∥∥∥∥
≤

∥∥∥∥c(−αn)/ωF(t + αn, f (t + αn)) − F
(
t, c(−αn)/ω f (t + αn)

)∥∥∥∥
+ LF(t)

∥∥∥∥c(−αn)/ω f (t + αn) − f (t)
∥∥∥∥. (13)

Keeping in mind (13), we can repeat almost verbatim the arguments given in the proof of [22, Theorem 2.2]
so as to conclude that there exists a finite constant cp > 0 such that (n ∈N):

sup
t≥0

∫ t+1

t

∥∥∥∥c−αn/ωF
(
s + αn, f (s + αn)

)
− F(s, f (s))

∥∥∥∥p
ds

≤

∥∥∥∥LF(·)
∥∥∥∥p

Sr
· sup

t≥0

(∫ t+1

t

∥∥∥∥c−αn/ω f
(
s + αn

)
− f (s)

∥∥∥∥q
ds

)p/q

+ sup
t≥0

∫ t+1

t

(
sup

u∈R( f )

∥∥∥∥c−αn/ωF
(
s + αn,u

)
− F(s,u)

∥∥∥∥)p

ds.

By (12), this yields that the function F(·, f (·)) is Stepanov (p, ω, c)-uniformly recurrent of type 2. If the function
F(·, 0) is Stepanov p-bounded, then the arguments given on [22, p. 6, l. -1-l. -5] enable one to see that the
function F(·, f (·)) is Stepanov p-bounded, as claimed.

We can simply formulate a consequence of this result with the usual Lipshitzian condition used (see [17,
Theorem 2.10]). Similarly, we can prove the following analogue of [17, Theorem 2.9]:

Theorem 3.19. Let I = [0,∞), |c| ≤ 1, ω > 0 and the following conditions hold:

(i) The function F : I × X → E is Stepanov p-uniformly recurrent with p > 1, and there exist a number
r ≥ max(p, p/p − 1) and a function LF ∈ Lr

S(I) such that (8) holds with the function G(·, ·) replaced with the
function F(·, ·) therein.

(ii) There exists a strictly increasing sequence (αn) of positive real numbers tending to plus infinity such that

lim
n→+∞

sup
t≥0

∫ t+1

t

(
sup

u∈R( f )

∥∥∥∥c−αn/ωF
(
s + αn,u

)
− F(s, cαn/ωu)

∥∥∥∥)p

ds = 0

and

lim
n→+∞

sup
t≥0

∫ t+1

t

∥∥∥∥c
−αn
ω f (s + αn) − f (s)

∥∥∥∥p
ds = 0.
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Then q := pr/p+ r ∈ [1, p) and the function F(·, f (·)) is Stepanov (q, ω, c)-uniformly recurrent of type 2. Furthermore,
the assumption that F(·, 0) is Stepanov q-bounded implies that the function F(·, f (·)) is Stepanov q-bounded, as well.

Remark 3.20. Concerning Theorem 3.18 and Theorem 3.19, it should be noticed that we do not require that there
exists a set E ⊆ I with m(E) = 0 such that the set K := { f (t) : t ∈ I \ E} is relatively compact. For Stepanov
(p, ω, c)-uniformly recurrent functions of type 2, we cannot assume, in (12), a slightly weaker condition

lim
n→+∞

sup
t≥0

sup
u∈R( f )

∫ t+1

t

∥∥∥∥c−αn/ωF
(
s + αn,u

)
− F(s, cαn/ωu)

∥∥∥∥p
ds = 0.

See also [22, Lemma 2.1].

4. (ω, c)-Almost periodic properties of convolution products and applications to integro-differential
equations

In the first part of this section, we will examine the invariance of (ω, c)-almost periodic properties of the
infinite convolution product

F(t) :=
∫ t

−∞

R(t − s) f (s) ds, t ∈ R, (14)

where a strongly continuous operator family (R(t))t>0 ⊆ L(E,X) satisfies certain assumptions. As already
mentioned, the consideration is simple for the (ω, c)-uniformly recurrent functions, (ω, c)-almost periodic
functions and (compactly) (ω, c)-almost automorphic functions because we then need to examine when the
function t 7→ c−(t/ω)F(t), t ∈ R is uniformly recurrent, almost periodic or (compactly) almost automorphic,
respectively. But, we have

c−
t
ω F(t) =

∫ t

−∞

[
c−

t−s
ω R(t − s)

][
c−

s
ω f (s)

]
ds, t ∈ R,

so that the statements of [16, Proposition 3.1, 3.2] (uniform recurrence), [15, Proposition 2.6.11] (almost
periodicity) and [15, Proposition 3.5.3] (almost automorphicity), for instance, can be simply reformulated
in our context by replacing respectively the operator family (R(t))t>0 and the function f (·) by the operator
family (c−

t
ω R(t))t>0 and the function c−

·

ω f (·). We will do this only in the case of the last mentioned result:

Proposition 4.1. Suppose that 1 ≤ p < ∞, 1/p + 1/q = 1 and (R(t))t>0 ⊆ L(E,X) is a strongly continuous operator
family satisfying that

M :=
∞∑

k=0

∥∥∥∥c−
·

ω R(·)
∥∥∥∥

Lq[k,k+1]
< ∞.

If c−
·

ω f : R → X is Sp-almost automorphic, then the function F : R → X, given by (14), is well defined and
(ω, c)-almost automorphic.

It is worth noting that this result can be applied in both cases |c| > 1 and |c| < 1, under suitable conditions.
It is straightforward to incorporate the above results in the study of the existence and uniqueness of
(ω, c)-almost periodic type solutions for the various classes of abstract inhomogeneous integro-differential
equations. Keeping in mind Theorem 3.2, we will skip all related details concerning the invariance of
(ω, c)-uniform recurrence of type 1 (type 2) (ω, c)-almost periodicity of type 1 (type 2) under the actions of
infinite convolution products.

Consider now the finite convolution product

H(t) :=
∫ t

0
R(t − s) f (s) ds, t ≥ 0. (15)
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Due to the fact that

c−
t
ω

∫ t

0
R(t − s) f (s) ds =

∫ t

0

[
c−

t−s
ω R(t − s)

][
c−

s
ω f (s)

]
ds, t ≥ 0, (16)

we can similarly analyze the invariance of asymptotical (ω, c)-uniform recurrence, asymptotical (ω, c)-almost
periodicity and asymptotical (compact) (ω, c)-almost automorphicity under the actions of finite convolution
products; the interested reader may try to reformulate the statements of [15, Proposition 2.6.13, Theorem
2.9.5, Theorem 2.9.7, Theorem 2.9.15] in our new context.

If |c| < 1 and ω > 0, then it is worth noting that the (ω, c)-uniform recurrence of type 2 and the (ω, c)-
almost periodicity of type 2 cannot be so simply retained after the actions of finite convolution products.
The situation is much simpler for the classes APω,c,1([0,∞) : E) and URω,c,1([0,∞) : E) (SpAPω,c,1([0,∞) : E)
and SpURω,c,1([0,∞) : E)), where p ≥ 1, because in this case we can apply Corollary 3.8, Proposition 3.11 and
(16).

In the remainder of this section, we will provide a few applications to the abstract integro-differential
equations and inclusions in Banach spaces.

1. We start by observing that the examples and results presented by Zaidman [26, Examples 4, 5, 7, 8;
pp. 32-34], which have been employed by numerous authors so far, for various purposes, can be used to
provide certain applications of our results. For example, in the case of consideration of [26, Example 4], we
know that the unique solution of the heat equation ut(x, t) = uxx(x, t), x ∈ R, t ≥ 0, accompanied with the
initial condition u(x, 0) = f (x), is given by

u(x, t) :=
1

2
√
πt

∫ +∞

−∞

e−
(x−s)2

4t f (s) ds, x ∈ R, t ≥ 0.

Let the number t0 > 0 be fixed, let c ∈ C \ {0}, ω > 0 and let the function c−·/ω f (·) be bounded uniformly
recurrent (almost periodic, (compactly) almost automorphic). If c−

·

ω e−·2/4t0 ∈ L1(R), then we can apply
Proposition 2.8 in order to see that the solution x 7→ u(x, t0), x ∈ R is (ω, c)-uniformly recurrent ((ω, c)-almost
periodic/(compactly) (ω, c)-almost automorphic). See also [2, Example 2.9].

2. The results about the invariance of various kinds of (ω, c)-almost type periodicity, introduced in
Section 2, under the actions of infinite convolution products can be applied in the qualitative analysis of
solutions to the following fractional Cauchy inclusion

Dγ
t,+u(t) ∈ Au(t) + f (t), t ∈ R,

where Dγ
t,+ denotes the Riemann-Liouville fractional derivative of order γ ∈ (0, 1], f : R→ E satisfies certain

properties, andA is a closed multivalued linear operator. Furthermore, the results about the invariance of
various kinds of asymptotical (ω, c)-almost type periodicity, introduced in Section 2, under the actions of
finite convolution products can be applied in the qualitative analysis of solutions to the following fractional
Cauchy inclusion

(DFP) f ,γ :
{

Dγ
t u(t) ∈ Au(t) + f (t), t ≥ 0,
u(0) = x0,

where Dγ
t denotes the Caputo fractional derivative of order γ ∈ (0, 1], x0 ∈ E, f : [0,∞)→ E satisfies certain

properties, and A is a closed multivalued linear operator (see [15] for more details). Applying Theorem
3.15 and the methods established in [15], we can analyze the existence and uniqueness of (ω, c)-uniformly
recurrent solutions for various classes of abstract semilinear abstract Volterra integro-differential equations
and inclusions (the existence and uniqueness of asymptotically (ω, c)-uniformly recurrent solutions can be
analyzed similarly; details can be left to the interested readers). It is also clear that Theorem 3.2 can be
applied in the analysis of a wide class of the abstract Volterra integro-differential equations with periodic
solutions; see also Proposition 3.12.
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3. It is worth noting that the notion from Definition 3.1 and Definition 3.14 can be introduced with the
intervals I = [−a,∞),where a > 0 is an arbitrary real number. To explain the importance of this observation,
we will reexamine [26, Example 5]. It is well known that the unique regular solution of the wave equation
uxx(x, t) = utt(x, t), x ∈ R, t ≥ 0, accompanied with the initial conditions u(x, 0) = f (x), x ∈ R, ut(x, 0) = 1(x),
x ∈ R, is given by the famous d’Alembert formula

u(x, t) :=
1
2

[
f (x + t) + f (x − t)

]
+

1
2

∫ x+t

x−t
1(s) ds, x ∈ R, t ≥ 0.

Here we would like to note the following fact about the term

Ht0 (x) :=
1
2

∫ x+t0

x−t0

1(s) ds, x ∈ R,

where t0 > 0 is a fixed real number. Suppose that the function 1 : [−t0,∞)→ C is (ω, c)-uniformly recurrent
of type 2, for example (the same comment applies to all other classes of functions introduced in Definition
3.1). Then there exists a strictly increasing sequence (αn) of positive real numbers such that

lim
n→+∞

sup
t≥−t0

∣∣∣c−αn/ω1(t + αn) − 1(t)
∣∣∣ = 0.

If ϵ > 0 is given, this implies the existence of an integer n0 ∈N such that, for every n ≥ n0,∣∣∣∣c−αn/ωHt0 (x + αn) −Ht0 (x)
∣∣∣∣ ≤ ∫ t0

−t0

∣∣∣∣c−αn/ω1(x + s + αn) − 1(x + s)
∣∣∣∣ ds ≤ 2t0ϵ, x ≥ 0.

Hence, the function Ht0 : [0,∞)→ C is (ω, c)-uniformly recurrent of type 2.

It would be very enticing to provide certain applications of composition principles established in
Subsection 3.1 in the qualitative analysis of solutions to the abstract semilinear Cauchy inclusions which
belongs to the classes APω,c,2([0,∞) and URω,c,2([0,∞).

5. Conclusions and final remarks

Following the recent researches [2] by Alvarez, Gómez and Pinto and [3] by Alvarez, Castillo and Pinto,
in this paper we have introduced and systematically analyzed several new classes of (ω, c)-almost periodic
type functions and their Stepanov extensions. The corresponding classes of two-parameter (ω, c)-almost
periodic type functions and related composition principles have been also analyzed; some applications to
the abstract Volterra integro-differential equations in Banach spaces have been also given. The case |c| , 1
is still unexplored in the theory of almost periodic functions and we feel it is our duty to say that the classes
of (ω, c)-almost periodic type functions with |c| , 1 have some very unusual and unpleasant features.

In the remainder of paper, we would like to note a few useful comments and observations about
problematic considered so far.

1. Concerning the notion introduced in Section 2, we would like to note that we can similarly analyze
the classes consisting of those functions f (·) for which the function fω,c(·) is (equi)-Weyl-p-almost periodic,
Besicovitch p-almost periodic or Besicovitch-Doss p-almost periodic (see [15] for the notion).

2. A similar comment can be applied to the notion considered in Section 3. For example, we can
introduce and analyze the following notions of (equi)-Weyl-(p, ω, c)-almost periodicity of type 1 (2) and
(equi)-Weyl-(p, ω, c)-uniform recurrence of type 1 (2):

Definition 5.1. Let 1 ≤ p < ∞, c ∈ C \ {0}, ω > 0 and f ∈ Lp
loc(I : E).



M. T. Khalladi et al. / Filomat 37:2 (2023), 363–385 384

(i) We say that the function f (·) is equi-Weyl-(p, ω, c)-almost periodic of type 1, resp. 2, if and only if for each
ϵ > 0 we can find two real numbers l > 0 and L > 0 such that any interval I′ ⊆ I of length L contains a point
τ ∈ I′ such that

sup
x∈I

[
1
l

∫ x+l

x

∥∥∥ f (t + τ) − cτ/ω f (t)
∥∥∥p

dt
]1/p

≤ ϵ,

resp.

sup
x∈I

[
1
l

∫ x+l

x

∥∥∥c−τ/ω f (t + τ) − f (t)
∥∥∥p

dt
]1/p

≤ ϵ.

(ii) We say that the function f (·) is Weyl-(p, ω, c)-almost periodic of type 1, resp. 2, if and only if for each ϵ > 0 we
can find a real number L > 0 such that any interval I′ ⊆ I of length L contains a point τ ∈ I′ such that

lim
l→∞

sup
x∈I

[
1
l

∫ x+l

x

∥∥∥ f (t + τ) − cτ/ω f (t)
∥∥∥p

dt
]1/p

≤ ϵ,

resp.

lim
l→∞

sup
x∈I

[
1
l

∫ x+l

x

∥∥∥c−τ/ω f (t + τ) − f (t)
∥∥∥p

dt
]1/p

≤ ϵ,

Definition 5.2. Let 1 ≤ p < ∞, c ∈ C \ {0}, ω > 0 and f ∈ Lp
loc(I : E).

(i) We say that the function f (·) is equi-Weyl-(p, ω, c)-uniformly recurrent of type 1, resp. 2, if and only we can
find two sequences (ln) and (αn) of positive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞

sup
x∈I

[
1
ln

∫ x+ln

x

∥∥∥ f (t + αn) − cαn/ω f (t)
∥∥∥p

dt
]1/p

= 0,

resp.

sup
x∈I

[
1
ln

∫ x+ln

x

∥∥∥c−αn/ω f (t + αn) − f (t)
∥∥∥p

dt
]1/p

= 0.

(ii) We say that the function f (·) is Weyl-(p, ω, c)-uniformly recurrent of type 1, resp. 2, if and only if we can find
a sequence (αn) of positive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞

lim
l→∞

sup
x∈I

[
1
l

∫ x+l

x

∥∥∥ f (t + αn) − cαn/ω f (t)
∥∥∥p

dt
]1/p

= 0,

resp.

lim
n→+∞

lim
l→∞

sup
x∈I

[
1
l

∫ x+l

x

∥∥∥c−αn/ω f (t + αn) − f (t)
∥∥∥p

dt
]1/p

= 0.

The class of Doss-(p, ω, c)-almost periodic functions of types 1 (2) and the class of Doss-(p, ω, c)-uniformly
recurrent functions of types 1 (2) can be also introduced following the same idea (cf. [15, Definition
2.13.2(iii)]).

3. The notion introduced in [2]-[3] depends on two parameters, c ∈ C \ {0} and ω > 0. It is worth
observing that we can also analyze the notion depending on only one parameter, c ∈ C \ {0}. For example,
of concern is the following notion:
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Definition 5.3. Let c ∈ C \ {0}. Then a continuous function f : I→ E is said to be c-uniformly recurrent if and only
if there exists a strictly increasing sequence (αn) of positive real numbers such that limn→+∞ αn = +∞ and

lim
n→+∞

∥∥∥ f (· + αn) − c f (·)
∥∥∥
∞
= 0.

If c = −1, then we also say that the function f (·) is uniformly anti-recurrent.

Further on, let f : I → E be a continuous function and let a number ϵ > 0 be given. We call a number
τ > 0 an ϵ − (ω, c)-period for f (·) if ∥ f (t + τ) − c f (t)∥ ≤ ϵ for all t ∈ I. By ϑc( f , ϵ) we denote the set consisting
of all ϵ − (ω, c)-periods for f (·).

Definition 5.4. It is said that f (·) is c-almost periodic if and only if for each ϵ > 0 the set ϑc( f , ϵ) is relatively dense
in [0,∞).

For more details about these classes of functions, we refer the reader to our recently published paper
[14].
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[12] G. M. N’Guérékata, A. Pankov, Stepanov-like almost automorphic functions and monotone evolution equations, Nonlinear Anal. 68

(2008), 2658–2667.
[13] A. Haraux, P. Souplet, An example of uniformly recurrent function which is not almost periodic, J. Fourier Anal. Appl. 10 (2004),

217–220.
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