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Available at: http://www.pmf.ni.ac.rs/filomat

Landau-Bloch type theorems of certain subclasses of biharmonic
mappings

Xi Luoa,b, Ming-Sheng Liub, Ting Lia

aSchool of Mathematics, Jiaying University, Meizhou, 514015, China
bSchool of Mathematical Sciences, South China Normal University, Guangzhou, 510631, China

Abstract. In this paper, we first establish a Landau-Bloch type theorem for certain bounded and normalized
biharmonic mappings F(z) = |z|21(z) + h(z), where 1(z) and h(z) are harmonic in the unit disk with |1(z)| ≤
M1, |h(z)| ≤ M2. In particular, our result is sharp when M1 = M2 = 1. Then, we establish several new
versions of Landau-Bloch type theorems for certain normalized biharmonic mappings with the coefficients
condition in place of |h(z)| ≤M2 or |1(z)| ≤M1, and obtain several sharp results.

1. Introduction

Suppose D is a domain in the complex plane C. For z = x + iy ∈ D, the formal derivatives of a
complex-valued function F(z) = u(z) + iv(z) are defined respectively by

Fz =
1
2

(Fx − iFy), Fz =
1
2

(Fx + iFy).

Define the Laplacian of F as follow:

∆F = 4Fzz =
∂2F
∂x2 +

∂2F
∂y2 .

Then a two times continuously differentiable complex-valued function F(z) is said to be a harmonic function
in a domain D ⊆ C if ∆F(z) = 0 for all z ∈ D.

Lewy’s theorem [13] from 1936 states that a harmonic mapping F(z) is locally univalent if and only if its
Jacobian JF(z) = |Fz|

2
− |Fz|

2 , 0 for z ∈ D. If D is simply connected, F(z) can be written as F = h + 1 with
F(0) = h(0), where 1 and h are analytic on D (for details see [10]). Thus,

JF(z) = |h′(z)|2 − |1′(z)|2.
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Suppose that F(z) is a four continuously differentiable complex-valued function in a domain D ⊆ C.
Then F(z) is said to be a biharmonic mapping in a domain D if and only if F satisfies the biharmonic equation
∆(∆F)(z) = 0 for all z ∈ D. In other words, F(z) is biharmonic in a domain D if and only if ∆F is harmonic in
the domain D.

It is well known [1] that a mapping F(z) is biharmonic in a simply connected domain D if and only if
F(z) has the following representation:

F(z) = |z|21(z) + h(z), (1)

where 1(z) and h(z) are complex-valued harmonic mappings in D.
For a continuously differentiable complex-valued function F, we define

ΛF(z) = max
0≤θ≤2π

|Fz(z) + e−2iθFz(z)| = |Fz(z)| + |Fz(z)|,

λF(z) = min
0≤θ≤2π

|Fz(z) + e−2iθFz(z)| = ||Fz(z)| − |Fz(z)||,

which are the maximum and the minimum dilations of the mapping F respectively.
The harmonic mappings are regarded as the generalization of analytic functions, and the biharmonic

mappings are regarded as the generalization of harmonic mappings.
The classical Landau’s theorem states that if f is an analytic function on the unit diskU = {z ∈ C : |z| < 1}

with f (0) = f ′(0)− 1 = 0 and | f (z)| <M for z ∈ U, then f is univalent in the diskUρ0 = {z ∈ C : |z| < ρ0}with

ρ0 =
1

M +
√

M2 − 1
, (2)

and f (Uρ0 ) contains a disk |w| < σ0 with σ0 = Mρ2
0. This result is sharp, with the extremal function

f0(z) =Mz 1−Mz
M−z (see [16]).

For bounded harmonic mappings in U, Landau-Bloch type theorems had been obtained by Chen et
al. [4, 5]. Liu improved the results of Landau-Bloch type theorems for bounded harmonic mappings, and
obtained the sharp result when M = 1 (see [16]). Recently, Khalfallah, Mateljević and Mhamdi studied some
properties of mappings admitting general Poisson representations, they proved a Landau-type theorem
for Tα-harmonic functions in [14]. Liu et al. also proved the sharp result of Landau-Bloch type theorem
for strongly-bounded harmonic mappings when M > 1 in [19], and obtained several new versions of
Landau-Bloch type theorems of harmonic mappings. One of their results is the following result.

Theorem A ([19, Theorem 3.5]) Suppose that M > 1. Let f (z) be a harmonic mapping in the unit disk
Uwith f (0) = λ f (0) − 1 = 0, and

f (z) =
∞∑

n=1

anzn +

∞∑
n=1

bnzn

satisfying the following inequality

∞∑
n=2

n(|an| + |bn|)rn−1
≤

(M2
− 1)(2Mr − r2)
(M − r)2 , 0 ≤ r ≤ ρ0 =M −

√

M2 − 1. (3)

Then f (z) is univalent in the diskUρ0 and f (Uρ0 ) contains a schlicht diskUσ0 , whereρ0 =
1

M+
√

M2−1
, σ0 =Mρ2

0.

This result is sharp, with f0(z) =Mz 1−Mz
M−z being an extremal mapping.

In 2008, Abdulhadi and Muhanna first obtained two versions of Landau-Bloch type theorems for
biharmonic mappings (see [2]). From that on, many authors also considered the Landau-Bloch type
theorems for certain biharmonic mappings (see [2, 3, 7, 15, 17, 18, 20]). In 2008, Liu established the
following result by establishing the better coefficients estimates of bounded and normalized harmonic
mappings (see [15]).
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Theorem B ([15, Theorem 2.10]) Let F(z) = |z|21(z) + h(z) be a biharmonic mapping in the unit diskU,
with F(0) = h(0) = λF(0) − 1 = 0 and |1(z)| ≤ M1, |h(z)| ≤ M2 for z ∈ U. Then, F is univalent in the diskUρ1 ,
and F(Uρ1 ) contains a schlicht diskUσ1 , where ρ1 is the minimum positive root of the following equation :

1 − 2rM1 − 2M1 ·
r2

(1 − r)2 −

√
2M2

2 − 2 ·
2r − r2

(1 − r)2 = 0, (4)

and

σ1 = ρ1 −
2M1ρ3

1

1 − ρ1
−

√
2M2

2 − 2
ρ2

1

1 − ρ1
. (5)

Later, Zhu and Liu improved Theorem B by applying Schwarz’s inequality as follows.
Theorem C ([25, Theorem 3.2]) Suppose that F(z) = |z|21(z) + h(z) is a biharmonic mapping of the unit

diskU such that |1(z)| ≤M1 and |h(z)| ≤M2 for z ∈ Uwith λF(0) = 1.
(1) If M2 ≥ 1 and M1 > 0, the F is univalent in the disk Uρ2 , and F(Uρ2 ) contains a schlicht disk Uσ2 (F(0)),
where ρ2 = ρ2(M1,M2) is the minimum positive root of the following equation:

1 − 2M1r −
4M1r2

π(1 − r2)
−

√
2(M2

2 − 1) ·
r
√

4 − 3r2 + r4

(1 − r2)
3
2

= 0, (6)

and

σ2 = ρ2 −M1ρ
2
2 −

√
2(M2

2 − 1) ·
ρ2

2

(1 − ρ2
2)

1
2

. (7)

(2) If M2 = 1 and M1 = 0, then F is univalent in theU and F(U) = U.

In [17], Liu et al. established a Landau-Bloch type theorem of biharmonic mappings of the form
F(z) = |z|21(z) as follows, which improved a corresponding result of Abdulhadi and Muhanna in [2].

Theorem D ([17, Theorem 2.10]) Let 1(z) be harmonic in the unit diskU, with 1(0) = λ1(0)− 1 = 0 and
|1(z)| ≤ M for z ∈ U. Then, F(z) = |z|21(z) is univalent in the disk Uρ3 , and F(Uρ3 ) contains a schlicht disk
Uσ3 , where

ρ3 =
1

1 + 2K(M) +
√

K(M) + 4K(M)2
, K(M) = min{

√

2M2 − 2,
4M
π
},

and

σ3 =

 ρ3
3 − K(M)

ρ4
3

1−ρ3
, if M > 1,

1, if M = 1,

above result is sharp when M = 1. In this paper, we continue to investigate the Landau-Bloch type theorems
of biharmonic mappings.

This paper is organized as follows. In Sect. 2, we should recall several lemmas, and establish four new
lemmas, which play a key role in the proofs of our main results. In Sect. 3, by establishing Theorem 3.1,
we first establish a new version of Landau-Bloch type theorem by adding a condition λ1(0) − 1 = 0, and
our result is sharp when M1 = M2 = 1. Then, by establishing Theorems 3.3 and 3.5, we establish two new
versions of Landau-Bloch type theorems for biharmonic mappings with the coefficients condition (14), and
obtain sharp results for M1 = 0,M2 ≥ 1 or M1 = 1,M2 ≥ 1 respectively. Finally, by establishing Theorem 3.6,
we establish a new version of Landau-Bloch type theorem for biharmonic mappings F(z) = |z|21(z), with
1(z) being harmonic mapping and the Taylor expansion coefficients of 1(z) satisfying the condition (3), and
obtain better result than that of Theorem D.
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2. Preliminaries

In order to establish our main results, we need the following lemmas.
Lemma 2.1 ([9]) Suppose that f (z) = f1(z) + f2(z) is a harmonic mapping with f1(z) =

∑
∞

n=0 anzn and
f2(z) =

∑
∞

n=1 bnzn being analytic inU. If | f (z)| ≤M for all z ∈ U, then

Λ f (z) ≤
4M

π(1 − |z|2)
.

Lemma 2.2 ([15, 25]) Suppose that f (z) = f1(z) + f2(z) is a harmonic mapping of the unit disk U with
f1(z) =

∑
∞

n=0 anzn and f2(z) =
∑
∞

n=1 bnzn. If λ f (0) = 1 and | f (z)| ≤M for all z ∈ U, then M ≥ 1, and

|an| + |bn| ≤
√

2M2 − 2, n = 2, 3, · · · ,

(
∞∑

n=2

(|an| + |bn|)2)
1
2 ≤

√

2M2 − 2.

Lemma 2.3 ([8, 17]) Suppose that f (z) = f1(z) + f2(z) is a harmonic mapping of the unit disk U with
f1(z) =

∑
∞

n=0 anzn and f2(z) =
∑
∞

n=1 bnzn. If | f (z)| ≤M for all z ∈ U, then |a0| ≤M, and

|an| + |bn| ≤
4M
π
, n = 1, 2, 3, · · · .

The result is sharp.
Lemma 2.4 ([11]) Let f be a harmonic mapping of the unit diskUwith f (0) = 0 and f (U) ⊂ U. Then

| f (z)| ≤
4
π

arctan |z| ≤
4
π
|z|, for z ∈ U.

In 1959, Heinz in his classical paper [11] proved the above result, which is called the Schwarz type
Lemma of complex-valued harmonic functions with f (0) = 0. Later, Hethcote [12] removed the assumption
f (0) = 0 and got the following sharp form∣∣∣∣ f (z) −

1 − |z|2

1 + |z|2
f (0)
∣∣∣∣ ≤ 4
π

arctan |z|,

where f is a complex-valued harmonic function from U into itself. The above inequality also was proved
by Pavlović in [24, Theorem 3.6.1] independently. The related results also refer to [6, 21–23]. In particular,
the sharp forms of the improvements of Hethcote’s result are given in [22, 23] by M. Mateljević, M. Svetlik
and A. Khalfallah.

Lemma 2.5 Suppose that f (z) = f1(z) + f2(z) is a harmonic mapping of the unit disk U with f1(z) =∑
∞

n=1 anzn and f2(z) =
∑
∞

n=1 bnzn. If f satisfies | f (z)| ≤M for all z ∈ U and λ f (0) = 1, then M ≥ 1, and

|a1| + |b1| ≤ K1(M) = min{
√

2M2 − 1, 4M/π}, (8)

and |an| + |bn| ≤ K2(M) for n = 2, 3, 4, · · · , where K2(M) = min{
√

2M2 − 2, 4M
π }. The inequality (8) is sharp for

M = 1, with f0(z) = z being an extremal mapping.
Proof By Lemmas 2.2 and 2.3, we have M ≥ 1 and |an| + |bn| ≤ K2(M) for n = 2, 3, · · · . Now we prove

that

|a1| + |b1| ≤
√

2M2 − 1. (9)

In fact, fix r ∈ (0, 1) and set z = reiθ, θ ∈ [0, 2π]. Then

f (reiθ) =
∞∑

n=1

anrneinθ +

∞∑
n=1

bnrne−inθ.
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By Parseval’s identity and the hypothesis of | f (z)| ≤M, we have

∞∑
n=1

(|an|
2 + |bn|

2)r2n =
1

2π

∫ 2π

0
| f (reiθ)|2dθ ≤M2,

which implies that (|a1|
2 + |b1|

2)r2
≤M2.

Letting r→ 1−, we have |a1|
2 + |b1|

2
≤M2.

Since λ f (0) = ||a1| − |b1|| = 1, we have |a1| = |b1| + 1 or |b1| = |a1| + 1. By the first equation, we have
2|b1|

2 + 2|b1| + 1 ≤M2, and then

(|b1| +
1
2

)2
≤

M2
− 1

2
+

1
4
=

2M2
− 1

4
.

Hence |a1| + |b1| = 2|b1| + 1 ≤
√

2M2 − 1.
By the second equation, we also have the same result. Thus, the inequality (9) holds. Hence the inequal-

ity (8) follows from (9) and Lemma 2.3, the proof is complete. □

Lemma 2.6 ([18]) Let F0(z) = a|z|2z + bz be a biharmonic mapping in the unit disk U with |a| = |b| = 1,
then F0 is univalent in the diskU √

3
3
, and F0(U √

3
3

) contains a schlicht diskU 2
√

3
9

. This result is sharp.

Lemma 2.7 For z1, z2 ∈ Ur, k ∈N+ = {1, 2, · · · }, we have

||z1|
2zk

1 − |z2|
2zk

2| ≤ (k + 2)rk+1
|z1 − z2|.

Proof Since z1, z2 ∈ Ur, k ∈N+, we have |z1| ≤ r, |z2| ≤ r, and

||z1|
2zk

1 − |z2|
2zk

2| = ||z1|
2zk

1 − |z1|
2zk

2 + |z1|
2zk

2 − |z2|
2zk

2|

≤ |z1|
2
|zk

1 − zk
2| + |z

k
2|||z1|

2
− |z2|

2
|

≤ r2
|z1 − z2||zk−1

1 + zk−2
1 z2 + · · · + zk−1

2 | + rk
||z1| − |z2||(|z1| + |z2|)

≤ krk+1
|z1 − z2| + 2rk+1

|z1 − z2| = (k + 2)rk+1
|z1 − z2|. □

Lemma 2.8 Suppose that M1 ≥ 0, M2 ≥ 1, and r2 is the minimum positive root of the following equation

1 −
(M2

2 − 1)(2M2r − r2)

(M2 − r)2 −
4M1

π
3r2
− 2r4

1 − r2 = 0, (10)

then 0 < r2 ≤ r0 =
1

M2+
√

M2
2−1

.

Proof Denote f (r) = 1 −
(M2

2−1)(2M2r−r2)
(M2−r)2 , 1(r) = 4M1

π
3r2
−2r4

1−r2 . It is easy to verify that f (r0) = 0.
We first prove that f (r0) − 1(r0) = −1(r0) ≤ 0. In fact, since

1′(r) =
4M1

π

2r(3 − 4r2 + 2r4)
(1 − r2)2 ≥ 0

for r ∈ (0, 1), we obtain that 1(r) is increasing in (0, 1). Therefore, we have 1(r) ≥ 1(0) = 0 for r ∈ (0, 1). Thus,
f (r0) − 1(r0) = −1(r0) ≤ 0.

Because f (0) − 1(0) = 1 > 0, it follows from the intermediate value theorem that the minimum positive
root r2 of the equation (10) satisfies 0 < r2 ≤ r0. The proof is complete. □

Lemma 2.9 Suppose that M1 ≥ 1, M2 ≥ 1, K1(M) = min{
√

2M2 − 1, 4M/π}, and r3 is the minimum
positive root of the following equation

M2
2 −

M2
2(M2

2 − 1)

(M2 − r)2 − 3K1(M1)r2
−

√
2M2

1 − 2 ·
r3
√

16 − 23r2 + 9r4

(1 − r2)
3
2

= 0, (11)
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then 0 < r3 < r0 =
1

M2+
√

M2
2−1

.

Proof Denote f (r) =M2
2 −

M2
2(M2

2−1)
(M2−r)2 ,

1(r) = 3K1(M1)r2 +
√

2M2
1 − 2 ·

r3
√

16 − 23r2 + 9r4

(1 − r2)
3
2

.

It is easy to verify that f (r0) = 0, and 1(r) > 0 for r ∈ (0, 1). Thus we have

f (r0) − 1(r0) = −1(r0) < 0.

Because f (0) − 1(0) = 1 > 0, it follows from the intermediate value theorem that the minimum positive
root r3 of the equation (11) satisfies 0 < r3 < r0. This completes the proof. □

3. Main Results

We first establish a new version of Landau-Bloch type theorem for biharmonic mappings by adding a
condition λ1(0) = 1, and obtain a sharp result for M1 =M2 = 1.

Theorem 3.1 Let F(z) = |z|21(z) + h(z) be a biharmonic mapping in the unit disk U, where 1(z), h(z)
are harmonic mappings in U, and 1(0) = h(0) = 0, λF(0) = λ1(0) = 1, |1(z)| ≤ M1, |h(z)| ≤ M2 for z ∈ U.
Then M1,M2 ≥ 1, and F is univalent in the disk Ur1 , and F contains a schlicht disk UR1 , where K1(M1) =

min{
√

2M2
1 − 1, 4M1

π }, r1 is the minimum positive root of the following equation

1 − 3K1(M1)r2
−

√
2M2

1 − 2 ·
r3
√

16 − 23r2 + 9r4

(1 − r2)
3
2

−

√
2M2

2 − 2 ·
r
√

4 − 3r2 + r4

(1 − r2)
3
2

= 0, (12)

and

R1 = r1 −

√
2M2

2 − 2 ·
r2

1√
1 − r2

1

− K1(M1)r3
1 −

√
2M2

1 − 2 ·
r4

1√
1 − r2

1

. (13)

When M1 =M2 = 1, the radii r1 =
√

3
3 and R1 =

2
√

3
9 are sharp.

Proof By Lemma 2.2, we see that M1 ≥ 1,M2 ≥ 1.
Let 1(z) = 11(z) + 12(z), h(z) = h1(z) + h2(z) with

11(z) =
∞∑

n=1

anzn, 12(z) =
∞∑

n=1

bnzn, h1(z) =
∞∑

n=1

cnzn, h2(z) =
∞∑

n=1

dnzn,

where 11, 12, h1 and h2 are analytic inU. Then, by the hypothesis of Theorem 3.1, we have

||c1| − |d1|| = λh(0) = λF(0) = 1.

By Lemmas 2.2 and 2.5, we have |a1| + |b1| ≤ K1(M1), and

( ∞∑
n=2

(|an| + |bn|)2
) 1

2
≤

√
2M2

1 − 2,
( ∞∑

n=2

(|cn| + |dn|)2
) 1

2
≤

√
2M2

2 − 2.
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To prove F is univalent inUr1 , we choose two distinct points z1, z2 inUr (r < r1). By Lemma 2.7, we have

|h(z1) − h(z2)| ≥ |c1(z1 − z2) + d1(z1 − z2)| −
∣∣∣∣ ∞∑

n=2

cn(zn
1 − zn

2) + dn(zn
1 − zn

2)
∣∣∣∣

≥ |z1 − z2|
[
||c1| − |d1|| −

∞∑
n=2

(|cn| + |dn|)nrn−1
]

≥ |z1 − z2|
[
1 −
( ∞∑

n=2

(|cn| + |dn|)2
) 1

2
·

( ∞∑
n=2

n2r2n−2
) 1

2
]

≥ |z1 − z2|

[
1 −
√

2M2
2 − 2 ·

r
√

4 − 3r2 + r4

(1 − r2)
3
2

]
,

and

||z1|
21(z1) − |z2|

21(z2)| ≤
∞∑

n=1

(|an| + |bn|)
∣∣∣∣|z1|

2zn
1 − |z2|

2zn
2

∣∣∣∣
≤ |z1 − z2|

[
3(|a1| + |b1|)r2 +

∞∑
n=2

(|an| + |bn|)(n + 2)rn+1
]

≤ |z1 − z2|
[
3(|a1| + |b1|)r2 +

( ∞∑
n=2

(|an| + |bn|)2
) 1

2
·

( ∞∑
n=2

(n + 2)2r2n+2
) 1

2
]

≤ |z1 − z2|
[
3K1(M1)r2 +

√
2M2

1 − 2 ·
r3
√

16 − 23r2 + 9r4√
(1 − r2)3

]
.

Hence,

|F(z1) − F(z2)| ≥ |z1 − z2|
[
1 − 3K1(M1)r2

−

√
2M2

1 − 2 ·
r3
√

16 − 23r2 + 9r4

(1 − r2)
3
2

−

√
2M2

2 − 2 ·
r
√

4 − 3r2 + r4

(1 − r2)
3
2

]
> 0.

This implies F(z1) , F(z2), which shows that F is univalent in the diskUr1 .
Next, note that F(0) = 0, for each z = r1eiθ

∈ ∂Ur1 , we have

|F(z)| ≥ |c1z + d1z| −
∣∣∣∣ ∞∑

n=2

(cnzn + dnzn)
∣∣∣∣ − r2

1|a1z + b1z| − r2
1

∣∣∣∣ ∞∑
n=2

(anzn + bnzn)
∣∣∣∣

≥ r1

∣∣∣|c1| − |d1|
∣∣∣ − ∞∑

n=2

(|cn| + |dn|)rn
1 − r3

1(|a1| + |b1|) − r2
1

∞∑
n=2

(|an| + |bn|)rn
1

≥ r1

∣∣∣|c1| − |d1|
∣∣∣ − ( ∞∑

n=2

(|cn| + |dn|)2
) 1

2
·

( ∞∑
n=2

r2n
) 1

2
− K1(M1)r3

1 − r2
1

( ∞∑
n=2

(|an| + |bn|)2
) 1

2
·

( ∞∑
n=2

r2n
) 1

2

≥ r1 −

√
2M2

2 − 2 ·
r2

1√
1 − r2

1

− K1(M1)r3
1 −

√
2M2

1 − 2 ·
r4

1√
1 − r2

1

= R1.

Hence, F(Ur1 ) ⊃ UR1 .
Finally, we show that when M1 =M2 = 1, the radii r1 =

√
3

3 ,R1 =
2
√

3
9 are sharp. In fact, by the hypothesis

of Theorem 3.1 and Lemma 2.2, we get that

||a1| − |b1|| = ||c1| − |d1|| = 1, an = bn = cn = dn = 0,n = 2, 3, · · · .
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By Lemma 2.5, we have |a1| + |b1| = 1. Thus, we have |a1| = 1, b1 = 0, ||c1| − |d1|| = 1, or |a1| = 0, |b1| =
1, ||c1| − |d1|| = 1.

Set F(z) = a1|z|2z + d1z, with |a1| = |d1| = 1, or F(z) = b1|z|2z + c1z, with |b1| = |c1| = 1. By Lemma 2.6, we
obtain that the radii r1 =

√
3

3 ,R1 =
2
√

3
9 are sharp. This completes the proof of Theorem 3.1. □

Remark 3.2 The equation (12) and (6) cannot be solved explicitly. The Computer Algebra System
Mathematica has calculated the numerical solutions to equations (12) and (6). Table 1 shows the approximate
values of r1, ρ2 and R1, σ2 that correspond to different choice of the constants M1 and M2, which shows that
r1 > ρ2 and R1 > σ2. That is, the result of Theorem 3.1 is better than that of Theorem C.

Table 1: The values of r1,R1 and ρ2, σ2 are in Theorem 3.1 and Theorem C
(M1,M2) (1, 1) (1.1, 1.3) (1.5, 1.6) (1.8, 2.3) (2.5, 3.2)

r1 0.577350 0.268888 0.197637 0.140339 0.101949
ρ2 0.387510 0.201729 0.144906 0.102401 0.072053
R1 0.384900 0.154023 0.110351 0.074909 0.053310
σ2 0.237346 0.108156 0.075924 0.052649 0.036698

Next, we establish two new versions of Landau-Bloch type theorems by changing the condition
|h(z)| ≤M2 to the coefficients condition (14), and obtain some sharp results.

Theorem 3.3 Suppose that M1 ≥ 0,M2 ≥ 1. Let F(z) = |z|21(z) + h(z) be a biharmonic mapping in the
unit diskU, where 1(z) and h(z) =

∑
∞

n=1 cnzn +
∑
∞

n=1 dnzn are harmonic inU, and λF(0) − 1 = 0, |1(z)| ≤M1 in
U, and

∞∑
n=2

(|cn| + |dn|)nrn−1
≤

(M2
2 − 1)(2M2r − r2)

(M2 − r)2 , 0 ≤ r < r0 =
1

M2 +
√

M2
2 − 1

. (14)

Then F is univalent in the diskUr2 and F(Ur2 ) contains a schlicht diskUR2 , where r2 is the minimum positive
root in (0, 1) of the following equation

1 −
(M2

2 − 1)(2M2r − r2)

(M2 − r)2 −
4M1

π
3r2
− 2r4

1 − r2 = 0, (15)

and

R2 = r2 −
(M2

2 − 1)r2
2

M2 − r2
−

4M1

π
r3

2. (16)

When M1 = 0 and M2 ≥ 1, the radii r2 =M2 −

√
M2

2 − 1 and R2 =M2r2
2 are sharp.

Proof Since |1(z)| ≤M1 inU, by Lemmas 2.1, 2.4 and 2.8 , we have

|1(z)| ≤
4
π

M1|z|, Λ1(z) ≤
4M1

π(1 − |z|2)
, 0 < r2 ≤ r0 =

1

M2 +
√

M2
2 − 1

.

Since λF(0) = 1, we have ||c1| − |d1|| = λh(0) = λF(0) = 1.
To prove F is univalent in the disk Ur2 , we choose two different points z1, z2 ∈ Ur (0 < r < r2 ≤ r0), we
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have

||z1|
21(z1) − |z2|

21(z2)| =
∣∣∣∣ ∫

[z1,z2]
(z1(z) + |z|21z(z))dz + (z1(z) + |z|21z(z))dz

∣∣∣∣
≤

∣∣∣∣ ∫
[z1,z2]

1(z)(zdz + zdz)
∣∣∣∣ + ∣∣∣∣ ∫

[z1,z2]
|z|2(1z(z)dz + 1z(z)dz)

∣∣∣∣
≤

∫
[z1,z2]

|1(z)|(|z||dz| + |z||dz|) + r2
∫

[z1,z2]
Λ1(z)|dz|

≤

[8M1r2

π
+

4M1r2

π(1 − r2)

]
|z1 − z2| =

4M1(3r2
− 2r4)

π(1 − r2)
|z1 − z2|,

Hence,

|F(z1) − F(z2)| ≥ |z1 − z2|

[
||c1| − |d1|| −

∞∑
n=2

(|cn| + |dn|)nrn−1
]
− ||z1|

21(z1) − |z2|
21(z2)|

≥ |z1 − z2|

[
1 −

(M2
2 − 1)(2M2r − r2)

(M2 − r)2 −
4M1

π
3r2
− 2r4

1 − r2

]
> 0,

this implies F(z1) , F(z2), which shows that F is univalent in the diskUr2 .
Note that F(0) = 0, for any z = r2eiθ

∈ ∂Ur2 , we have

|F(z)| ≥ |c1z + d1z| − r2
2|1(z)| − |

∞∑
n=2

(cnzn + dnzn)|

≥ r2 − r2
2|1(z)| −

∞∑
n=2

(|cn| + |dn|)rn
2

≥ r2 −
4M1

π
r3

2 −

∫ r2

0

(M2
2 − 1)(2M2r − r2)

(M2 − r)2 dr

= r2 −
4M1

π
r3

2 −
(M2

2 − 1)r2
2

M2 − r2
= R2.

Following the method of proof of [19, Theorem 3.5], we can easily obtain that when M1 = 0 and M2 ≥ 1,

the radii r2 =M2 −

√
M2

2 − 1 and R2 =M2r2
2 are sharp. So, we omit the details. The proof is complete. □

In order to show the sharp result in Theorem 3.5, we recall an example as follows, which is a special
form in [20, Example 3.6].

Example 3.4 Let F0(z) = −|z|2z +M2z 1−M2z
M2−z be a biharmonic mapping of U, where M2 ≥ 1. Then F0(z) is

univalent in the diskUγ0 , where γ0 is the unique positive root in (0, 1) of the following equation

M2
2 −

M2
2(M2

2 − 1)

(M2 − r)2 − 3r2 = 0, (17)

and F0(Uγ0 ) contains a schlicht diskUτ0 , with

τ0 =M2γ0
1 −M2γ0

M2 − γ0
− γ3

0. (18)

Both of γ0 and τ0 are sharp.
Theorem 3.5 Suppose that M1 ≥ 0,M2 ≥ 1. Let F(z) = |z|21(z)+h(z) be a biharmonic mapping in the unit

diskU, where 1(z) and h(z) =
∑
∞

n=1 cnzn +
∑
∞

n=1 dnzn are harmonic inUwith λF(0) = λ1(0) = 1, |1(z)| ≤M1 in
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U, and cn, dn satisfying the inequality (14). Then M1 ≥ 1, F is univalent in the diskUr3 and F(Ur3 ) contains
a schlicht diskUR3 , where r3 is the minimum positive root in (0, 1) of the equation

M2
2 −

M2
2(M2

2 − 1)

(M2 − r)2 − 3K1(M1)r2
−

√
2M2

1 − 2 ·
r3
√

16 − 23r2 + 9r4

(1 − r2)
3
2

= 0 (19)

and

R3 =M2r3
1 −M2r3

M2 − r3
− K1(M1)r3

3 −

√
2M2

1 − 2 ·
r4

3√
1 − r2

3

. (20)

When M1 = 1 and M2 ≥ 1, the radii r3 = γ0,R3 = τ0 are sharp, with F0(z) given in Example 3.4 being the
extremal mapping.

Proof Since λ1(0) = 1, |1(z)| ≤M1 inU, it follows from Lemma 2.2 that M1 ≥ 1.
By the hypothesis of Theorem 3.5 and Lemma 2.9, we have

||c1| − |d1|| = λh(0) = λF(0) = 1, 0 < r3 < r0 =
1

M2 +
√

M2
2 − 1

.

Since 1(z) is harmonic inU, we have that 1(z) = 11(z) + 12(z) with

11(z) =
∞∑

n=1

anzn and 12(z) =
∞∑

n=1

bnzn

are analytic inU. Then, it follows from Lemmas 2.2 and 2.5 that |a1| + |b1| ≤ K1(M1), and( ∞∑
n=2

(|an| + |bn|)2
) 1

2

≤

√
2M2

1 − 2.

To prove F is univalent inUr3 , we choose two distinct points z1, z2 inUr (0 < r < r3 ≤ r0). Then, we have

|h(z1) − h(z2)| ≥ |z1 − z2|[||c1| − |d1|| −

∞∑
n=2

(|cn| + |dn|)nrn−1]

≥ |z1 − z2|

[
1 −

(M2
2 − 1)(2M2r − r2)

(M2 − r)2

]
= |z1 − z2|

[
M2

2 −
M2

2(M2
2 − 1)

(M2 − r)2

]
.

Since

||z1|
21(z1) − |z2|

21(z2)| =
∣∣∣∣ ∞∑

n=1

[an(|z1|
2zn

1 − |z2|
2zn

2) + bn(|z1|
2zn

1 − |z2|
2zn

2)]
∣∣∣∣

≤

∞∑
n=1

(|an| + |bn|)
∣∣∣∣|z1|

2zn
1 − |z2|

2zn
2

∣∣∣∣
≤ |z1 − z2|

[
3(|a1| + |b1|)r2 +

∞∑
n=2

(|an| + |bn|)(n + 2)rn+1
]
,

we have,

||z1|
21(z1) − |z2|

21(z2)| ≤ |z1 − z2|
[
3K1(M1)r2 +

√
2M2

1 − 2 ·
r3
√

16 − 23r2 + 9r4

(1 − r2)
3
2

]
.
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Hence,

|F(z1) − F(z2)| ≥ |z1 − z2|
[
M2

2 −
M2

2(M2
2 − 1)

(M2 − r)2 − 3K1(M1)r2
−

√
2M2

1 − 2 ·
r3
√

16 − 23r2 + 9r4

(1 − r2)
3
2

]
> 0.

This implies F(z1) , F(z2).
Next, note that F(0) = 0, for each z = r3eiθ

∈ ∂Ur3 , we have

|F(z)| =
∣∣∣|z|21(z) + h(z)

∣∣∣∣ = ∣∣∣∣r2
3

+∞∑
n=1

(anzn + bnzn) +
+∞∑
n=1

(cnzn + dnzn)
∣∣∣∣

≥ |c1z + d1z| −
∣∣∣∣ +∞∑

n=2

(cnzn + dnzn)
∣∣∣∣ − r2

3|a1z + b1z| − r2
3

∣∣∣∣ +∞∑
n=2

(anzn + bnzn)
∣∣∣∣

≥ r3

∣∣∣|c1| − |d1|
∣∣∣ − +∞∑

n=2

(|cn| + |dn|)rn
3 − r3

3(|a1| + |b1|) − r2
3

+∞∑
n=2

(|an| + |bn|)rn
3

≥ M2r3
1 −M2r3

M2 − r3
− K1(M1)r3

3 −

√
2M2

1 − 2 ·
r4

3√
1 − r2

3

= R3.

Hence,UR3 ⊂ F(Ur3 ).
By applying Example 3.4, it is easy to prove that when M1 = 1,M2 ≥ 1, the radii r3 = γ0,R3 = τ0 are

sharp. The proof is complete. □

The Computer Algebra System Mathematica has calculated the numerical solutions to equations (12)
and (19). From Table 2 as follow, it is easy to see that the result of Theorem 3.5 is better than that of Theorem
3.1.

Table 2: The values of r3,R3 and r1,R1 are in Theorems 3.5 and 3.1
(M1,M2) (1, 1) (1.1, 1.3) (1.5, 1.6) (1.8, 2.3) (2.5, 3.2) (3, 3)

r3 0.577350 0.323005 0.237997 0.175912 0.131096 0.132967
r1 0.577350 0.268888 0.197637 0.140339 0.101949 0.105393
R3 0.384900 0.201709 0.142677 0.098878 0.071214 0.073392
R1 0.384900 0.154023 0.110351 0.074909 0.053310 0.055745

Now, we establish a new version of Landau-Bloch type theorem for the biharmonic mapping of the form
F(z) = |z|21(z) with 1(z) satisfying a coefficients condition (21), which is different with that of Theorem 3.5,
because λF(0) = 0.

Theorem 3.6 Suppose M ≥ 1. Let

1(z) =
∞∑

n=1

anzn +

∞∑
n=1

bnzn

be a harmonic mapping in the unit diskU, with λ1(0)−1 = 0 and an, bn(n = 2, 3, · · · ) satisfying the following
inequality

∞∑
n=2

n(|an| + |bn|)rn−1
≤

(M2
− 1)(2Mr − r2)
(M − r)2 , 0 ≤ r ≤ ρ0 =M −

√

M2 − 1. (21)

Then, the biharmonic mapping F(z) = |z|21(z) is univalent inUr4 , and F(Ur4 ) contains the schlicht diskUR4 ,
where r4 is the minimum positive root of the following equation

(M − r)2
− (M2

− 1)(4Mr − 3r2) = 0, (22)
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and

R4 = r3
4 − r4

4
M2
− 1

M − r4
.

This result is sharp when M = 1.

Proof By the hypothesis of Theorem 3.6, we see that ||a1| − |b1|| = λ1(0) = 1.
We first verify that 0 < r4 ≤ ρ0 =M −

√

M2 − 1. In fact, let

h(r) = (M − r)2
− (M2

− 1)(4Mr − 3r2),

it is obvious that h(r) is continuous in [0, 1], h(0) =M > 0, and

h(ρ0) = (M2
− 1)
[
1 − 4M(M −

√

M2 − 1) + 3(M −
√

M2 − 1)2
]

= 2(M2
− 1)
√

M2 − 1(
√

M2 − 1 −M) ≤ 0,

so that it follows from the intermediate value theorem that the minimum positive root r4 of equation (22)
satisfies 0 < r4 ≤ ρ0.

Next, to prove that F is univalent inUr4 , we choose two distinct points z1, z2 ∈ Ur (0 < r < r4 ≤ ρ0). Let
[z1, z2] denote by the line segment between z1 and z2, and let z = (1 − t)z1 + tz2 (t ∈ [0, 1]). Then, we have

||z1|
2z1 − |z2|

2z2| =
∣∣∣∣ ∫

[z1,z2]
2zzdz + z2dz

∣∣∣∣ = ∣∣∣∣ ∫ 1

0
2|z|2(z2 − z1)dt +

∫ 1

0
z2(z2 − z1)dt

∣∣∣∣
≥ |z1 − z2|

∫ 1

0
|z|2dt,

and

||z1|
2zn

1 − |z2|
2zn

2 | =
∣∣∣∣ ∫

[z1,z2]
(n + 1)znzdz + zn+1dz

∣∣∣∣
≤

∫
[z1,z2]

(n + 1)|z|2|z|n−1
|dz| +

∫
[z1,z2]

|z|2|z|n−1
|dz|

≤ (n + 2)rn−1
∫

[z1,z2]
|z|2|dz| = (n + 2)rn−1

|z1 − z2|

∫ 1

0
|z|2dt.

Hence, it follows from the above two inequalities that

|F(z1) − F(z2)| = ||z1|
21(z1) − |z2|

21(z2)| =
∣∣∣∣|z1|

2
∞∑

n=1

(anzn
1 + bnzn

1) − |z2|
2
∞∑

n=1

(anzn
2 + bnzn

2)
∣∣∣∣

≥ |a1(|z1|
2z1 − |z2|

2z2) + b1(|z1|
2z1 − |z2|

2z2)| −
∣∣∣∣ ∞∑

n=2

[an(|z1|
2zn

1 − |z2|
2zn

2) + bn(|z1|
2zn

1 − |z2|
2zn

2)]
∣∣∣∣

≥ ||a1| − |b1|| · ||z1|
2z1 − |z2|

2z2| −

∞∑
n=2

(|an| + |bn|)||z1|
2zn

1 − |z2|
2zn

2 |

≥ |z1 − z2|

∫ 1

0
|z|2dt[||a1| − |b1|| −

∞∑
n=2

(n + 2)(|an| + |bn|)rn−1]

≥ |z1 − z2|

∫ 1

0
|z|2dt

[
1 −

2
r

∫ r

0

(M2
− 1)(2Mt − t2)
(M − t)2 dt −

(M2
− 1)(2Mr − r2)
(M − r)2

]
= |z1 − z2|

∫ 1

0
|z|2dt

[
1 −

(M2
− 1)(4Mr − 3r2)

(M − r)2

]
= |z1 − z2|

∫ 1

0
|z|2dt ·

(M − r)2
− (M2

− 1)(4Mr − 3r2)
(M − r)2 > 0.
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Hence F is univalent in the diskUr4 .
Finally, for each z = r4eiθ

∈ ∂Ur4 , we have

|F(z)| = r2
4|1(z)| = r2

4|

∞∑
n=1

anzn +

∞∑
n=1

bnzn
|

≥ r2
4

[
||a1| − |b1||r4 −

∞∑
n=2

(|an| + |bn|)rn
4

]
≥ r2

4

[
r4 −

(M2
− 1)r2

4

M − r4

]
= R4.

That is, F(Ur4 ) ⊇ UR4 .
When M = 1, it is obvious that r4 = R4 = 1 are sharp. This completes the proof. □

Table 3: The values of ρ3, σ3 and r4,R4 are in Theorems D and Theorem 3.6.
M = 1.2 M = 1.3 M = 1.5 M = 1.8 M = 2

r4 0.402414 0.325756 0.240438 0.176412 0.151000
ρ3 0.204705 0.158362 0.107320 0.069879 0.055554
R4 0.050699 0.026593 0.010583 0.004154 0.002599
σ3 0.006507 0.003094 0.001001 0.000287 0.000147

Remark 3.7 By solving Equation (22), we have r4 =
1

2M− 1
M+
√

4M2−7+ 3
M2

. Table 3 shows the approximate

values of r4, ρ3,R4, σ3 that correspond to different choice of the constants M , which shows that r4 > ρ3 and
R4 > σ3, that is, Theorem 3.6 is an improvement of Theorem D.

Finally, we give several examples of harmonic mappings satisfying the conditions (14) or (21). Note that
for every integer k ≥ 2 and M ≥ 1, we have

k∑
n=2

M2
− 1

Mn−1 n rn−1
≤

∞∑
n=2

M2
− 1

Mn−1 n rn−1 =
(M2
− 1)(2Mr − r2)
(M − r)2 , 0 ≤ r < 1,

it is easy to verify the following facts.

Example 3.8 Suppose that α, β, γ ∈ Cwith |α| + |β| ≤ 1, M ≥ 1 and M2 ≥ 1.

(1) Let k ≥ 2 be an integer, and

10(z) = α
Mkz −Mk+1z2 + (M2

− 1)zk+1

Mk−1(M − z)
+ (1 + |α|)z = α

(
z −

k∑
n=2

M2
− 1

Mn−1 zn
)
+ (1 + |α|)z.

Then 10(z) is a harmonic mapping ofUwith λ10 (0) = 1, and it satisfies the inequality (21).

(2) Let

11(z) = (1 + |β|)z + α
(M2
− 1)z2

M − z
+ βMz

1 −Mz
M − z

= (1 + |β|)z + α
∞∑

n=2

M2
− 1

Mn−1 zn + β
(
z −

+∞∑
n=2

M2 − 1
Mn−1 zn

)
.

Then 11(z) is a harmonic mapping ofUwith λ11 (0) = 1, and it satisfies the inequality (21).
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(3) Let h0(z) = αM2z 1−M2z
M2−z + (1 + |α|)z. Then h0(z) is a harmonic mapping of U with λh0 (0) = 1, and it

satisfies the inequality (14).

(4) Let h1(z) = αM2z 1−M2z
M2−z + (γ − β)z +M2β z 1−M2z

M2−z with ||α| − |γ|| = 1. Then h1(z) is a harmonic mapping
ofUwith λh1 (0) = 1, and it satisfies the inequality (14).
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[23] M. Mateljević and M. Svetlik, Hyperbolic metric on the strip and the Schwarz lemma for HQR mappings, Appl. Anal. Discrete

Math., 14 (2020), 150–168.
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