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type functions
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Abstract. In this paper, we construct a modification of Szász-Mirakyan operators with a new technique
that preserved the exponential functions i.e. exp(µt) and exp(2µt), for a fixed real parameter µ > 0. We
study the asymptotic behaviour and weighted approximation of these operators. Comparisons about one
approximate better between the recent operators and the classical Szász-Mirakyan operators have also been
presented. In the end, we compare the convergence of these operators and modified Baskakov operators
to certain functions by illustrative graphics using the Mathematica algorithms.

1. Introduction

In 1912, Bernstein [7] defined the Bernstein operators in order to give constructive proof of the Weierstrass
approximation theorem. The uniform convergence of these operators is ensured by Korovkin theorem [19].
For the convergence, the moments of the linear positive operators play a very important role and helps to
reproduce and to get better approximation. Bernstein polynomials fix constant as well as linear functions. To
obtain better error estimation, King [18] has taken initiative to modify the well-known Bernstein operators
that preserve constant and quadratic functions. After that many authors [3, 10, 14, 15, 17] etc. followed
his approach on several positive linear operators. It is an effective technique of preservation of moments
to get better results from modified operators than the classical ones. In 1950, Szász [25] introduced the
generalization of Bernstein polynomials to infinite intervals called the classical Szász-Mirakyan operators
which are defined by

Sn( f ; x) = e−nx
∞∑

l=0

(nx)l

l!
f
(

l
n

)
, x ≥ 0, n ∈N

for all functions f : [0,∞)→ R for which the infinite series at the right hand side is absolutely convergent.
These operators are positive linear operators and preserve constant as well as linear functions.

In order to obtain the uniform convergence of positive linear operators to continuous functions, Ko-
rovkin [19] discovered a important concept by giving a very simple criterion for the functions 1, x and x2.
The foremost applications are concerned with constructive approximation theory which uses it as a valuable
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tool. Also, to determine the convergence behaviour, direct results of approximation e.g. degree of approx-
imation, rate of convergence and asymptotic behaviour have been studied for many well-known positive
linear operators. The various qualitative and quantitative results of Voronovskaja type theorem provided
asymptotic behaviour, the uniform convergence and the approximation order of the approximated function
for these operators. Such type of results have attracted the attention of many great mathematicians in last
century which can be seen in literature cf. [8, 22, 24] etc.

A lot of generalizations have been investigated on Szász-Mirakyan operators. In 2017, Srivastava et al.
[23] introduced q−Szász-Mirakjan-Kantorovich type positive linear operators of one and two variables that
are generated by Dunkl’s generalization of the exponential function and presented their approximation
properties. Very recently, Gupta et al. [12] provided the estimates for the difference of the operators
(especially Szász-Mirakyan and Baskakov operators) which are associated with different fundamental
functions.

Nowadays, several authors have modified the linear positive operators that reproduce the exponential
functions instead of the usual polynomial type ones which gives more better results. Initially, Aldaz and
Render [4] have defined linear positive operators which preserve the exponential functions. We mention
some of the important papers in this direction as [6, 9, 11, 13, 16, 20].

Recently, Acar et al. [1] and [5] modified the Szász-Mirakyan operators that preserve the exponential
function e2µx, µ > 0. Acar et al. [2] also changed the same operators which fix the exponential functions
eµx, e2µx, µ > 0 by taking two sequences αn(x) and βn(x).Here, we present the generalization of the classical
Szász operators in a different manner that also regenerate the exponential functions eµt and e2µt,where µ > 0
is a fixed real parameter. We modify the Szász operators by using a single sequence αn(x),which is defined
as follows:

Mµ,n( f ; x) = e(µx−nαn(x))
∞∑

l=0

e−µl/n (nαn(x))l

l!
f
(

l
n

)
, (1.1)

where αn(x) =
µx

n(eµ/n − 1)
.

For f ∈ C[0,∞) i.e the space of all continuous functions on [0,∞), Mµ,n( f ; x) converges to f as n tends to∞
uniformly on [0,∞). Our operators have close relation with the classical Szász-Mirakyan operators that is
given by

Mµ,n( f ; x) = eµx
Sn

(
f

eµ
;αn(x)

)
.

Clearly Mµ,n( f ; x) are positive and linear operators. It is known that the operatorsSn( f ; x) preserve constant
as well as linear functions but our operators preserve eµt and e2µt i.e.

Mµ,n(eµt; x) = eµx, Mµ,n(e2µt; x) = e2µx. (1.2)

The aim of this paper is to study the Voronovskaja type theorems and weighted approximation results
for the modified Szász operators. In order to obtain these convergence results, we obtain some auxiliary
results. Also, we give a comparison of these operators with classical Szász operators by using asymptotic
results and with modified Baskakov operators through graphics.

2. Auxiliary results

For µ > 0, consider the exponential function expµ(t) = eµt, exp2
µ(t) = e2µt and its inverse function is

denoted by logµ which is the logarithmic function with base eµ.

Lemma 2.1. For each n ∈N and x ∈ [0,∞), the following identities hold:

(i) Mµ,n(1; x) = e(1−e−µ/n)µx

(ii) Mµ,n(exp3
µ(t); x) = e

(
1+ e2µ/n

−1
eµ/n−1

)
µx
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(iii) Mµ,n(exp4
µ(t); x) = e

(
1+ e3µ/n

−1
eµ/n−1

)
µx
.

For each x ∈ (0,∞),we shall consider the functions ex and expµ,x defined for t ∈ [0,∞) by

ex(t) = t − x, expµ,x(t) = eµt
− eµx.

For x ∈ [0,∞) and t ∈ [0,∞), by using equation (1.2) and Lemma 2.1, we get

Lemma 2.2. For each n ∈N and x ∈ [0,∞), the following identities hold:

(i) Mµ,n(expµ,x(t); x) = eµx
(
1 − e(1−e−µ/n)µx

)
(ii) Mµ,n(exp2

µ,x(t); x) = e2µx
(
e(1−e−µ/n)µx

− 1
)

(iii) Mµ,n(exp4
µ,x(t); x) = e

(
1+ e3u/n

−1
eµ/n−1

)
µx
+ e(5−e−µ/n)µx + 2e4µx

− 4e
(
2+ e2µ/n

−1
eµ/n−1

)
µx
.

Remark 2.3. lim
n→∞

n(Mµ,n(1; x) − 1) = lim
n→∞

n
(
e(1−e−µ/n)µx

− 1
)
= µ2x.

Theorem 1. [21] Let Sn( f ; x) be a classical Szász-Mirakyan operators and f is a continuous and bounded on [0,∞)
such that f ′, f ′′ are continuous and bounded on [0,∞), then the following uniform convergence holds on any compact
interval [0, a], a > 0 :

lim
n→∞

2n
(
Sn( f ; x) − f (x)

)
= x f ′′(x).

3. Main results

Let C∗[0,∞) denote the space of all real valued and continuous functions on [0,∞) in which lim
x→∞

f (x)

exists and finite endowed with the norm ∥ f ∥ = sup
x∈[0,∞)

| f (x)|.

Theorem 2. If f ∈ C∗[0,∞) has a second derivative at a point x ∈ [0,∞), then

lim
n→∞

2n
(
Mµ,n( f ; x) − f (x)

)
=

(
2µ2 f (x) − 3µ f ′(x) + f ′′(x)

)
x. (3.1)

Proof. By Taylor’s theorem, we have

f (t) = ( f ◦ logµ)e
µt = ( f ◦ logµ)(e

µx) + ( f ◦ logµ)
′eµxexpµ,x(t) +

( f o logµ)
′′

2!
eµxexp2

µ,x(t) + hx(t)exp2
µ,x(t), (3.2)

where hx(t) = h(t − x) and h is continuous function which vanishes at 0.
Applying Mµ,n(.; x) to both the sides, we get

Mµ,n( f ; x) = ( f ◦ logµ)(e
µx)Mµ,n(1; x) + ( f ◦ logµ)

′eµxMµ,n(expµ,x(t); x)

+
( f ◦ logµ)

′′

2!
eµxMµ,n(exp2

µ,x(t); x) +Mµ,n(hx(t)exp2
µ,x(t); x).

Since ( f ◦ logµ)e
µx = f (x), ( f ◦ logµ)

′eµx = f ′(logµ eµx)
(

d
dx

(
logµ eµx

))
= f ′(x)e−µxµ−1

and ( f ◦ logµ)
′′eµx = e−2µx

(
f ′′(x)µ−2

− f ′(x)µ−1
)
, then by using Lemma 2.2, we have

Mµ,n( f ; x) − f (x) = f (x)Mµ,n(1; x) − f (x) + ( f ◦ logµ)
′eµxMµ,n(expµ,x(t); x)

+
( f ◦ logµ)

′′

2!
eµxMµ,n(exp2

µ,x(t); x) +Mµ,n(hx(t)exp2
µ,x(t); x)

n(Mµ,n( f ; x) − f (x)) =

(
2µ2 f (x) − 3µ f ′(x) + f ′′(x)

)
2µ2 n(Mµ,n(1; x) − 1) + nMµ,n(hx(t)exp2

µ,x(t); x).

(3.3)
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Taking limit n→∞ to both sides of the equation (3.3) and then by using Remark 2.3, we get

lim
n→∞

n(Mµ,n( f ; x) − f (x)) =

(
2µ2 f (x) − 3µ f ′(x) + f ′′(x)

)
x

2
+ lim

n→∞
nMµ,n(hx(t)exp2

µ,x(t); x).

To get the desired result, it is sufficient to prove that lim
n→∞

nMµ,n(hx(t)exp2
µ,x(t); x) = 0. From Cauchy-Schwarz

inequality we have

n|Mµ,n(hx(t)exp2
µ,x(t); x)| ≤

√
Mµ,n(h2

x(t); x)
√

n2Mµ,n(exp4
µ,x; x).

It is an easily found that lim
n→∞

(h2
x(t); x) = h2

x(x) = 0 and lim
n→∞

n2Mµ,n(exp4
µ,x; x) = 3µ4x2.

Thus the proof is completed.

We get differential operators in the right hand side of equation (3.1). It can be expressed as follows:

x( f ′′(x) − 3µ f ′(x) + 2µ2 f (x)) =
1
ω2(x)

(
1
ω1(x)

(
f (x)
ω0(x)

)′)′
,

where ω0(x) = ω1(x) = eµx, ω2(x) =
1

xe2µx .

Theorem 3. Let f ∈ C∗[0,∞) then for each x ∈ (a, b) ⊂ (0, 1), 2n(Mµ,n( f ; x) − f (x)) = o(1) if and only if f is a
solution of differential equation f ′′ − 3µ f ′ + 2µ2 f = 0 in (a, b).

Theorem 4. Let f ∈ C∗[0,∞) and let M ≥ 0 then for each x ∈ (a, b) ⊂ (0, 1)

2n|Mµ,n( f ; x) − f (x)| ≤M + o(1)

if and only if | f ′′ − 3µ f ′ + 2µ2 f | ≤M in (a, b).

4. Weighted Approximation

For x ∈ (0,∞) assume that ϕ(x) = 1 + e2µx, µ > 2 and consider the following weighted spaces:

Cϕ(0,∞) = { f ∈ C(0,∞) : | f (x)| ≤M fϕ(x), x ≥ 0, for some M f > 0}

Cl
ϕ(0,∞) = { f ∈ Cϕ(0,∞) : lim

x→∞

f (x)
ϕ(x)

= k f exists and finite},

where k f is a constant depending on f . Cϕ(0,∞) and Ck
ϕ(0,∞) are normed spaces with the norm ∥ f ∥ϕ =

sup
x∈(0,∞)

| f (x)|
ϕ(x)

.

Theorem 5. For any f ∈ Cϕ(0,∞), the inequality ∥Mµ,n( f )∥ϕ ≤ ∥ f ∥ϕ holds.

Theorem 6. For each f ∈ Ck
ϕ(0,∞), lim

n→∞
∥Mµ,n( f ) − f ∥ϕ = 0.

Proof. To prove the above result, it is sufficient to verify the following three conditions:

lim
n→∞
∥Mµ,n(ekµt; x) − lµ,k∥ϕ = 0, where lµ,k(x) = ekµx, k = 0, 1, 2.

Since Mµ,n(eµt; x) = eµx and Mµ,n(e2µt; x) = e2µx, the conditions are true for k = 1, 2,we need to prove only for
k = 0.
From Remark 2.3, we get

Mµ,n(1; x) − 1 =
1

2n2

(
µ4x2

− µ3x + 2µ2nx
)
+O

( 1
n3

)
∥Mµ,n(1; x) − 1∥ϕ =

1
2n2

(
µ4
− µ3 + 2µ2n

)
+O

( 1
n3

)
.

Thus, the condition is true for k = 0. This completes the proof of theorem.



M. Goyal / Filomat 37:2 (2023), 427–434 431

5. Comparison with Szász and modified Baskakov operators

Theorem 7. Let f ∈ C2[0,∞) := { f ∈ C[0,∞) : f ′, f ′′ ∈ C[0,∞)}. If there exists n0 ∈N such that

f (t) ≤Mµ,n( f ; x) ≤ Sn( f ; x), ∀ n ≥ n0, t ∈ (0,∞), (5.1)

then

f ′′(t) ≥ 3µ f ′(t) − 2µ2 f (t) ≥ 0, t ∈ (0,∞). (5.2)

In particular, f ′′(x) ≥ 0. Conversely, if (5.2) holds with strict inequalities at a point x ∈ (0,∞), then (5.1) also holds
for strict inequalities.

Proof. From (5.1),we have

0 ≤ 2n(Mµ,n( f ; x) − f (t)) ≤ 2n(Sn( f ; x) − f (t)), n ≥ n0, t ∈ (0,∞).

By using Theorems 1 and 2,we get

0 ≤ f ′′(t) − 3µ f ′(t) + 2µ2 f (t) ≤ f ′′(t),

from which (5.2) follows.
Conversely, if (5.2) holds with strict inequalities for a given x ∈ (0,∞), then we have

0 < f ′′(t) − 3µ f ′(t) + 2µ2 f (t) < f ′′(t),

and using Theorems 1 and 2,we obtain the required result.

Now, we compare the modified Szász operators Mµ,n( f ; x) and the modified Baskakov operators that also
preserve the exponential functions i.e. exp(µt) and exp(2µt), µ > 0, defined in [20], to a certain continuous
function through graphics using Mathematica software in the following examples:

Example 5.1. For µ = 1, 2, n = 50, 100, 200, the rate of convergence of the modified Szász operators Mµ,n( f ; x)
(blue) and the modified Baskakov operators Kµ,n( f ; x) (say), (Green) to the f (x) = x3 + 1 (Brown) is illustrated in the
following figures:

f(x)= x^3+1

Modoified Szasz M1,50 (f;x)

Modified Baskakov K1,50 (f;x)

5 10 15 20
x

5000

10000

15000

y
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Figure 1. The convergence of M1,50( f ; x) and K1,50( f ; x) to f (x) = x3 + 1

f(x)= x^3+1

Modoified Szasz M1,100(f;x)

Modified Baskakov K1,100 (f;x)
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10000

15000

y

Figure 2. The convergence of M1,100( f ; x) and K1,100( f ; x) to f (x) = x3 + 1

f(x)= x^3+1

Modoified Szasz M1,200(f;x)

Modified Baskakov K1,200 (f;x)
5 10 15 20

x
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4000

6000

8000

y

Figure 3. The convergence of M1,200( f ; x) and K1,200( f ; x) to f (x) = x3 + 1

From figures 1-3, we observe that the error between function f (x) and the modified Szász operators (red shaded
area) is less than the error between function and the modified Baskakov operators for the values of µ = 1 and
n = 50, 100, 200. So, as n increases the approximation of f (x) = x3 + 1 by the operators M1,n( f ; x) becomes better
than the approximation given by the operators K1,n( f ; x).
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f(x)= x^3+1

Modoified Szasz M2,50 (f;x)

Modified Baskakov K2,50 (f;x)
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100000

150000

y

Figure 4. The convergence of M2,50( f ; x) and K2,50( f ; x) to f (x) = x3 + 1

f(x)= x^3+1

Modoified Szasz M2,100(f;x)

Modified Baskakov K2,100 (f;x)
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Figure 5. The convergence of M2,100( f ; x) and K2,100( f ; x) to f (x) = x3 + 1

f(x)= x^3+1

Modoified Szasz M2,200(f;x)

Modified Baskakov K2,200 (f;x)
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Figure 6. The convergence of M2,200( f ; x) and K2,200( f ; x) to f (x) = x3 + 1

In figures 4-6, for µ = 2, the convergence of the operators M2,n( f ; x) to f (x) is slow as n increases but it is still better
than the convergence given by the operators K2,n( f ; x).
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