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Abstract. In this paper, we introduce a notion of B-statistical uniform nonintegrability with respect to A
(B-UNI(c) w.r.t. A, in short), which is weaker than UNI(c) w.r.t. A (see [3]). We establish the de La Vallée
Poussin criterion for B-UNI(c) w.r.t. A, which extends Theorem 2.1 of Chandra et al. (2021) [3]. Moreover,
we also give a necessary condition for the sequence of random variables {X;, k € IN} to be B-UNI(c) w.r.t. A.

1. Introduction

Chandra, Hu and Rosalsky (2016) [2] introduced the concept of uniform nonintegrability of a sequence of
random variables and gave the sufficient and necessary conditions of uniform nonintegrability respectively.
And they also gave two equivalent characterizations of uniform nonintegrability.

In this paper all random variables under consideration are defined on the probability space (Q, ¥, P).
We shall denote E(X14) by E(X : A). ais a real number with a > 0, and 1,4 is the indicator function of set A.

Definition 1.1. (Chandra etal. (2016) [2]) A sequence of random variables {Xj, k € IN} is said to be uniformly
nonintegrable (UNI) if

lim }%nng E( Xkl : | Xkl < a) = oo.

a—oo ke

The following equivalent characterizations of UNI is similar to the La Vallée Poussin criterion for
uniform integrability (see [5]).

Theorem 1.2. (Theorem 3.3 of Chandra et al. (2016) [2]) A sequence of random variables {Xy, k € IN} is
UNI if and only if there exists a continuous function Q : [0, 00) — [0, 00) such that Q(0) = 0, Q is strictly
increasing, Q(x) — oo as x — oo, x1Qis strictly decreasing to 0 as 0 < x T o0, and {Q(|X[), k € IN} is UNL

Later on, Hu and Peng (2018) [4] introduced the following new concept of weakly uniform nonintegra-
bility (W-UNI), which is weaker than UNI.
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Definition 1.3. A sequence of random variables {Xj, k € IN} is said to be W-uniformly nonintegrable (W-
UNI), where “W” means “weak” , if

lim inf E(|X| A a) = oo.

a—o0 keIN

Based on the work of Hu and Peng, Chandra et al. (2021) [3] defined a general notion of UNI(c) w.r.t. A
of the sequence of random variables {Xk, k € IN}, (where A = {a,x,n € IN,k € IN} is an array of nonnegative
real numbers with sup, .« X521 @ < ) and also pointed out that the concept of UNI and the concept of
W-UNI can be obtained immediately by taking for A of

age=lifn=kanday=0if n#knelN,kelN.

Definition 1.4. Letc € {0,1} and A = {a,, n € IN, k € IN} be an array of nonnegative real numbers with

(o]

sup Z Apg < 00.
nelN =4

We say that the sequence of random variables {Xy, k € IN} is UNI(c) w.r.t. A if

(o]

lim inﬂfI A [cE( Xk A a) + (1 — O)E( Xl : 1 Xy| < a)] = oo.
ne

a—co
k=1

According to the Remarks 1.1 of Chandra et al. (2021) [3], we can obtain the following facts.

If {Xk, k € IN} is UNI(0) w.r.t. A, then we can say that {X}, k € IN} is UNI w.r.t. A and if A is the identity
matrix, the condition that {Xj, k € IN} is UNI w.r.t. A is obviously the condition that {Xj, k € IN} is UNL
Similarly, if {X, k € IN} is UNI(1) w.r.t. A, we say that {X, k € IN} is W-UNI w.r.t. A. Moreover, if we take the
identity matrix as A, then W-UNI w.r.t. A reduces to W-UNI.

Before giving the following definition, we first introduce the concepts of B-statistical supremum and
B-statistical infimum of a sequence {xx}.

Let K be a subset of the set of positive integers IN and B = {b,x, n € IN, k € IN} be a nonnegative regular
summability matrix i.e. by > 0and Y}, by = 1. Set

8p(K) := lim Z b

keK

If the limit exists, we said it to be B-density of K.
Let m be a real number and {xx, k € IN} be a sequence. If

op(lke N :x >m}) =0 (or 6p({k € N : x < m}) =1),

the number m is said to be a B-statistical upper bound of {x;}. The infimun of the set of all B-statistical
upper bounds is said to be the B-statistical supremum of {x}, where {x} is a B-statistical upper bounded
sequence, and it is denoted by sup,; , Xk
The definition of concept B-statistical infimum is similar to B-statistical supremum. Let [ be a real
number. If
Op(fk e N:x <I}) =0 (ordp(lke N:x, 2 1}) = 1),

then [ is said to be a B-statistical lower bound of {x;} and the supremun of the set of all B-statistical lower
bounds of a B-statistical lower bounded sequence is said to be the B-statistical infimum of {x;}. It is denoted
by infStBkE]N Xk-

From Altinok and Kiiciikaslan. (2014) [1], we know that

inf x; < infy, xx < supy;, Xk < sup .
kelN kelN keN keN
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The main purpose of our work is to introduce the notion of B-statistical uniform nonintegrability w.r.t.
A, (B-UNI(c) w.rt. A) (where A = {a,n € N,k € IN} is an array of nonnegative real numbers with
sup, . L1 dnk < ). The notion of UNI(c) w.r.t. A can be obtained immediately by taking for B the
identity matrix. In this paper, we established the de La Vallée Poussin criterion for B-UNI(c) w.r.t. A, which
extends Theorem 2.1 of Chandra et al. (2021) [3]. Moreover, we also give a necessary condition for the
sequence of random variables {Xj, k € IN} to be B-UNI(c) w.r.t. A.

Definition 1.5. Let {X}, k € IN} be a sequence of random variables and ¢ € {0, 1}. A = {4, n € N,k € N} is an
array of nonnegative real numbers with

[e9)

supy;, Z A < 00,

nelN (=1

We say that {X, k € IN} is B-UNI(c) w.r.t. A if
lim a,4(a) = oo,
a—oo

where

00

aca(a) = infy, Zank[clE(lel Aa)+ (1= )E(Xyl : | Xkl <a)],a>0.
keN 3

Remark 1.6. (I) If the sequence of random variables {X}, k € IN} is B-UNI(0) w.r.t. A, then we say that
{Xk, k € N} is B-UNI w.r.t. A. If {X}, k € IN} is B-UNI(1) w.r.t. A, we say that {X}, k € IN} is B-WUNI w.r.t. A.

(I) If the nonnegative regular summability matrix B is the identity matrix, the condition that {X}, k € IN}
is B-UNIw.r.t. A (resp., B-WUNIw.r.t. A)is the condition that {Xj, k € IN} is UNI w.r.t. A (resp., W-UNIw.r.t.
A). Furthermore, if both B and the array of nonnegative real numbers A are identity matrix, the condition
that {Xy, k € IN} is B-UNI w.r.t. A (resp., B-WUNI w.r.t. A) is the condition that {Xj, k € IN} is UNI (resp.,
W-UNI).

Lemma 1.7. By Definition 1.5, it is clear that a.(-) is a nondecreasing function on (0, o) for ¢ € {0,1},
thus lim,_,. ac4(a) always exists. Then for a sequence of random variables {Xj, k € IN} and c € {0,1}, the
following three statements are equivalent.

(1) The sequence of random variables {X, k € IN} is B-UNI(c) w.r.t. A.

(2) There exists a function W : (0, 00) — (0, 00) with 0 < W(a) — oo asa — oo such thatlim, . a. 4(W(a)) =
00,

(3) There exists a sequence {Wy, k € IN} on (0, c0) with limy_,., Wi = oo such that limy_,e atc,a(Wy) = 0.

Lemma 1.8. (see Example 2.2 of Hu and Peng. (2018) [4]) Let X be a random variable and a > 0. Then
E(X| Aa) =E(X]:|X| <a)+aP(X]| > a).

Remark 1.9. For a sequence of random variables {Xj, k € IN}, it is obvious from Lemma 1.8 that whenc =1
whereas when ¢ = 0,

(o)

(@) = infy, ) alB(Xi 1 [Xil < a) + caP(Xl > )], a > 0.
keN 13

Lemma 1.10. Let {x, k € IN} and {yx, k € IN} be two B-statistical bounded sequences of real numbers. Then
(1) infstBkE]N{_xk} == SupstBkE]N{xk}-
(2) infstgke]N {xk + yk} = infstgkg]N{xk} + infstgkg]N{yk}'
3) infoBkelN{xk + ]/k} < supstBkE]N{xk} + infstgke]N{yk}-
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Proof. (1) Let supy, ., {xi} = m. By the definition of B-statistical super bound, we have 6p(fk € IN : x; >
m}) = 0, hence
0p(fk e N : —xp < —m}) = Op({k € N : x¢ > m}) = 0.

It is obvious that —m is a B-statistical lower bound of {—xx}. Since m is the B-statistical supremum of {xx},
for any € > 0, m — ¢ is not a B-statistical super bound of {x;}, then we have

Op(fke N : —xy < —m+¢€}) =0p(fk e N : x >m — ¢}) > 0.

Similarly, for any ¢ > 0, —m + ¢ is not a B-statistical lower bound of —x;, so we know —m is the B-statistical
infimum of {—xx}, i.e. info  ({—2xk} = —m = - Supstskem{xk}‘
(2) Assume that infy,,  {xx} = [ and infy,, o (yi} = p, we have

oplkeN:x. <I}) =0
and
op(fke N:y <p})=0.
Note that
(keN:xr+y <I+p}
clkeN:x <lJUlkeN:y <p},
then
Op(fk e N : xp + yi <1 +p})
<op(lk e N:x, <I}) + 0p(fk € N : yx < p})
=0+0=0.
Hence, [ + p is a B-statistical lower bound of {x; + yi}, i.e. I + p < infg, o {xk + yx}, which implies

inf, {xr + yi} = info, {x) + infg, {14}
kelN kelN kelN

(3) By (2), we have

infg, {oxx + yi} + infor, {—x} < infory {yid,
kelN kelN kelN

consequently, from (1) we have

infep, {x¢ + yi} < — infip {0} + infer, {yx)

kelN kelN kelN
= supStB{xk} + infe {yl.
kelN kelN

O

2. Main results and Proofs
In Theorem 2.1, we will give a de La Vallée Poussin-type criterion for B-UNI(c) w.r.t. A.

Theorem 2.1. Let ¢ € {0, 1} and {Xi, k € IN} be a sequence of random variables. Let A = {ay,n € N,k € IN} be an
array of nonnegative real numbers with

o

supy, Z A < 00,

kelN k=1

Then {Xi, k € N} is B-UNI(c) w.r.t. A if and only if there exists a continuous function Q : [0, 00) — [0, 00) such
that Q(0) = 0, Q is strictly increasing, Q(x) — o0 as x — oo, x™1Q is strictly decreasing to 0 as 0 < x T oo, and
{QUXk]), k € N} is B-UNI(c) w.r.t. A.
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Proof. (Sufficiency). Assume that there exists a function Q satisfying the above properties. Then, there
exists M > 0 such that for all x > M, Q(x) < x. By Remark 1.9 and Lemma 1.10, we have

(o)

o = lim il]':fstg Z anc[E(Q(IXk]) : QUXkl) < a) + caP(Q(IXk]) > a)]
€N

a—0o0
k=1

(o)

= lim infy, Z ane[EQUXkl) : [QUXk]) < al N [IXk| < M])
S\

a—o0
k=1

+EQ(IXK]) : [QUXkl) < al N [IXy| > M]) + caP(Q(IXk]) > a)]

(o8]

< lim infg, Z 1 [ QM) + E(IXi| : Q(IXk]) < a) + caP(Q(IXk]) > a)]
€N

a—oo
k=1

(o8]

< lim infy, Y 3 QM) + E(Xid : 1Xd < Q7'(@) + Q7 @)P(Xel > Q' (a)]
S\ k=1

(9]

<QM)sup,,, Y au
keN k=1

0o

+ lim infy, )" auB(X 1 1Xd < Q7' (@) + cQ ' @P(Xel > Q7 @)]
€N

a—o0
k=1

Note that sup,, Y req dnk < 00, then we have

(o)

lim infy, Y auB(X : 1Xid < Q7' (@) + Q7 @P(Xil > Q7 (@))] = oo.

a—oo0
keN 13

It follows from Lemma 1.7 that {Xj, k € IN} is B-UNI(c) w.r.t. A.
(Necessity). Assume that {Xj, k € IN} is B-UNI(c) w.r.t. A. Let np = 0. Since lim,_,co @tc,4(a) = o0, then we
can find a sequence of positive integers {n;, j € IN} such that

nj > max{2nj_1,j2j}

and )
aca(nj) >8,j€NN.

Define a continuous function Q : [0, o0) — [0, o) with

Q(nj) =27/n;,

Vnix
Q(x) = 21 ,0<x<ny,
. 2_(j+1)1’1]'+1 - 2_j7’lj .
Q(x) =2"n; + pP— (x—=nj),n;<x<nj,j€N.
j+1 ]

For j € N, since nj > max{2n;_1, j2/}, we have
Q(nj) =27n; > j,
and , 4
Q(”j) = 2_]71]' < 2_(]H)njﬂ = Q(”j+l)~
Thus the function Q is strictly increasing with limy . Q(x) = oo.
Next, we show that x~1Q(x) is strictly decreasing to 0 as 0 < x T co.



M. Chen et al. / Filomat 37:20 (2023), 6741-6750 6746

1. . .
When 0 < x < 11, x'Q(x) = \/T"Tx‘i is strictly decreasing, and when n; < x <mnjy1,

Z_ji’lj 2_(j+1)71j+1 — 2‘fn]- I’lj(z_(j+1)1’l]'+1 - Z_jl’lj)

_1 _
X Qx) = . +

7

Nji1 — N x(nj+1 —nj)

note that

dx'Qw) _ 12V —277n; 1
dx :x_z( Njp1 — 1 _E)
@ =D
- 2j(”j+1 - nj)

and %’j’) =27/, j € IN is strictly decreasing to 0 as j — oo. Therefore x"'Q(x) is strictly decreasing to 0 as
0<x7Too.

Finally, we show that {Q(|Xk|), k € IN} is B-UNI(c) w.r.t. A. Set

(o)

Bea(a) = infy, Z an[CE(QUXk]) A a) + (1 - )E(Q(Xk]) : QUXk]) < a)],a > 0.

-
From Remark 1.9, we have
Be,a(Q(n))
=infg, i ank[E(QUIXK]) - QUXk]) < Q(1)) + cQ(1))P(Q(IXkl) > Q(1)]

nelN 934
=infg, Z A [EQUXk]) : 1Xel < 1)) + c27n;P(IXel > 1))
nelN 974

=27/ infy, Z a2 EBQUX]) : Xkl < 1)) + eniP(Xil > )] 21)
nelN k=1

Note that for all 7 € IN,

X r

Q) _ Q(ny)
n

=27 when n,_; < x < n,.
Thus
EQ(UXk) : Xkl < 1))

]
=Y BQUXd) : 11 < X < )
r=1

j
> Y 2E(Xid <yt < X4 < )
r=1

j
271 ) (Xl : 1 < X0 < )
r=1

=27TE(|IXl 1 |Xil < 1)). (2.2)
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Since aca(nj) > 8/,j € N, then by Egs. (2.1), (2.2) and Remark 1.9, we have

Be.a(Q(n)))

(o)

>27T infy, ) 22 TE(Xil ¢ 1Xil < 1)) + cn;POXil > )]
nelN 9=

zz_jac,A (I’l])
>2778]
=4/,
Thus
lim f4(Q() = e

which implies that lim, . fc4(a) = c0. By Lemma 1.7, we get that {Q(|Xk), k € IN} is B-UNI(c) w.r.t. A. O

In the following, we will give a necessary condition for a sequence of random variables {Xj, k € IN} to be
B-WUNI w.r.t. A.

Theorem 2.2. Let (X, k € IN} be a sequence of random variables and A = {au,n € N,k € IN} be an array of
nonnegative real numbers with sup, o Yroq A < 0. If {Xi, k € N} is B-WUNI w.r.t. A, then for all M > 0, there
exists a > 0 such that for every sequence of events {Ax, k € IN},

inf Z auP(Ap) > a = infy, Z A E(Xel : Ag) > M.
N nelN 4o

Proof. From Remark 1.6, we know that {Xy, k € IN} is B-WUNI w.r.t. A, i.e.

o)

lim infy, Z 4, E(1Xe| A a) = .

a—00

nelN k=1
By Lemma 1.8, we have
lim infy, Z A E(Xel : 1Xil < a) + aP(I Xl > a)] = .
a—oo c k:1

Then for all M > 0, there exists ag > M such that

(o)

infy, ) aulE(Xi : Xl < a0) + aoP(X| > ao)] > 4M,
nelN 975

therefore, 4M is a B-statistical lower bound of Y ;7 au[E( Xkl : 1Xk| < ag) + agP(IXk| > ap)]. By the definition
of B-statistical lower bound, we have

op((n € N : ) awlE(Xl : Xl < ao) + aoP(IXil > ao)] > 4M) = 1.
k=1

Put

Ko={n e : ) aulB(Xil : 1Xd < ao) +agP(Xil > ao)] > 4M),
k=1
then
op(K) = 1.
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For any n € K, inequality Y2 au[E(IXx| : |Xkl < a0) + aogP(Xkl > a9)] = 4M holds, which implies either
Yoer @B Xl = 1Xkl < ag) = 2M or Y24 anaoP(IXx| > ag) > 2M. Note that sup, . Yooy @k < 00, we have

(e8] (o)

Zank < supZank < 00,
k=1 nelN k=1

then there exists a constant A; > 2—21 such that

(o]
Zank < Al.

k=1

Leta=A; - Q—f and a sequence of events {Ay, k € IN} satisfy infuen Y poq @ P(Ax) > @. When Y12 a i E(1 X4l :
| Xkl < ag) > 2M, we can get

e8]

Y aulB(Xid s A 2 ) awE(Xil < [1X4 < a0l 0 Ay
k=1 k=1

(o8]

=Y anB(Xid < 13 < a0) = ) auB(Xil < [1Xid < o] O AY)
k=1 k=1

>2M = )" 0P (AS)
k=1

=2M — Z ankao(l - P(Ak))
k=1

00

=2M + ag Z an(P(Ax) — 1)
=1

0o

>2M + Llo(Oé - Z ank)
k=1

>2M + ﬂo(()é - A1)
=M.

When Y2, auaoP(1 Xkl > ap) > 2M, we have

(o)

Y aB(Xl - A 2 Y awE(Xil 1 Xl > a0] 0 Ay
k=1

=~
—_

> ¥ auaoP([IXkl > a0l N Ax)

g e

=Y awaolP(Xil > a0) = PIXid > a0l 1 AD]

k=1
> )" auaol P(Xil > a0) = P(AD)]
k=1

=Y auaoP(Xil > ao) + a0 ) au(P(A) 1)
k=1 k=1
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0o

>2M + ao(i auP(Ay) — Z Ank)

k=1 k=1
>2M + ap(a — Aq)
=M.

Hence, for any n € K, Y12, aE(IX| : Ax) > M holds, then

KSinelN: ) auE(Xid: A > M).
k=1

Therefore

12 p(in € N: ) aulE(Xil : Ar) 2 M) 2 55(K) = 1.
k=1

So M is a B-statistical lower bound of Y ;> ; 2, [E(IXk| : Ak), it follows that infy, . Yo @k E( Xkl : Ax) = M. O
Corollary 2.3. Let {Xi, k € IN} be a sequence of random variables and A = {ay,n € N,k € IN} be an array of

nonnegative real numbers with Y ;21 aye = 1 for all n € N. Then {X, k € N} is B-WUNI w.r.t. A if and only if for all
M > 0, there exists a € (0, 1) such that for every sequence of events {Ay, k € IN},

inf Z 4, P(Ar) = a = infy, Z 4, E(Xil : A) > M.
neNiS nelN %=1

Proof. The proof for necessity is similar to that of Theorem 2.2. We omit the details. In the following, we
give the proof for sufficiency.
Suppose that for all M > 0, there exists a € (0, 1) such that for every sequence of events {Ay, k € IN},

inf 2 4 P(Ap) > a = infy, Z. A, E(Xel : Ag) > M. 2.3)
e LSt

Note that infuew Y joq @ P(1Xk| < 4) is an increasing function of a. Denote

B:=liminf » auP( Xk <a)>0.
a—oo nelN Py

Now we need only consider two cases:
(I) @ € (0, ), B > 0. By the definition of B, there exists an ay such that for all a > ag, inf,ew Y. oq 2P (1 Xkl <
a) > a, then by Eq.(2.3) and Lemma 1.8, we have

infyy, Y B(Xi A a) > infy, Y auE(Xd : 1Xel < a) > M,
nelN 555 nelN 755

(Il) & € [B,00) N (0,1) (B may be zero). Since infyen Ypoq 2P Xkl < a) is an increasing function of a, for
alla > 0, we have

inf kz_; auP(Xd < a) < B < a.

Leta > 4. Decompose the positive integers set IN into two subsets IN; and IN; such that Ny N IN, = @ and
for all nj € Ny, Y121 2,k P(IXk| < ) < @ and, for all m, € Ny, Y17, a4,k P(IXi| < a) > a.
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(i) For any n; € Ny, we have

infyr, Y ausB(Xel A a) =infy, ) g, [EQXi : Xl < 0) + aP(Xi| > )]
njelN1 5559 njelNy 35
> inf,, Z 4, aP(Xel > a)
n,-e]Nl k=1
=infy,a ) ay(1 - P(Xil <))
T”E]N] k=1
>infy, (a Z ()
l’le]Nl k=1
=a(1 - a)
>M.

(ii) For any m, € Ny, Y17 akP(IXk| < a) > a holds, hence inf,,ew, Y.poq @mikP(1 Xkl < a) > a. By Eq.(2.3)
and Lemma 1.8, we have

(o) [ee]
inf;, 2 @ E(Xi| A ) > infy, Z a JE(X] 2 [Xi] < a) > M.
m,€INy =1 m,€IN, =1

Hence from (i) and (ii), when a > %, foralln €e Nand M > 0,

00

infy, Z aE(Xi| A a) > M.
nelN k=1

Both in the case (I) and (II) can imply that

o

lim infy, 2 4, E(Xl A a) = o0,

a—00
nelN =1

therefore, {X, k € IN} is B-WUNI w.r.t. A.
The proof is completed. [

References

[1] Altmok M and Kiigiikaslan M, A-Statistical Supremum-Infimum and A-Statistical Convergence, Azerbaijan Journal of Mathe-
matics, 4: 43-57, 2014.

[2] Chandra T K, Hu T C and Rosalsky A, On uniform nonintegrability for a sequence of random variables, Statistics Probability
Letters, 116: 27-37, 2016.

[3] Chandra T K, Hu T C and Rosalsky A, On Uniform Nonintegrability and Weak Uniform Nonintegrability of a Sequence of
Random Variables with Respect to a Nonnegative Array, Calcutta Statistical Association Bulletin, 73(1): 53-61, 2021.

[4] Hu Z C and Peng H C, Uniform nonintegrability of random variables, Frontiers of Mathematics in China, 13: 41-53, 2018.

[5] Rosenkrantz W A and Meyer P A, Probability and Potentials, Blaisdell Publishing Co. Ginn and Co. Waltham, Mass.-Toronto,
Ont.-London, 21(98), 1966.



