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Some results on invariant submanifolds of a paracontact (x, i, v)-space

Pakize Uygun?

® Aksaray University, Faculty of Arts and Sciences, Department of Mathematics, 68100, Aksaray, Turkey

Abstract. In this paper, we have characterized an invariant submanifold of a paracontact (x, y, v)-space.
Besides this, we have researched some geometric conditions for an invariant submanifold of a paracontact
(x, u, v)-space to be totally geodesic.

1. Introduction

The study of paracontact geometry was initiated by Kaneyuki and Williams[8]. After then, Zamkovoy
started working paracontact metric manifolds and their subclasses [15]. Since several geometers interested

paracontact metric manifolds and researched various important properties of these manifolds and some
interesting results have been found.

The geometry of paracontact metric manifolds can be related to the theory of Legendre foliations. One
of the class of paracontact manifolds for which the characteristic vector field £-belongs to the (x, u)-nullity
condition for some real constants x and p. Such manifolds are known as (x, p)-paracontact metric manifolds
[13].

I. Kiipeli Erken and C. Murathan showed that a paracontact metric (x, i, v)—manifold with ¥ = =1 is not
necessary para-Sasakian. They found examples about paracontact metric (x, 4, v)—manifolds according to

the cases k > —1, ¥ < —1. They researched a relation between non-Sasakian (x, u, v = const.)—contact metric
M
manifold with the Boeckx invariant I = —=2

i/ﬂ is constant along the integral curves of £(Iy) = 0 [10].

In [1], M. Atgeken studied how the functions «, u and v behave on the submanifold. He investigated
necassary and sufficient conditions for an invariant submanifold of an almost Kenmotsu (x, , v)— space to
be totally geodesic under some conditions.

In addition to the studies I mentioned above, many authors have examined invariant submanifolds and
many important properties of different manifolds in their studies, [2-7, 9, 11, 12, 14].

Recently, we have studied an invariant submanifold of a (x, i, v) paracontact metric manifold and

obtained some new results. In this paper, we research the conditions under which invariant pseudoparallel
submanifolds of a (x, u, v)-paracontact space are totally geodesic.
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2. Preliminaries

A (2n + 1)-dimensional smooth manifold M is said to be a paracontact metric manifold if it admits a
(1,1)-type tensor field ¢, a unit spacelike vector field &, 1-form 1 and a semi-Riemannian metric tensor g
which satisfy

¢P*x1
g(Ppx1, Pxz)

x1 = n(x1)é, nxr) = g(xy, &) 1)
—g(x1,x2) + n(x1)n(x2), nop =0 )

and
dn(xl, x2) = g(xll quZ)/
for all x1,x; € F(T]VI), where T (T]VI) denote the set of the differentiable vector fields on M.

In a paracontact metric manifold (]\7[, ¢,1,¢,9), we define a (1, 1)-type tensor field by h = %f;gb, where ¢
denotes the Lie-derivative. One can easily to see that /1 is a symmetric and satisfies

hé = 0, h¢ =—¢h and Trh = 0. 3)
2hxy = (Cep)xr = Lepxy — Plexy = [, px1] — P[E, x1]. 4)

By 6, we denote the Levi-Civita connection of g, then we have
Vi & = —fx1 + ohxi, Ve = 0. 6)

for all x; € I'(TM).

Moreover, h = 0 if and only if & is a Killing vector field and this case MZ”“(qb, &,1,9) is said to be K-
paracontact manifold. A normal paracontact metric manifold is called a para-Sasakian manifold. In any
para-Sasakian manifold

R(x1,x2)& = —(n(e2)x1 = 1(x1)x2) 6)

holds, but unlike contact metric geometry the condition (6) not necessarily implies that the manifold is
para-Sasakian.

A paracontact metric manifold ]\712"+1(¢, &,1,9) is said to be a (x, u)-space form if its the Riemannian
curvature tensor R satisfies

R(x1,%2)& = w{n(x2)x1 — n(x1)x2} + p{n(e2)hx; — ()}, ()

for all x1,x; € I’(TZVI), where «, u are real constant.
A (2n +1)—dimensional paracontact metric (x, 1, v)-manifold is a paracontact metric manifold for which
the curvature tensor field satisfies

R, :)E = wlnGa)x — nx)xa) + pln(a)hx — n(x)hxs)
+v{n(x2)phxr — n(x1)Phxs}, 8)

for all x1,x, € F(T]VI), where «, i, v are smooth functions on M.

Lemma 2.1. Let 1\712’”1((1), &, 1, 9) an paracontact metric (x, u, v)-manifold. Then the following identities hold:

o= (1+x)¢? forx#+-1, 9)
E(x) = —2v(1+x), (10)
Q¢ = 2nk¢, (11)
(Vad)rs = —g(x1 —hxy, x2)& +n(x2)(x1 = hixy), (12)
S(x1,&) = 2nkn(x1), (13)

REx)xa = wlgle, x2)E — n(x2)xi) + plglhx, x2)& — nx)hx )
+v{g(Pphxy, x2)& — n(x2)Phx1}, (14)
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for any vector fields x1,x, on M, where S and Q denote the Ricci tensor and Ricci operatory defined S(x1,x;2) =

9(Qx1, x2).

Now, let M be an immersed submanifold of a (k, u, v)-paracontact metric manifold ]\712””((1), &,1,9), by
V and V*, we denote the induced connections on I'(TM) and I'(T+M), respectively. Then the Gauss and
Weingarten formulas are, respectively, given by

Vixo = Vi xo +0(xq,x2) (15)
and
§X1X5 = —Axsxl + V;X5, (16)

for all x1,x; € I'(TM) and x5 € I'(T*M), where ¢ and A are called the second fundamental form and shape
operator of M, respectively.
They are related by

g(Axsx1,x2) = g(o(x1,X2), X5)- (17)

The first covariant derivative of the second fundamental form o is defined by
(V2 0)(x2,23) = Vi 0(x2,x3) — 0(Vy, X2, X3) — 0(x2, V2, X3), (18)

for all x1, x, € I(TM). If Vo = 0, then the submanifold is said to be its second fundamental form is parallel.
By R, we denote the Riemannian curvature tensor of the submanifold M, we have the following Gauss
equation
R(x1,x)x3 = R(x1,x2)x3 + Ag(er,x3)X2 = Aoy x5)X1 + (V1,0)(x2, x3)
_(VJCZO-)(xll-XS)/ (19)

for 311 X1,X2,X3 € F(TM).
R -0 is given by

(R(x1,%x2) - 0)(x4,x5) = R*(x1,%2)0(x4, X5) — 0(R(X1, X2)X4, X5)
—0(x4, R(x1, x2)x5), (20

where the Riemannian curvature tensor of normal bundle I'(T*M) is given

R*(x1,x2) = [V, Vi, 1 - Vi,

[x1,22]°

On a semi-Riemannian manifold (V] g), for a (o, k)-type tensor field T and (0, 2)-type tensor field A, (0, k + 2)-
type tensor field Q(A, T) is defined as

Q(A, T)(x11, X12, -y X1k5 X1, X2) = —T((x1 Aa X2)X11, X12, ... X1k)

= T(x11, (x1 Aa X2)X12,X13, ..., X1k)

= T(x11,x12, ..., (X1 Aa X2)X1k), (21)

for all x11, x12, ..., X1k, X1, X2 € I'(TM), where

(x1 Aa x2)x11 = A(x2, x11)x1 — A(X1, X11)X2. (22)
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Definition 2.2. Let M be a submanifold of a Riemannian manifold M, ). If there exist functions L, Ly, Ly and Ly
on M such that

R-o0 = LiQ(g,0), (23)
R-Vo = L,Q(g,Vo), (24)
R-o = L3Q(S0), (25)
R-Vo = L4Q(S, Vo), (26)

then M is, respectively, pseudoparallel, 2-pseudoparallel, Ricci-generalized pseudoparallel and 2-Ricci-generalized
pseudoparallel submanifold. In particular, if L1 = O (resp., L, = 0), then M is said to be semiparallel (resp.
2-semiparallel) [5].

3. Invariant submanifolds of a paracontact (x, p, v)-space

For an immersed submanifold M of a (x, p, v)-paracontact metric manifold Mz”*l(qb, 1n,¢&,9), Mis said to
be invariant if the structure vector field ¢ is tangent to M at every point of M and ¢x; is tangent to M for all
x1 € I'(TM) at every point on M, that is, ¢(Ty, M) C Ty, M at each point x; € M. We will assume that M is an
invariant submanifold in the rest of this paper unless say otherwise.

Lemma 3.1. Let M be an invariant submanifold of a (x, u, v)-paracontact metric manifold ]\7[2”*1@, n,&,9). Then
the following relations hold.

V& = —dx; + dhx (27)
o(px1,x2) = o(x1, Px2) = Po(x1, x2) (28)
U(x1, 5) = 0/ (29)

forall x1,x, € I(TM).
Proof. Since the proof is a result of direct calculations, we will omit to it. [J

Theorem 3.2. Let M be an invariant submanifold of a paracontact (x, y, v)-space M***1(¢, 1, &, 9). Then the second
fundamental form o of M is parallel if and only if M is totally geodesic provided x # 0.

Proof. Let us assume that ¢ is parallel. From (19), implies that

(Voo)a,x3) = Vi 0(x2,x3) = 0(Vy, X2, X3)
—0(x2, Vyx3) = 0, (30)

for all vector fields x;, x, and x5 on M1, Setting x3 = £ in (30) and taking into account (27) and (28), we get
0(x2, Vi, &) = o(x2, —px1 + Pphx1) = 0,
that is,
o(x2, X) — o(x2, phx1) = 0. (31)
Substituting x; by hx; in (31) and making use of (10) and (12), we obtain

Po(xa, hx1) = po(xz, h*x1)
q50'(X2, hxl) + (1 + k)(PG(Xl,Xz)

From (31) and (32), we conclude that xo(x1, x2) = 0, which proves our assertion. [

0/
0. (32)
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Theorem 3.3. Let M be an invariant submanifold of a paracontact (x, u,v)-space ]\Z”’”(gb, n,¢,9). If Misa

pseudoparallel submanifold of a paracontact (x, i, v)-space M2”+1(¢, 1, &, 9). Then M is either totally geodesic or the
function Ly satisfies

Li=x+ /(2 +v)x+1), (x+1uv=0. (33)

Proof. Let M be an invariant pseudoparrallel submanifold of an paracontact (x, i, v)-space ]\712"+1(¢, n,&,9).
This implies that

L1Q(g,0)(xs, X571, %2) = (R(x1,%2) - 0)(xs, X5),
for all x1, x2, x4, x5 € I'(T'M). This yields to

—Li{o((x1 Ay X2)x4, X5) + 0 (xg, (X1 Ay X2)X5)} = R (x1, x2)0 (x4, X5)
—0(R(x1, x2)x4, x5) — 0(xa, R(x1, X2)x5). (34)

In (34), putting x; = x4 = £ and taking into account (8), (27) and (12), we obtain

Lio(x2,x5) = —0(R(&, x2)&, X5) = K0 (X2, X5) + o(hxz, X5) + vo(Pphxa, Xs5),

that is,
(L1 = ®)o(x2, x5) = po(hxz, xs5) + va(hxa, xs). (35)
If hx, is written instead of x at (35) and using (9), (18), we get
(Ly = ®)o(hxp, x5) = po(h*xp, Xs) + vpo(hPxz, Xs)
= (1 +1)[uo(xz, x5) + vpo(xa, xs5)]. (36)

From (35) and (36), we conclude that
[(L1 — %) = (1 + 1) +v*)]o(x2, x5) — 2uv(1 + K)po(xz, x5) = 0.
This completes the proof. O

Corollary 3.4. Let M be an invariant submanifold of a paracontact (x, u,v)-space A‘7I2"+1(q), n,&,9). Mis a pseu-
doparallel submanifold if and only if M is totally geodesic provided

K2+ (k + 1)(;12 +1)#0  or  (k+ Duv #0.

Theorem 3.5. Let M be an invariant submanifold of a paracontact (i, 1, v)-space ]\712””((1), n,¢&,9). If M is a Ricci-

generalized pseudoparallel submanifold of a paracontact (x,u,v)-space ]\712”+1((p, 1n,¢&,9). Then M is either totally
geodesic or the function L satisfies

L3:% 14+ V(”2+1V<2)(K+1) . (k4 Duv = 0. (37)

Proof. If M is an invariant Ricci-generalized pseudoparallel of a paracontact («, i, v)-space ]\Z”’”((j), n,¢,9),
that means

L3Q(S, 0)(x4, X5; 1, %2) = (R(x1, %2) - 0)(X4, X5),
for all xq, x2, x4, x5 € ['(TM), which implies that

—La{o((x1 As X2)xs, x5) + 0(xs, (X1 Ag X2)x5)} = R*(x1, x2)0 (X4, X5)
—0(R(x1, x2)x4, x5) — 0(xg, R(x1, X2)X5). (38)
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In (38), setting x; = x5 = £ and making use of (27), (28), we arrive

2nxlao(xg, x2) = —0(R(&, x2)E, x4) = K0 (X2, X4) + po(hxz, x4)
+VG(¢I’ZX2, X4).

In view of (39), it follows that

k(2nL3 — 1)0(x4, x2) — po(xs, hxo) — vpo(xa, hx) = 0.
Substituting hx; for x; in (39) and using (8), (9), we get

K(2nLz — 1)o(xg, hxa) — (1 + )uo(xg, x2) — (1 + K)vpo(xg, x2) = 0.
From (40) and (41), we reach at

[K2(2nL3 12 -(1+ 1<)(y2 + vz)] 0(xg, x2) = 2uv(1 + K)po(xg, x2) = 0.

This completes the proof. [J

7096

(39)

(40)

(41)

Theorem 3.6. Let M be an invariant submanifold of a paracontact (x, u,v)-space ]\712”+1(q5, n,&9). If Misa

2-pseudoparallel submanifold of MZ”+1(¢, 1, ¢&,9), then M is either totally geodesic or the function L, satisfies

Ly =x=+ /(2 +v?)(x+1), (x+1)uv=0.

Proof. There exists a function L, such that

L2Q(g, Vo) (xa, x5, X3; %1, %2) = (R(x1, X2) - Vo) (xa, X5, X3),
for all x1, x2, x4, x5, x3 € I'(TM). This yields to

~Lo{(Vianyayes (X5, X3) + (Vi) (31 A X2)5, X3)
+(Vo,0) (x5, (X1 Ag X2)x3))
= R*(x1,22)(Vy,0)(x5, X3) = (VRGxs x0)s (X5, X3)

~(V,0)(R(x1, %2)x5, %3) — (Vy,0) (x5, R(x1, X2)03).

In (43), taking x1 = x5 = £, we have

~Lo{(V(en, 1 0)(E, 03) + (Vi,0)((E Ag 22)E, X3)
+(Vi, 0)(&, (& Ag x2)x3)}

= RH(Ex)(Va,0)(& X3) = (VR(E (€, %3))
~(Vx,0)(R(E, 12)E, x3) = (Vi 0)(&, R(E, x2)x3).

Now we will calculate them separately. In view of (18), (22), (27) and (28), we can derive

(Fﬁmmm 0)(&, x3) =0(Vignmmns & X3)

= 0(P(E Ny x2)x4 — Ph(E Ay X2)x4, X3)

= o(P(g(xa, x4)& — n(x4)x2), X3)
—o(ph(g(x2, x4)& — 1(x4)x2), X3)

= n(xg){o(Pphxa, x3) — o(Px2, x3)}.

(42)

(43)

(44)

(45)



In the same way,

(Vo 0)(& Ay 2)E, x3)

(Ve 0)(E, (€ Ag X2)x3)
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(V1,0)((x2)& = 2, X3)

Vi, 0(1(x2)&, x3) = (Vi X3, 1(x2)&)
—~0(x3, Vi, (x2)&) = (V1,0)(x2, X3)
n(x){o(x3, Pxy) — o(xz, Phxs)}

~(V1,0)(x2, X3),

_G(Vné/ (& Ny X2)X3)
—0(—pxy + Phxy, g(x2, x3)E — 1(x3)x2)
n(xs){o(phxy, x2) — o(Pxs, x2)}.

For the right side of (44), by view of (18), (20) and (14), we have

R(E, %2)(Va, 0)(E, x3)

R*(&,x2){V5,0(&, x3)
—0(V,&, x3) — 0(&, Vi, x3)}
—R*(&,x2)0(V, &, X3)

R*(&, x2){o(pxs — Phixy, x3)}.

Also, making use of (3) and (8), we obtain

(VR s (€, X3))

and we have

(Va,0)(R(E, %2)&, x3)

Finally,

(Vo,0)(&, R(E, x2)x3)

—0(x3, VR(Ex2)1:€)

—0(x3, —~PR(&, x2)x4 + PhR(E, x2)x4)
—1(xa){x0(Px2, x3) + po(phxz, x3)
+v(1 + K)o (hxa, x3) — k0 (Phxa, x3)
—u(1 + x)a(Pxz, x3)

—v(1 + x)o(xz, x3)}

(Vo 0)(n(x2)& = x2) — phxy — vhic, x3).

—0(Vi, &, R(E, x2)x3)

—0(¢pxs, k1(x3)x2 + pun(x3)hxa
+vn(xz)phxa) + o(Phxa, k1(x3)x2
+un(xz)hxy + vi(xz)phxy)
—1(x3){Ko(pxs, x2) — po(pxs, hxz)
—vo(pxs, Phxy) — ko (Phxy, x7)
—uo(phxy, hxy) — vo(phxa, phxy)}

7097

(46)

(47)

(48)

(49)

(50)

(51)
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Consequently, the values of (45)-(51) are put in (44), we arrive

—La{n(x4)o(Ppxa, x3) + n(x1)0(Phxz, x3)

+1(x2)0(x3, Pxg) — 1(x2)0(x3, Phxy)

~(V1,0)(x3, %2) = (x3)0 (s, x2) + N(x3)0(Phxs, x2)}
= R*(& x2)0(pxs — phxa, x3) + n(xa){xo(pxa, x3)

+uo(phxa, x3) + v(1 + x)o(hxy, x3) — ko (Phxy, x3)

(1 + ©)o(pxa, x3) — v(1 + K)o (x2, X3)}

~(Vi,0){k[n(x2)& = x2] = phx, — vphaa, x3)

+1(x3){xo(Pxg, x2) + po(Ppxy, hxz)

+vo(pxg, Phxy) — ko (Phxy, x2)

—po(Pphxs, hxo) — vo(Phxs, phxs)}.

In (52), putting x3 = £ and taking into account (8), we have

La{(V4,0)(&, X2) + 0(pxa, x2) — 0(Phxa, x2)}
= (Vo 0)(k(N(x2)E = x2) — phxs — vy, &)

+0(Pxy, Kx2 + phxy + vohxy)

—0(Phxy, Kx2 + phxy + vohxy),

where, by direct calculations, one can easily see that

(Va,0)(k[N(x2)& = x2] = pthe = vphy, &)
= —0(Vy,&, k[n(x2)& — x2] — phxy — vhxy)
= o(pxg — Phxy, k[1n(x2)E — x2] — phxy — vdhxy)
= —xo(pxy, x2) — po(pxs, hxa) — vpo(pxy, hxz)
+x0(Phxa, x2) + po(Phxy, hxy)
—vpo(Phxy, hxz)

and we get

(Ve,0)(E, x2) —0(Vy, &, x2) = 0(Ppxg — Phxy, x2)

O(¢x4l x2) - O—((Phx‘lr x2)'
If (45)-(55) are put in (53), we obtain

[P(L2 — k) + (1 + x)(uep + v)]o (x4, X2)
+[p(La + 4 — x) + v]o(xg, hxz) = 0.

In (56), substituting hx; instead of x, and by virtue of (9), we reach at

[p(L2 — ) + (1 + x)(u¢p + v)]o(xa, hxz)
+(1 + ©)[Pp(La + p — k) + v]o(xg, x2) = 0.

From (56) and (57), provided x # 0, we can infer
x[(1+ 1<)(y2 + vz) —(Lp - K)Z]G(X4,x2) =2uv(1 + K)po(xs, x2) = 0.

This implies that M is either totally geodesic or (42) is satisfied. So, the proof is completed. [

7098

(52)

(53)

(54)

(55)

(56)

(57)
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Corollary 3.7. Let M be an invariant submanifold of a paracontact (x, u,v)-space M2”+1(¢, n,&,9). Misa 2-
pseudoparallel submanifold if and only if M is totally geodesic provided

K2+ (k + 1)(‘u2 +15£0  or  (k+ Duv # 0.

Theorem 3.8. Let M be an invariant submanifold of a paracontact (x, i, v)-space M2”+1(¢, n,&,9). If M is a 2-Ricci-

generalized pseudoparallel submanifold of M2”+1(¢, 1,&,9). Then there M is either totally geodesic or the function Ly
satisfies

212
L4=ii (u +1/)(1<+1),
2n 2nk

(x+Duv =0. (58)

Proof. Let M be aninvariant 2-Ricci-generalized pseudoparallel submanifold of a paracontact M2+l (o,n, & 9)—
space. Then there exists a function L4 such that

LsQ(S, Vo) (xs, x5, x3; %1, %2) = (R(x1,%2) - Vo) (x4, X5, X3),
for all x1, x2, x4, x5, x3 € T(TM), that is,
~La{(Viy ey 0)(x5, X3) + (Vi 0) (1 As X2)2s, X3)
+(V5,0)(x5, (x1 As X2)x3))
= R*(x, xz)(-vyle 0)(xs,x3) — (ﬂﬁR(xl,xz)m (x5, x3)
—(Vi, 0)(R(x1, 2)x5, x3) — (V,0)(x5, R(x1, 2)3). (59)
In (59), using x; = x5 = £, we have
~Laf(Viensryn0)(E 13) + (Vi,0)((E As X2)E, X3)
+(Vi,0)(&, (& As x2)x3))
= RYEx2)(Vi,0)(&, %5) — (VR (& 33)
~(Vx,0)(R(E, 12)E, x3) = (Vi,0)(&, R(E, x2)x3). (60)

Now we will calculate them separately. In view of (9), (13), (18) and (28), we can derive

(Viensu0)(E, x3)

—0(V(ersamn &, X3)
= 0(P(& As x2)xs — Ph(E Ag x2)x4, X3)
= o(P(S(x, x4)& — 2nx1(x4)x2), X3)
—0(ph(S(x2, x4)& — 2nkn(x4)x2), X3)
= —2nxn(xg){o(Pphxa, x3)
—0(Px2, x3)}. (61)

In the same way,

(Vi 0)(E As 1), x3) = (Vi 0)(21kn(x2)E — 2nkx, x3)
= 2ni{(Vy,0)(N(x2)&, x3) — (V,0)(x2, X3))
= 2nx{n(x2)o(—pxy, x3) + n(x2)o(Phxy, x3)
~(Vy,0)(x2,3)}, (62)
(Vo o)(E (EAs2)x3) = —0(Vi, &, (E As X2)x3)

= —o(=xg + Phxy, S(x2,x3)& — 2nkn(x3)x2)
= 2nxn(xz)o(Phxs, x2) — o(Pxs, x2)}. (63)
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For the right side of (63), by view of (18), (20) and (14), we have

R(E, %2)(Va, 0)(E, x3)

R*(&,x2){V3,0(&,x3) = 0(Vi, &, Xx3)
—0(&, Vi, x3)}

= —R*(&, x2)0(Vy, &, x3)

= R, x2){0(Ppxs — Phxy, x3)}.

Also, making use of (3) and (8), we obtain

(FﬁR(E,xz)x4(g/ xS)) = —G(X3, VR(E,xz)Mé)
= —0(x3, —pR(E, x2)x4 + PhR(E, x2)x4)
= —n(xg){xo(Pxz, x3) + po(Pphxz, x3)
+vo(hxy, x3) — ko(Phxy, x3)
—u(1 + K)a(Ppxa, x3)
—v(1 + x)o(xz, x3)}
and we get
(Vi o) RE 12)E,x3) = (Ve 0){k(n(x2)E — X2) — phxy — vophxa, x3).
Finally,
(Va,0) (&, R(E, x2)x3) = —0(Vi,&, R(E, x2)x3) = —0(pxy, k7(x3)x;

+un(xz)hxy + vi(xs)phxy)

+0(Phxy, kn(x3)x2 + un(xs)hxs + vi(xz)phxy)
= —n(xa){ko(Ppxs, x2) + po(Ppxg, hxa)

+vo(pxy, phxs) — ko(Phxy, x2)

—uo(phxy, hxy) — vo(phxy, phxs)}.

Consequently, statements (61)-(67) are put in (60), we arrive

2nxLy{n(xg)o(Ppxz, x3) — n(xg)o(Phxz, x3)

+1(x2)0(x3, Pxa) — 1(x2)0(x3, Phixs)

+(V1,0)(x3, X2) + N(x3)0 (x4, X2) = N(x3)(Phxs, X2)}
= RY(& x2)a(Ppxy — Phixy, x3) + n(xsa){k0(Px2, X3)

+uo(phxa, x3) + vo(hxy, x3) — ko(Phxa, x3)

—p(1 + K)o (Ppxa, x3) — V(1 + K)o (x2, x3)}

~(Va,0)K[n(x2)& = x2] = e — vophxa, x5}

+1n(x3){ko(Pxa, x2) + po(Pxa, hxy)

+vo(pxs, phxz) — ko(Phxs, x2)

—uo(Pphxy, hxy) — vo(Pphxy, phxy)).

In (68), putting x3 = £ and taking into account (13), we obtain

21k La{(Ve,0)(E, %2) + 0(a, X2) — (s, x2)}
= (Vo) (K((x2)E = x2) — phxs — vphs, &)

+0(pxg, kX2 + phxy + vohxy)

—0(Phxy, Kx2 + phxy + vhxy),

7100

(64)

(65)

(66)

(67)

(68)

(69)
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where, by direct calculations, one can easily see that

(Va,0)(k[N(x2)E = x2] = phxy = vphxs, &)
= —0(Vy,&, k[n(x2)€ — x2] — phxy — vohxy)
= 0(pxs — Phxy, k[N(x2)E — x2] — phxz — vphxy)
= —K0(pxy, x2) — to(Ppx, hxz)
—vpo(pxy, hxo) + Ko (Phxy, x2)
+uo(Pphxy, hxy) + vpo(phxy, hxy) (70)

and

(Vo 0)(E, %2) ~0(Vy &, X2) = 0(pxa — Phxs, x)
= 0(Ppxy, x2) — 0(Phxy, x2). (71)

If (70) and (71) are put in (69), we obtain

[p(2nxLs — ¢ + p(1 + ) + (1 + x)v]o(xy, x2)
—[p@2nxLy + p — %) + v]o(xy, hxp) = 0. (72)

In (72), substituting hx; instead of x; and by virtue of (9), we reach at

[p(2nxLy —x + p(1 + ) + (1 + x)v]o(xy, hxy)
—(1 + ®)[p(2nkLs + u — x) + v]o(xs, x2) = 0. (73)

From (72) and (73), provided x # 0, we can infer
K[(1 + %) +v?) — (2nkLy — ©)*]o(xq, x2) — 2uv(1 + K)Po(xs, x2) = 0.
This implies the proof is completed. [J

Example 3.9. We consider the 3-dimensional manifold M = {(x,y,z) € R3, z # 0}, where (x, y,z) are standart
coordinates of R>. The vector fields

e—2x5i+§23i+i e—i -9
P A A '

Let g be the Riemannian metric defined by

gle1,e3) = glez,e3) =0,
glez,e0) =1, gles, e3) = -1

g(er, e)
g(er, e1)

Let 1 be the 1-form defined by n(x1) = g(x1, e2) for any x1 € x(M). Let ¢ be the (1,1) tensor field defined by

Ple2) =0,  Ples) =—e1, Pler) = —es.

Let V be the Levi-Civita connection with respect to the metric tensor g. Then we get
[e3,e1] = =82%, [e1,e2]1 =0, [e2,e3] = 0.

Then we have
) = glez, &) =1, ¢*x1 = x1 = nlxi)er, glpx1, Px2) = —g(x1, X2) + 1(x1)n(x2),

forany x1,x, € x(M). Hence, (¢, &, 1, g) defines a paracontact metric structure on M for e; = &.
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The Levi-Civita connection V of the metric g is given by the Koszul’s formula

29(Vyx2,x3) = x19(x2,X3) + X29(X3, X1) — x39(x1, X2)
—g(x1, [x2, x3]) = g2, [x1, x3]) + g(x3, [x1, x2]).

Using the above formula, we obtain.

2 2
Veer = 0, Ve,e1 = —4z°e3, Ve,e1 = 4z°e,

— 2 _ _ 2
Ve o2 = —4zs, Ve,e2 =0, Ve,60 = —4z%€;,
Ve ez = —42262, Ve,e3 = —42281, Ve,e3 = 0.

Comparing the above relations with Vxie, = —pxq + ¢phx1, we get
he, = —(422 +1)ey, hes = —(422 +1)es, he, =0.
Using the formula R(x1,x2)x3 = Vx1Vxoxs — VxpVxix3 — Vi, v1X3, we calculate the following:

R(e2/ 51)62 = vezvele2 - Vel vezeZ - V[ez,el]ez
ng(—4zze3) = 16z%¢;

R(e2/ 53)62 = vezve3e2 - V£’3v€262 - V[ez,e3](32
ng(—4zzel) = 16z%e;

vel ve3 e — V£’3 ve1 e — V[el,e3](32
0.

R(ey, e3)ez

By direct calculations, we get

Riese)es = [(42% + 1) = 1]{n(er)es — n(ea)er} + 822{n(er)hex = n(ea)hes)

+0{n(e1)phe; — n(e2)Pphe}
162461

Rieses)er = [(422 +1)* = 1] {n(es)ea — n(ea)es) + 8z{n(es)hes — n(ea)hes)

+0{n(e3)phe, — 1(e2)Phes}
162463

Reeyese, = [(422 +1) = 1] (n(es)er = n(er)es) + 82 (n(ea)her — n(er)hes)

+0{n(es)phe; — n(e1)Phes}
= 0.

By the above expressions of the curvature tensor and using (9), we conclude that M is a (k, u, v)—paracontact metric
manifold with x =[(42'2 +1)2 - 1] ,u=8z2andv =0.
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