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Abstract. In this work, we are interested in a fractional diffusion equation with a conformable derivative
that contains the time dependent coefficients which occurs in many application models. By using some
given assumptions, we consider the global solution to the problem. Moreover, the convergence of the mild
solution when fractional order tends to 1 is presented. This research can be considered as one of the first
results on the topic related to conformable problem with time-dependent coefficients. In the simple case
of coefficient, we show the global regularity for the mild solution in L” space. The main techniques of this
work are to use Banach fixed point theorem, L? — L7 heat semigroup and some complex evaluations and
techniques.

1. Introduction

During the past decades Fractional calculus has been studied extensively during the past decades and
is now approximately 325 years old. Fractional derivatives have numerous definitions, each with a unique
set of characteristics. We are aware of a number of definitions for fractional derivatives and integrals
at the moment, including Riemann-Liouville, Caputo, Hadamard, Riesz, Grunwald-Letnikov, Marchaud,
etc. The public is becoming more interested in certain works, including [8H10, [16H20] and the references
therein. In this work, we are interested in models with conformable derivatives because of its application
and urgency. The conformable derivative is understood as an extension of the classical limit definitions
of derivatives of a function, which were proposed by Khalil and his colleagues [21]. The interesting thing
about this derivative is that it responds to a lot of well-known properties of integer derivatives. Over the
years, there has been a lot of research work on equations with conformable derivatives.
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Let Q be a bounded domain in RN. We consider the fractional diffusion equation with time dependent
coefficient as follows

Dy +a(t)(=A)fy = G(y), (x,5)€Qx(0,T),
y=0, (x,t)edQx(0,T), 1)
y(x,0) =0(x), x€Q,

where the functions a, 0, G are defined later. The conformable derivative Dg which is defined in Definition
A quick observation is that if « = 1 and a(t) = 1, = 1 then the Problem (1)) becomes the classical heat
equation. Let us try to state some previous results concerning conformable diffusion equation. In [13], the
authors investigated a Kirchhoff-type conformable derivative diffusion equation. They showed the global
existence and uniqueness of mild solutions. Moreover, some regularity results for the mild solution and
its derivatives are established. The main tool for analysis in their paper is of using Banach fixed point
theory and Sobolev embeddings. In [14], the authors considered the backward problem for the nonlinear
diffusion equation in the case of discrete data and multidimensional with a conformable derivative. They
showed that this problem is ill-posed and then the authors establish stable approximate solutions by using
two different regularization methods: the quasi-boundary value and Fourier truncated methods. In [15],
the authors studied conformable stochastic differential equations. By applying the Picard iteration method,
they derived the existence and uniqueness of solutions of nonlinear conformable stochastic differential
equations.

According to common logic, the thermal conductivity coefficients a are typically constant. However,
the coefficient a will frequently depend on time when the process is affected by outside influences and due
to the presence of memory. For this investigation, we used model (1) for another reason. To the best of our
knowledge, Problem (1) with non-constant coefficients has not yet received any attention or has received
very little attention. There is not any result concerning on Problem (I). Our result is one of the foundation
results for this direction.

The global existence and uniqueness of the mild solution for Problem (1) are our main goals in this
work. In recent articles [1} 2], we discovered a very intriguing way to get around these obstacles.

o If @ = 1, we easily get the solution by the explicit formula when solving first differential equation
y'(t) —a(t)y(t) = 0. However, when using the conformable derivative, tt will face some difficulties to
obtain an explicit solution for the first order fractional differential equation DZy(t) — a(t)y(t) = 0. We
need to employ a transformation to get around this problem so that the left side of the new equation
looks like a constant coefficient.

e Mathematically, evaluating and proving global solutions is fundamentally challenging. We apply the
Lemma derived from the work of Atienza [11] to get past these obstacles.

In addition, there have been numerous investigations on diffusion equations in recent years, these
studies can be found in references such as [4-7], 22H27]].

There are three main contributions of this study. The first contribution is to prove the existence of
a global solution and evaluate the regularity of the mild solution. The second result of this paper is to
investigate the mild solution when fractional order § — 1~. Our results can be considered a new approach
considering the mild solution in L?. In the last result, under the case a = = 1, our paper also studies the
regularity of the gradient of the mild solution. The main technique in our paper is to use L¥ — L7 estimate
for the heat semigroup, for example, lemmas 2.1 and 2.2.

The structure of this article is as follows. Section 2 offers some introductory and mild solutions. The
diffusion equation with a constant coefficient is the main topic of Section 2. In Section 3, we deal with the
global existence of the Problem (33). The convergence result for the mild solution is given when g — 1"

2. Main results for diffusion problem with constant coefficient

At the beginning of this section, we present some important theories to obtain results for the diffusion
problem with constant coefficient.
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Definition 2.1. (Conformable derivative) Let us take B be a Banach space, and consider the function f : [0, 00) — B.
Notation c,Df be a conformable derivative of order 0 < o < 1 which is defined by

wp o SR = f(D)
coDtf = lim I

for each t > 0 and some more knowledge about this definition in [21]].

Lemma 2.2. (see [11l]). For any positive constants m and r such that 1 < m < r, there exists C is a positive constant
satisfies

He—zfﬂf

Lemma 2.3. (see [11]). Let ay > =1, a, > =1 such that ay + a, > =1, p > 0 and t € [0, T]. For h > 0, the following
limit holds

_N1_1 m
Lr(Q) < C(m, 1’)Z 26 r)“f”L”’(Q)/ z> O,f el (Q) (2)

1
lim | sup thf V(1 —v)2e P AVdy | = 0.
P \tefo,r1 Jo

Definition 2.4. Let Q, . ((0, T]; B) denote the weighted space of all the functions ¢ € C((0, T]; X) such that

[1lQ,,a(0,118) == sup t%e™ |ip(t, )llp < oo,
te(0,T]

wherea,m > 0and 0 < a < 1 (see [11]]).

Theorem 2.5. In Problem (1)), let a = B = 1. Let G be the function such that

HGu - GUH < IKHu - UH (3)
Q) LI(Q)

for1 <p < gq. Let us assume that

1
S_
N

= | =
R

where

%(% — 5) <b< min(oz, o — ﬂ(1 - 1))

Then Problem (T)) has a unique solution y € L%(0, T; L(Q)). In addition, we get that

||y S llzollza), (4)

L9(0,T;L9(QY)
1
where1 < 0 < B

Proof. Let us define the mapping

t
o

T = ez + fo e AG(p(r))dr. (5)

If ¢ = 0, since G(0) = 0, we get the following equality

It = e 5z,
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Since Lemma with z = %, we derive that

(S Cp, ) 4 Pl = Clp, a3

_aN1_1
e a7z )y

L (Q)

Multiplying bothsides to te™", we get
tb —mt"” —%ﬂ H <C 3 %(l_l,)t
e e 'z iy S (p,pa2ta

Since the fact that b — M % - l) > 0, we know that

tbe—mt"”e—%ﬂZOHL < C(P l])afz(” ,)Tb—T ’l_a)llzonm(g)

Therefore, we can claim that Jw € Q. ((0, T]; LY(Q)) if w € Qg ((0, T1; LI(€2)).
Let any @1, ¢, € L1(Q)). Then we get that

||]](f)(P1 J®)p2 1@ ||f e (Gl () ~ Glalr )))”L 1) dr

< [ @oton - Gl

L7 (Q)

Using Lemma with z =,

e G0 - 20|,

_ ¥i-1
<C(P,Q)(t r° ) P a

G(er1() = Glpa(r))],

SKC(p a7 (1 =)0 ou) - a0
Combining (@) and (10), we derive that
e -0,
t
¥(i-1) a=1 (g _ 4 -J¢-1
<KC(p, q)az’r 1 j{; (¢t )" 2670 1 (r) — @a(r) m(Q)

Multiplying bothsides to t’e™", we get

fb —mtt

|]I (1 =T (t)(PzH

L1(QY)

dr.

L1(Q)

Noting the fact that

= llp1 = @2llg, a0 T1L7(02)

be mrﬂ”(p1 (1’) B (Pz(r)l L1(QY)

v ||zollo(y)-

7118

(10)

(11)

(12)
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for any 0 < r < T. This implies that

sup t'e [§typ1 - I

0<t<T L1

t
<| sup £ f Pt (e = ) 0D ) - g : (13)
0<t<T 0 Qu,m,a((0,TT;L(Q))

Let us continute to consider the integral term on the right above. Let us change variable

1
r=fsa.
Then we get immediately that

]. a_ﬂ(l_l) 1 b, _Ne1_1 ) —mt*(1-s)
:Et 257y sa(1—5)2v 0/e”M TS s,
0

(14)
Let us need to check the condition of Lemma Since ; — ¢ < §,0 < b < a and we can verify that
1 1 1 1 1 1
(g b, SN ha SLNEL YL
2\p q 2% 4 2% 4
Since the above conditions, we apply Lemma [2.3|to deduce that
t
lim [sup tbf P A A G ’d)dr] = (15)
more o<t Jo
Hence, there exists a positive number my such that
' 1
sup tbf ra—l—b (ta _ a)—j ?_E) —mo(t"=r") 7, <= (16)
o<t<T  Jo 2
Combining (13) and (16), we deduce that
1
sup toe7mo! ’ t S—H - . 17
o<£T TOp1 =102 v 2177 P, omu@) 17
Thus, one has the following inequality
- < -ler - . 18
HH 1= I Qupa@ry — 2071 P2lg,, o ma) (18)

By applying Banach fixed point theory, we deduce that the mapping ] have a fixed point u in Qy (0, T1; L7(€2))

Hence, we can show that u is a mild solution to Problem (I). Next, we claim the regulan’ty,of the mild
solution u. It is obvious to see that y(t) = J(f)y, so

H]/ Qug,a ((0,TT;LA(€2))
<[py-10=0)

-l

Q,, m, o((0,TL;L1(Q) HH(y ) Qa/mg/a((o/T]?Lq(Q))
- % ﬂZ()

+ H . (19)
Qa,mo,a ((0,T];L9(€2)) Qa,mo,n ((0,TL;L1(2))
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This combines with (8) yields that

|+

< 2”6_%:}[2
Qa,mo,a((orT]}Lq(Q))

Qo ((0,TLLI(CQQ))

M(l_l) p—aN l_,)
<Clp,qazs VT 2 7 zol|aq)-

Hence, we obtain that

t <t? )
”y() b S l1zollza(c)

Since1 < 0 < %, we follows above observation that y € L(0, T; L1(Q)) and

”y S llzollza -

L9(0,T;L9(CY)

The proof is completed. [

Theorem 2.6. Let G be as in Theorem Let zg € LI(QQ). Then we get the following estimate

auN a,
< t‘%(l—l)—%” I G

) P V4 +
L1(Q) OlLICQ) 1- ﬂ(l -L_t
2 \p q 2

||Vy(t)

where

2

l<p<a 7
N(ﬁ_ﬁ)-i-l

Proof. Let us recall that

, t
y(t) = e~ M +f !
0

This implies that

)dr

t
Vy(t) = Ve vz + V(f r“‘le%ﬂG(y(r))dr .
0
In view of Lemma [2.2|with z = %, we infer that

Ve_%‘ﬂz H , 2G=p-2 Z
” s Cp q)( ) 1zollrs(q)

1 ){N(

1
=C(p, q)az DTG ZHZO”M(Q)

By using Lemma 2.2} we have that

t
o ([ e retona
0 L1(Q)
ta -7 p % -
p’q)f a—1

Using global Lipschitz of G and , we get that

Nl

ey

”y( )“ = Kr_b”ZOHLfI(Q).

Q) ~ LI(Q)

l1zollLa),

7120

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)
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Combining the two above observations, we derive that

t _N(l_l)_l
o —r*\ 2T
(=)
Lfo‘ a

t
< Ka? 00 izg sy ( f paib( ra)‘m‘%"%dr). (28)
0

dr
Q)

G(u(r)

Let us consider the integral term on the right above. Indeed, applying Holder inequality, we find that

t t
_N(1_1y_1 [ A = | _Ne1_1y_1
f ra_l—b(ta _ra) > (5—g) zdrzf T br F (t“ _ra) 2G—g) 2y
0 0

t a-1- 24 Nﬁ;‘l t a=1/a a —ﬂ(l—l)—ﬁ %
S( r f“d?’) ( r (t —r%) 7% Zdr) , (29)
0 0

b

t bu ta7;171 _
for any u > 1. It is obvious to see that f Py = o where we note that b < %a. Set & = t* —r®.
0 a——=
u-1
Then we have d& = —ar®'dr. Then
t a ,M(l,l),ﬂ
o 7 TN Rt T o P S A
0 a Jo Ly #
2 \p q 2
where we note that
N1 1
E-2)+E <
2 \p q) 2

O

3. The time dependent problem

In this section, we consider the fractional diffusion equation with time dependent coefficient

Dy + a(t)(—A)/Sy =G(y), (x,t)eQx(0,T),
y=0, (x,)edQx(0,7), (30)
y(x,0) =0(x), x€Q,

where the functions g, 6, G are defined later.

Theorem 3.1. Let G be a function such that

||G(u) - G(U)‘ HoQ) S Kf”” - U“]H”(Q)’ (31)

where Ky is an independent constant with u and v. Let us assume that a € L*(0,T) and 0 € HY(Q). Then problem
has a unique solution y € LP(0, T; H*(Q)). In addition, we have

”V (32)

]
Lr(0,T;H"(Q2)) H(Q)

forl<p<%,0<ﬁ<a.
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Proof. Letus define the space X,,4,4((0, T]; H"(Q)) denotes the weighted space of all functions v € L*((0, T]; H"(€2))
such that

llwllx,, ., 0T () := Sup e~ |l t, v < oo,
te(0,T]

where p > 0. Let us first to give the explicit formula of the mild solution to Problem (T)). It is obvious and
not difficult to transform problem (1)) into the following problem

D2y + (—AYy = F(y) + (1 - a(x, ) (=AFy, (x,t) € Qx(0,T),
y=0, (x,)€dQx(,T), (33)
y(x,0) = 6(x).

For convenience, we denote by a new source function

H(y(x, ) = F(y) + (1 - a(x, £)|(~=A)Py.

By using the separation of variables, the solution of (1) is given by Fourier series

y(x,t)=Z( fo y(x,t)¢n(x)dX)¢n(X), ynlt) = fQ Y0, ()

nelN

Solving the above system, we deduce that the formula of y,

yat) = exp (= A ta)( f G(x)w,b,,(x)dx)
' a—1 _ £ =7
+ fo rexp (- A, )( fg F(y(x,t))lp,,(x)dx)
t a _
+ fo rol exp(—/\nt ar )( fQ (1—a(t))(—A)ﬁy¢n(x)dx) (34)

where y,(t) is the Fourier coefficient of the function y. Thus, we get the following equality

Y0 8) = Mo, ) + Mu(y(x, ) + Ma(y(x, B), (35)
where

Mot = Y exp (- ( | (x)wn<x>dx)¢n<x>

n=1

and

M1<y<x,t>>=;[ fo T exp( ( fQ Gy, t))z,un(x)dx)] u®) (36)

o t
M 1) = a= - APy, (x)d )] " 37
J(y(x, H) Z;[for exp ( (fQ (1) (A (x| ). 37)

Our main goal is to show that the nonlinear equation My = y has a unique solution y where M is defined

by
M(y(x, 1) = Mo(x, £) + Ma(y(x, 1)) + Ma(y(x, £)).
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Let y = 0 then

M=o

ol

a 2
H (Q)) HZ:; AZb exp ( ta ) (L Q(X)Ipn(x)dx) . (38)

Since 6 € H*(Q) and exp ( - 2)\"%) < 1, we deduce that

H:(Q)

[

HY(Q) Z ( f 0(x) lpn(x)dx) =’

n=1

(39)

M =0)

This inequality implies that My € C([0, T]; H*(Q)) if y € C([0, T];TH’(Q)). Our next goal is to show that M
is a contraction.

Step 1. Estimate OfHMl(]/l(xr ) = Mi(ya(x, t))' ;,(Q)

Let y1, y2 € H?(Q). Then using Parseval’s equality and Holder inequality, we get

M1 )~ Mot )

Hb(Q)
) t ja_ g )
= Zf A% [ fo P Lexp ( - A — )(Gn(yl(r)) - Gn(yz(r)))dr]
t oo f .o
< ( f(; ra—ldr);)\ﬁb( fo -1 exp(—ZAnt - r )(Gn(y1(r)) _ Gn(yz(r)))z dr) )

where we denote
Guly(r) = fg Gy, )P,

Using the inequality e < Cgz™# for any B > 0, we find that

exp (- 24, a ; ra) < Cophy (1% = 172, (41)
This implies that
o t
Y2 [ exp (=205 ) 6ol () - Gzt )
n=1 0
s t
S Cap) M ( f P = 1) (Gl (1) ~ Ga(y2()® dr). (42)
n=1 0

Combining and and noting that b — § < a, we derive that

2 t
M09 = Miwate 1, = 8, T)( fo 11 = 2 Gly) - G|y (Q)dr)

t
< C(a,a,B, T)( fo 7 = )G - Glya)| ;m)dr)

t
< Cl(‘foV ;,a—l(ta — ra)—zﬁ“yl — y2||;b(g)d7’) (43)
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where C; depends on a, a, B, T, Ky. Then we get the following bound

P12 | My (s 5, 9) —~ Mot )|

H?(Q)
t
—2gta — - 2
< C1t2d€ 2qt (L 7o 1(ta _ra) Zﬁ||y1 — y2||]Hb(Q)dT)

t
_ Cltzd( f ra—l—Zd(ta _ ra)—Zﬁ o200 =1%) 24 ,=2qr°
0

Therefore, we derive that
t
f ra—l—Zd(ta _ a) Zﬁe 2q(t*— )ere 2qr* ”]/ (7’) yz(r)“]Hb(Q)
0

t
f ra—l—zd(ta _ ra)—zl[{e_zq(ta_ra)dr ]
Xa,a,4((0,T;HY (Q))

Since two latter observations, we find that

<[ -

sup 22" ||M1(]/1(x t)) — Mi(y2(x, )|

0<t<T

2 t 19 e
< ”y1 _ yZH sup (tzdf ra—l—Zd(ta _ ra)—Zﬁe—Zq(t —r )dr).
0

Xa,d,q((O,TLHY Q) g<p<T

Hb(Q)

Let us to control the term

t
Iq(f) — tde ra—1—2d(ta _ ra)—2ﬁe—2q(t"—r“)dr'
0

In order to control this term, we need to change variable r = t[u%. Then we havedr = Ly

computation, we have immediately that

a—2ap

1
I, = j; um 1 = ) e mngy,

Let us look at Lemma Since p<1/2,d< 5,d < ol 25) , we know that a — 2af > 0 and

-2d -2d
—-—>-1, 2 -1, ——-=2 -1.
" > B > " B >

Using Lemma 2.3} we deduce that

lim ( sup Iq(t)) =

G7%% 2 o<t<T

Step 2. Estimate 0fHM2(]/1(x, £)) = Ma(ya(x, f))' .

H(Q)

For short, we denote by

GW)(x,t) = (1= a(®) ((-AFy(x, ).

2
yi(r) — y2(r)“1Hb(Q)dr)'

7124

(44)

(45)

(46)

+~1dy. By a simple

(47)
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Then using Parseval’s equality and Holder inequality, we get the following equality

[Ma 1) ~ Moyt )|

H'(Q)

a Q0

2
= ,;‘ A% [fo 7 lexp ( - )\nt ; 7 ) (L G(y1)(x,7) = G(y2)(x, r))en(x)dx) dr]

t ad t a _ L _ —_ 2
< (I) r“ldr);Aﬁb(L ol exp(— 2/\nt " r )(‘L G(y1)(x, ) = G(y2)(x, r))en(x)dx) dr).

Using (1)), we have that

o (et ok
;)\n(fo 7 exp( 2,

S t )
sca,ﬁ;ﬁ’*zﬁ ( fo P - ) (1 - a(r)) ( fﬂ ((—A)ﬁy1—(—A)ﬁyz)en(x)dx) dr).

a _

7 = - d Zd
)(fQ (y1)(x,r) — (]/z)(x,r))en(x) x) r)

Noting that ”AﬁvH , we can claim that

=]
H(Q) H+6(Q)

2
ZAzh 28 (f (- A)ﬁyl —(- A)‘Syz)en(x)dx)

= [lar o - v

2

-]

H(Q) Hb(Q

From three above observations, we find that the following inequality

||M2(3/1(X 1) = Ma(ya2(x, t )|1Hb(9)

Cla, B, T)f L — ) (1 - a(r) ||y1(r) ya(r )|

Hb(Q)

Since the function a € L*(0, T), we can deduce that

||Mz(y1(x H) = Ma(ya(x, 1) >| @

.1 [ 7= 81w i) - o)

H (Q)

Cla, B, T)(l + ”a“L“(O,T))f P - 7”“)_2’3”%(7’) -1
0
where we remind that

llallze,ry = sup la(t)l.
0<t<T

7125

(48)

(49)

(50)

(51)

(52)
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Multiplying both sides of (52) with t*?¢~21", we get that

2
P [ Mot e, ) = Mty D)

t
< C(a, B, T)(l + ”ﬂ“Lw(O,T))tZde_tha( f o - ||y1 - y2||;b(g)d7)
0

= Cla, B, (1 + lalli=on )

¢
X(f ra—l—Zd(ta — )" 2B o=2q(¢*=1%) ,2d ,=2qr* yz(r)”]Hb(Q) ) (53)
0
By a similar claim as in (5), we get that
2d —2qt¢ _
sup P | Mo(y (6, 0) = Mot ) 2.
) ¢
<|ly1 - sup [ f R (S _zﬁe_zq(ta"d)dr). 54
”y P2 omaro) ogng( 0 ( ) G4
From two steps, we can deduce that
sup 21" (HM1<yl<x 0) = Mitao D), + Mt ) - M), )
0<t<T ©
I,(t 55
<( b 1) “y1 v, Xosa(OTFHNQ) 3)
Thus, we obtain that
< t .
HMy1 Myz” Xt (O, TLHHQ)) ( (oilfgj ® )”y1 yzH X4 (O, TLHYQ) (56)
Since (7)), we can find gy such that
1
sup £, (t) < 1 (57)
0<t<T
It follows from that
1
My - M e : 58
” STVl 0TI ) 2”3/ P P2l @) (58)

By using Banach fixed point theorem, we conclude that Mhas a fixed point y which belongs to X, 4,4,((0, TT; H(€2)).
Let us claim the regularity result of y. Indeed, we get the following estimate

L P A N—
X0 (O TLHY(Q) X100 (O TLH ()
s—” +||M Xt :0| . 59
21Y Xad,40 (0, TLHY Q) (y(x, 1) = 0) Xad.q0 (O TLH () (59)
In view of (39), we derive that
M(y(x, ¢ =o|| oot |M Xt o| || | : 60
” (1) =0) Xetqo (O TLHY(Q) 0<th W) = )Hb<o> H/(Q) (60)
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Combining (59) and (60), we derive that

|| || Xa gy (OT; JHb(Q)) || | H(Q) (61)
This implies that
qot® d g—
”y(., t)| H(Q) <20 T HQ| H(Q) (62)
Since 0 < d < 1, we can infer that y € LP(0, T; H*(Q)) for 1 < p < é. Thus, we deduce that
< .
||y LP(O,T;I[—IE'(Q)) f Hy( ]Hb(Q) ) ~ ||6‘ HY(Q) (63)

The proof is completed. [

Theorem 3.2. Let yg be the mild solution to Problem (1)) with f > 1. Let y be the mild solution to Problem (1) with
B = 1. Let us assume that the Cauchy data 6 € H*F+o=(Q) for 0 > 0and 0 < y < 3. Then we get that

”yﬁ - y” S@B-17 y' (64)

Xad.q0 (0, THH (D) HP+P+o-r (Q)

Proof. Let us remind that the following operator

(o)

t a _
Mz,ﬁ(y(x/t))ZZ[ fo #Lexp (= A, — )( fQ (1—a(r))(—A)ﬂywnmdx)]wn(x)

n=1

and

0o

Mi(y(x, 1)) = Z[ fo #Texp (- A, ta;”)( fQ (1 —a(r))(—mwn(x)dx)] Pu(x).

n=1

Since yp is the mild solution to problem, we have that
yp(x, t) = Mo(x, t) + Ma(yp(x, 1)) + Mag(yp(x, 1)) (65)
Since y is the mild solution to the Problem (I), we get that
y(x, t) = Mo(x, t) + Mu(y(x, 1)) + M5(y(x, 1)). (66)
From two above equality, one has
ys(x, 1) = y(x, 1) = Mi(yp(x, ) — y(x, B) + Mag(ys(x, £) — y(x, 1))
+ (Mo = My)y(x, b). (67)

Hence, using the triangle inequality, we have immediately that the following inequality

_ M(ys —
”yﬁ ” Xz (OTHHI(C) H (=)l X (O.THH(C)
Mgy =3, + (M- 1
” 25(vs = Xeago (O THH(Q) (M 2)]/ Xego (O TTH(Q)
s{|—|| +[[ (Mo - M . 68
21178 ™ i, o o) 25~ M)y Xty (O TTH(Q) (68)
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Thus, one has the following inequality

(69)

<2 (Mes - M)y

s o1,

Xa 0 (O, TIHNQ) — Xa o (O,TIHI Q)

Our next task is to provide the upper bound of the right above. Using Parseval’s equality and Holder
inequality, we get that

||(M25 - )y(x t)

HY(Q)
o ¢ a_ a 2
- Z;\ﬁb [ f P exp( - A - 4 )(1 - a() ( f ((~A)y - (-A)y) gbn(x)dx) dr]
n=1 0 Q
0o t g 5 2
< )\ff’fr“‘lex —-2A, 1—-a(r (f APy —(-A ,,xdx) dr|. 70
; L p( )=o) | | (AP - ) g (70)
Using the inequality e™* < C,z7” for any y > 0, we find that
exp(—ZAnt —! ) < Capdy(t = )2 71)

Thus, we follows from (70) that

H Mz,ﬁ - )y(x t)

H(Q)
o 2b 2y a-lpa =2 _ 2 e )2
S; n f t* —r") V(l 61(7’)) (fg (( APy —( A)y) Ua(0)dx | dr
. 2
2202y a-lpp -2 e
< Z{ f = V(L (( Ay —( A)y) ¢n(x)dx) dr 72)

where we note that
1-arl <1+ ||a||L°°(0,T)'

It is obvious to see that

00 00 2
Zﬁ”U M%(M%mﬂ YA (A - YUWM@'
n=1 n=1 Q
In view of the paper [12], we have the following observation. If A, < 1 then under the assumption > 1,

we get

AP

Al € C(@AL(B-1), 0>0. (73)

If A, > 1 then

|A§ ~ | <c@rFE-17, o>o0. (74)

From the above fact, we get

00 2 o)
b2y (18 _ 4 \? 20 2b+2B+20-2y
N A (A - A ( f@ yl,bn(x)dx) <B-1) Z/\n ( L yt/)n(x)dx)

n=1

2

=(-1*

y| (75)

]I_Ib+[5+u ) )
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Combining (72) and (75), we obtain that

M M* o ' a—1/a o —Zyd 172 7
[ Mg = M)t = B0l o [ =y ) 7o
Since the fact that 0 < y < 1, we know that
: _
ta(l 2y)
L a2y g, = ) 77
[ —ryrar= s 7

Two latter estimates implies that

|| (Mo = M)y

= sup tde_qtau (MZ,ﬁ - ME) y(., t)

Xadqo (O TEHNQ))  g<peT

s@B-17

H(Q)

(78)

y

Hb+p+o— 7(
The proof is completed. [

Remark 3.3. If 6 € H'*P*7(Q) then we can show that Problem (I) with p = 1 has a unique solution y €
C([0, T, H"*P*777(Q).
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