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Abstract. In this paper, we introduce a modified viscosity subgradient-like extragradient implicit rule
with line-search process for finding a solution of a general system of variational inequalities (GSVI) with a
variational inequality (VIP) and a fixed-point (FPP) constraints in Hilbert spaces. The suggested algorithms
are based on the subgradient extragradient method with line-search process, hybrid Mann implicit iteration
method, and composite viscosity approximation method. Under suitable restrictions, we demonstrate the

strong convergence of the suggested algorithm to a solution of the GSVI with the VIP and FPP constraints,
which is a unique solution of a certain hierarchical variational inequality.

1. Introduction

Let Pc be the metric (or nearest point) projection from H onto C where @ # C ¢ H with C being closed
and convex in a real Hilbert space H. We denote by the (-,-) and || - || the inner product and induced norm
in H, respectively. Given a nonlinear operator T : C — H. Let the Fix(T) and R indicate the fixed-point set
of T and the real-number set, respectively. Let the — and — represent the strong convergence and weak

convergence in H, respectively. An operator T : C — C is referred as being asymptotically nonexpansive if
HO,)2, € [0, +00) s.t. lim, oo 6, = 0 and

IT'u —T9| <A +6)|u-o0l, Vi1, uveC (1)
In particular, whenever 6, = 0 V¢ > 1, T is known as being nonexpansive. Given a self-mapping A on H.
The classical variational inequality problem (VIP) is the one of finding u € Cs.t. (Au,v —u) >0 Vv € C.
The solution set of the VIP is written as VI(C, A). To the best of our knowledge, one of the most effective
approaches for solving the VIP is the extragradient one put forward by Korpelevich [18] in 1976, i.e., for
any initial point ug € C, let {u,} be the sequence constructed below

v, = Pc(u, — CAu), )
U = PC(ML - gAvt)/ Vi O/
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where ¢ € (0, 1) and L is Lipschitz constant of A. Whenever VI(C, A) # 0, the sequence {1,} converges weakly
to a point in VI(C, A). Fixed point problems and variational inequalities have been studied extensively, see
e.g., [1-5,7-9,13-17, 19-25, 27-36] and references therein.

Suppose that By, B, : C — H are two nonlinear operators. Consider the following problem of finding
(u*,v*) € C x C such that

{(plBlv* +u—-v,v-u)=>0, VYve( 3)

(p2Bou* +v* —u',v-v")>0, VveC(,

with constants p1, p2 > 0. The problem (3) is called a general system of variational inequalities (GSVI). Note
that GSVI (3) can be transformed into the fixed-point problem below.

Lemma 1.1 ([5]). For given u*,v* € C, (u*,v") is a solution of GSVI (1.3) if and only if x* € Fix(G), where Fix(G) is
the fixed point set of the mapping G := Pc(I — p1B1)Pc(I — p2B2), and y* = Pc(I — p2Ba)x™.

Suppose that the mappings By, B, are a-inverse-strongly monotone and p-inverse-strongly monotone, re-
spectively. Let f : C — C be a contraction with coefficient 6 € [0,1) and F : C — H be «x-Lipschitzian
and n-strongly monotone with constants x,17 > 0 such that 6 < C := 1 - /1 - p@2n-px?) € (0,1] for

p € (0, g). Let T : C — C be an asymptotically nonexpansive mapping with a sequence {0,} such that
Q := Fix(T) N Fix(G) # 0, where Fix(G) is the fixed-point set of the mapping G := Pc(I — p1B1)Pc(I — p2B2)
for p1 € (0,2a) and p; € (0, 2B). Recently, Cai, Shehu and Iyiola [2] proposed the modified viscosity implicit
rule for finding an element of (), that is, for any initial x; € C, let {x,} be the sequence constructed below

u, =px,+ 1 -5y,
v, = Pc(u, — p2Bouy),
Y. = Pc(v, — p1B1vy),
X1 = Pela f(x) + I — a,pF)T'y,], VYix1,

4)

where {a,} and {B,} are sequences in (0, 1] such that
(i) X2y las —al <ocoand Y17 @, = oo;
(i) lim e, = 0 and lim, e 2 = 0;
(i) 0<e<pB, <land Y2 |Bis1 — Bil < o0;
(iv) L2 Ty, = Tyl < oo,

It was proved in [2] that the sequence {x,} converges strongly to an element x* € (2, which is a unique
solution of the hierarchical variational inequality (HVI): ((pF — f)x",p —x") 2 0, ¥p € Q. In 2019, Thong
and Hieu [24] proposed the inertial subgradient extragradient method with line-search process for solving
the monotone VIP with Lipschitz continuous mapping A and the fixed-point problem (FPP) of a quasi-
nonexpansive mapping T with a demiclosedness property. Assume that Q2 := Fix(T) N VI(C, A) # 0. Given
{a,} € [0,1] and {B,} € (0,1). For any initial xg, x; € H, the sequence {x,} is constructed below.

Algorithm 1.2 ([24]). Initialization: Giveny >0, € € (0,1), u € (0,1). Iterative Steps: Compute x,,1 below:

Step 1. Set w, = x, + a,(x, — x,-1) and calculate v, = Pc(w, — t,Aw,), where 7, is chosen to be the largest
T € {y, vt v?, ...} satisfying Tl|Aw, — Av/|| < ullw, —o,l.

Step 2. Calculate z, = Pc (w, — t,Av,) with C, := {v € H : {w, — t,Aw, —v,,v —v,) < 0}.

Step 3. Calculate x,11 = (1 — B)w, + B,Sz,. If w, = z, = x,41 then w, € Q.

Again set 1 := 1+ 1 and go to Step 1.

It was proven in [24] that under suitable conditions, {x,} converges weakly to an element of (. Very recently,
Reich et al. [22] suggested the modified projection-type method for solving the pseudomonotone VIP with
uniform continuity mapping A. Given a sequence {a,} C (0,1) and a contraction f : C — C with constant
0 €[0,1). For any initial x; € C, the sequence {x,} is constructed below.
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Algorithm 1.3 ([22]). Initialization: Given u >0, £ € (0,1), A € (0, %). Iterative Steps: Given the current iterate
x,, calculate x,,1 as follows:

Step 1. Compute y, = Pc(x, — AAx,) and ry(x,) := x, — y,. If ra(x,) = 0, then stop; x, is a solution of VI(C, A).
Otherwise,

Step 2. Compute w, = x, — T,r)(x,), where T, := Cl and j, is the smallest nonnegative integer j fulfilling

(Ax, = Ax, = O ), () < Sl (IR

Step 3. Compute x,41 = o, f(x,) + (1 — a)Pc,(x,), where C, := {x € C : h,(x,) < 0} and h,(x) = (Aw, x — x,) +

2l
Again set 1 := 1+ 1 and go to Step 1.

It was proven in [22] that under mild conditions, {x,} converges strongly to an element of VI(C, A). In a
real Hilbert space H, we always assume that the VIP, GSVI, HVI and FPP represent a variational inequality
problem, a general system of variational inequalities, a hierarchical variational inequality and a fixed-point
problem of an asymptotically nonexpansive mapping, respectively. We introduce the modified viscosity
subgradient-like extragradient implicit rule for finding a solution of the GSVI with the VIP and FPP
constraints. The suggested algorithms are based on the subgradient extragradient method with line-search
process, hybrid Mann implicit iteration method, and composite viscosity approximation method. Under
suitable restrictions, we demonstrate the strong convergence of the suggested algorithms to a solution of
the GSVI with the VIP and FPP constraints, which is a unique solution of a certain HVI. In addition, an
illustrated example is provided to illustrate the feasibility and applicability of our proposed rule.

The structure of this article is organized below: In Section 2, we present some concepts and basic tools
for further use. Section 3 treats the convergence analysis of the suggested algorithms. In the end, Section
4 applies our main results to solve the GSVI, VIP and FPP in an illustrated example. Our results improve
and extend the corresponding results announced by some others, e.g., Cai, Shehu and Iyiola [2], Thong and
Hieu [24], and Reich et al. [22].

2. Preliminaries

Let (H, (-, -)) be a real Hilbert space and assume that @ # C ¢ H with C being convex and closed. For a
given sequence {z} C H we use z; — z* (resp., zx — z*) indicate the strong (resp., weak) convergence of {z}
toz*. An operator ¥ : C — H is referred to as being

(a) L-Lipschitzian (or L-Lipschitz continuous) if AL > 0 s.t. [[Wu — V|| < L|lu — v||, Yu,v € C;
(b) pseudomonotone if (WYu,v—u) >0 = (Yv,v—-u) >0, Yu,veC;

(c) a-strongly monotone if da > 0s.t. (Yu — Vv, u—v) > allu - V|, Yu,v € C;

(d) B-inverse-strongly monotone if 38 > 0 s.t. (Yu — Vv, u —v) 2> pl|¥Vu - Woll?, Yu,v € C;
(e) sequentially weakly continuous if V{vx} C C, the relation holds: vy — v = Vv, — Y.

It is clear that each monotone mapping is pseudomonotone but the converse is not true. It is known that
Vv € H, J| (nearest point) Pcv € Cs.t. |[v — Pcv|l < |lv — w|| Yw € C. Pc is referred to as a nearest point (or
metric) projection of H onto C. Recall that the following conclusions hold (see [10]):

(@) (v—w,Pcv —Pcw) > ||Pcv — Pcw|?, Vv, w € H;

(b)) w=Pcve v-w,u—-w)y<0, YveH,uecC;

(© llv=wl? = |lv = Pcvl|? + |lw — Pcvl>, Yv € Hw e C;
)

() v =wlP = llol? = [l = 2(v — w,w), Yv,w € H;
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(€) llsv + (1 = s)wl = slvl* + (1 = )llwll* = s(1 = s)llv —wlP, Vv, w € H,s €[0,1].
The following lemmas will be used for demonstrating our main results in the sequel.

Lemma 2.1. Let the mapping B : C — H be y-inverse-strongly monotone. Then, for a given A > 0,
(I = AB)u — (I = AB)v|* < llu = vl* = A2y — A)||Bu — Bol[*.
In particular, if 0 < A < 2y, then I — AB is nonexpansive.

Using Lemma 2.1, we immediately derive the following lemma.

Lemma 2.2. Let the mappings B1,B, : C — H be a-inverse-strongly monotone and B-inverse-strongly monotone,
respectively. Let the mapping G : C — C be defined as G := Pc(I — p1B1)Pc(I — p2B2). If 0 < p1 < 200 and
0 < pp <26, then G : C — C is nonexpansive.

Lemma 2.3 ([5]). Let A : C — H be pseudomonotone and continuous. Then u € C is a solution to the VIP
(Au,v—u) > 0Vv e C, ifand only if (Av,v —u) 20, Yv € C.

Lemma 2.4 ([26]). Let {a;} be a sequence of nonnegative numbers satisfying the conditions: ap,1 < (1 — Apa; +
Ay, Y1 > 1, where {A}} and {y;} are sequences of real numbers such that (i) {A;} € [0,1] and Y,;2, Ay = oo, and (ii)
limsup,_, ., 71 <0or X;2 [Aryil < oo. Then limy_e a; = 0.

Later on, we will make use of the following lemmas to demonstrate our main results.

Lemma 2.5 ([12]). Let Hy and H, be two real Hilbert spaces. Suppose that A : Hi — H» is uniformly continuous
on bounded subsets of Hy and M is a bounded subset of Hy. Then, A(M) is bounded.

Lemma 2.6 ([11]). Let h be a real-valued function on H and define K := {x € C : h(x) < 0}. If K is nonempty and
h is Lipschitz continuous on C with modulus 6 > 0, then dist(x, K) > 67! max{h(x),0}, Yx € C, where dist(x, K)
denotes the distance of x to K.

Lemma 2.7 ([6]). Let X be a Banach space which admits a weakly continuous duality mapping, C be a nonempty
closed convex subset of X, and T : C — C be an asymptotically nonexpansive mapping with Fix(T) # 0. Then I —= T
is demiclosed at zero, i.e., if {ux} is a sequence in C such that uy — u € Cand (I - T)uy — 0, then (I - T)u = 0, where
I is the identity mapping of X.

The following lemmas are very crucial to the convergence analysis of the proposed algorithms.

Lemma 2.8 ([20]). Let {I';,} be a sequence of real numbers that does not decrease at infinity in the sense that there
exists a subsequence {I'y, } of {T';,} which satisfies Iy, < I'y, 41 for each integer k > 1. Define the sequence {¢(11)}ym,
of integers below:

¢(m) = maxtk <m : Ty < Tipa},

where integer my > 1 such that {k < mg : Iy < Tiy1} # 0. Then the following hold:
(i) P(mo) < Pp(mo + 1) < --- and Pp(m) — oo;

(ii) r(,)(m) < F(p(m)ﬂ and T, < F¢(m)+1, Ym > my.

Lemma 2.9 ([26]). Let the number A € (0,1] and the mapping T : C — C be nonexpansive. Let the mapping
T* : C — H be defined as T'u := (I — ApF)Tu, Yu € C with F : C — H being x-Lipschitzian and n-strongly
monotone. Then T is a contraction provided 0 < p < i—Z, ie., ||T'u — T*v|| < (1 — A7)|ju — v||, Yu,v € C, where

1=1-+1-p@2n-px?) €(0,1]
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3. Main Results

In this section, let the feasible set C be a nonempty closed convex subset of a real Hilbert space H, and
assume always that the following conditions hold.

T : C — Cis an asymptotically nonexpansive mapping with a sequence {0,}, and A : H — H is
pseudomonotone and uniformly continuous on C, s.t. [|Az|| < liminf,« [JAu,|| for each {u,} ¢ C with
Uy = Z.

Bi,B; : C — H are a-inverse-strongly monotone and p-inverse-strongly monotone, respectively, and
Q = Fix(T) N Fix(G) N VI(C, A) # 0 where G := Pc(I — p1B1)Pc(I — p2B>) for p1 € (0,2a) and p» € (0, 26).

f : C — H is a contraction with constant 0 € [0,1), and F : C — H is 5-strongly monotone and
k-Lipschitzian such that 6 < 7:=1 - /1 — p(2n — px?) for p € (0, i—;?).

{o,} € [0,1] and {a,} € (0,1] such that

(1) Yoy @y = oo and limy, e vy = 0;

(ii) limy,— oo g—: =0and 0 < liminf, 0, < limsup, | o, <1.

Algorithm 3.1. Initialization: Given p > 0, s € (0,1), £ € (0,1), A € (0, i). Let x1 € C be arbitrary. Iterative

Steps: Given the current iterate x,, calculate x,,1 below:
Step 1. Calculate w, = (1 — 0,)x, + onlsu, + (1 —s)T"x,] with

Uy = Pc(wy, — p2Bowy),
Uy = Pc(v, — p1B10y).

Step 2. Calculate y, = Pc(w, — AAw,) and ry(wy,) 1= Wy = Y-
Step 3. Calculate t, = w, — t,7)(wy), where T, := {" and j, is the smallest nonnegative integer j satisfying

(Aw, = A(wy = Ury(wy)), Wy = Ya) < gllm(wn)IIZ- (5)
Step 4. Compute z,, = Pc,(wy) and x,1 = Pcla, f(x,) + (I = anpF)T"z,], where C, := {u € C : h,(u) < 0} and
) = (A, 1= w,) + S lira )P ®)
Again put n := n + 1 and return to Step 1.
Lemma 3.2. The Armijo-type search approach (5) is well defined, and the relation holds: A71||r)(wy)II> < (ra(wy), Aw,).

Proof. Noticing that £ € (0,1) and the uniformly continuity of A on C, one has lim; ,.(Aw, — A(w, —
Cira(wy)), ra(wy)) = 0. In the case of ry(w,) = 0, one has jn = 0. Otherwise, from 7, (w,) # 0, it follows that 3
(integer) j, > 0 fulfilling (5). Using firm nonexpansivity of P¢, one gets (u — Pco,u — v) > |lu — Pco|?, Yu €
C,v € H. Putting u = w, and v = w, — AAw,, one has A{w,, — Pc(w, — AAw,), Aw,) > |lw, — Pc(w, — AAw,)|1%,
that hence arrives at (ry(w,), Aw,) > A~ |ry(w,)I>. O

Lemma 3.3. Let hy, be the function formulated in (6). Then, h,(p) <0, Yo € Q. In addition, when ry(w,) # 0, one
has h,(w,) > 0.

Proof. The latter assertion of Lemma 3.3 is clear. Next, let us show the former assertion. As a matter of fact,
take a p € Q arbitrarily. By Lemma 2.3 one has (At,, t, — ¢) > 0. Hence one gets

_ _ Tn 2
n(0) = (Aty, 0 = wy) + 53 lIra a0
T
= (Atn/ tn - wn) + <Atnr Q - tn) + ﬁ”r/\(wn)”2 (7)

- In 2
< =Tl Aty 1a(wn)) + Sy lira @)l
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[lrA(w,)|?. Thus, by Lemma 3.2 one gets

Moreover, from (5) one has (Aw, — At,,, ry(wy)) < %

(At 7a(w00)) = =5l @I + a0, Awe) 2 (-5 + Dia@IP ®)

This together with (7), leads to

Ty, 1 ’
h(0) < _?(X = Wllra (). )
So, we obtain the desired result. [

Lemma 3.4. Let {wy}, {x,}, {yn}, (z4) be the bounded sequences constructed in Algorithm 3.1. Assume that x, —
X1 = 0, x, —Gw, - 0, wy —y, = 0, x, —2, = Oand x, — T"x, = 0. If T"x,, — Ty, — 0and Afx, ) C (x4}
such that x,, — z € C, then z € Q.

Proof. From Algorithm 3.1, we get w,, — x,, = ou[s(un —x,) + (1 = s)(T"x, — x»)], Y1 > 1, and hence [|w,, — x,|| <
onlsllun —xull+ (A =s)IT"x, — x,||]. Utilizing the assumptions lim inf,,« 0, > 0, 4, —x, = Oand x, —T"x, — 0,
we have

lim ||w, — x,|| = 0. (10)
n—oo
Putting g, = a,f(x,) + (I — a,pF)T"z,, by Algorithm 3.1 we obtain that x,+1 = Pcg, and g, — T"z, =
anf(x,) — anpFT"z,, which immediately yields
I, = T"zpll < llotn = Xpaall + X1 = T 24l
<l = xpaall + ”‘114 — Tzl
< ||xn - xn+1” + an”f(xn)” + 0¢n||PPTnZn||-
Since x,, — x,41 — 0, a, — 0 and {x,}, {z,} are bounded, we obtain
lim ||x, — T"z,|| = 0.
n—o00
We claim that lim,,,« [|x, — Tx,|| = 0. In fact, Using the asymptotical nonexpansivity of T, one deduces
that
lxn = Txull < llxy = Tzl + [IT" 2y — T x| + I T"x, — T”+1xn|| + ||Tn+1xn - Tn+lzn|| + ||Tn+1zn = Txyl|
<lxy = Tzl + (1 + O)llzn — xull + IT"x, — Tn+1xn|| + (1 + Oy — zull + (1 + Ql)HTnzn = Xnl|
=2+ 0)lx, - Tz, + (246, + Ons)llzn — x4l + IT"x, — Tn+1xn||-
Since x,, —z, — 0, x,, — T"z,, = 0 and T"x,, — T"*1x,, — 0, we obtain
lim ||x,; — Tx,|| = 0. (11)
n—oo

Also, let us show that lim, e |lxy, — Gx4|| = 0. In fact, by Lemma 2.2 we know that G : C — C is
nonexpansive for p; € (0,2a) and p; € (0,26). Again from Algorithm 3.1, we have u,, = Gw,. Since

1Gxy = x4l < Gxy — Gyl + IGwy, — x4l < My — wyll + |1y — xall,

Noticing that u, — x, — 0 and x, — w, — 0 (due to (10)), we obtain

lim ||Gx,, — x| = 0. (12)

Next, let us show z € VI(C, A). Indeed, noticing x, — w, — 0 and x,, — z, we know that w, — z. Since
C is convex and closed, from {w,} C C and w,, — z we get z € C. In what follows, we consider two cases.
If Az = 0, then it is clear that z € VI(C, A) because (Az,y —z) > 0, Yy € C. Assume that Az # 0. Then it
follows from w, — x, — 0 and x,, — z that w,, — z as k — oco. Utilizing the assumption on A, instead
of the sequentially weak continuity of A, we get 0 < ||Az|| < liminfy_, [[Aw,,,||. So, we might assume that
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|Aw,, || # 0 Vk > 1. On the other hand, from y,, = Pc(w, —AAw,), we have (w, —AAw,—y,, x—y,) <0, Vx € C,
and hence

1
Wi = Y X = Yu) + (AW, Y = Wn) < (Awn, X —wn), Yx€C. (13)
According to the uniform continuity of A on C, one knows that {Aw,} is bounded (due to Lemma 2.5). Note
that {y,} is bounded as well. Thus, from (13) we get lim infy_,co(Aw,,, x —wy, ) 20, Yx € C.

To show that z € VI(C, A), we now choose a sequence {c,} C (0,1) satisfying ¢x | 0 as k — oo. For each
k > 1, we denote by m the smallest positive integer such that

(Awy;, x —wy) +ck 20, Vj>my. (14)

Since {ck} is decreasing, it can be readily seen that {m} is increasing. Noticing that Aw,, # 0 Vk > 1 (due to
A my.

{Awy, } € {Aw,,}), we set gy, = W, we get (Awy,, 0m,) = 1, Yk > 1. So, from (14) we get (Awy,, X + CkOm, —

W) = 0¥k > 1. Again from the pseudomonotonicity of A we have (A(x+Ck0m,), X + CkOm, —Wm,) = 0, Yk > 1.
This immediately leads to

(AX, X = Wy ) > (Ax — A(X + CkOm ), X + CkOmy, — W) — Ck{AX, Oy )- (15)

We claim that limy_,c ¢k0m, = 0. In fact, from x,, — z € C and w,, — x, — 0, we obtain w,, — z. Note
that {w,,} C {w,}and ¢x | 0 as k — oco. So it follows that 0 < limsup,_, , llck@m, |l = limsup,_, m <
mk

limsup, _, ., ¢k
lim infy;_, ”Awnk [

side of (15) tends to zero by the uniform continuity of A, the boundedness of {wy,,}, {0n,} and the limit
limy oo CkOm, = 0. Therefore, we get (Ax,x — z) = liminfy,(Ax,x — w,,) > 0, Yx € C. By Lemma 2.3 we
have z € VI(C, A).

Next we show that z € Q. In fact, note that (11) guarantees x,, — Tx,, — 0. From Lemma 2.7 it follows
that I — T is demiclosed at zero. Thus, from x,, — z we get (I — T)z = 0, i.e., z € Fix(T). Moreover, let us
show that z € Fix(G). As a matter of fact, by Lemma 2.7 we know that I — G is demiclosed at zero. Hence,
from (12) and x,, — zwehave (I - G)z =0, i.e., z € Fix(G). Consequently, z € Fix(T) NFix(G) " VI(C, A) = Q.
This completes the proof. [J

= 0. Hence we get ¢xom, — 0 as k — oco. Thus, letting k — oo, we deduce that the right-hand

Lemma 3.5. Let {w,} be the sequence constructed in Algorithm 3.1. Then,

lim 7l (@,)IP =0 = lim [Ira(w,)ll = 0. (16)

Proof. Assume that limsup,_,_ [[ra(wy)ll = a > 0. Then, A{n,} C {n} s.t. lim,_,o [[7A(wy,)Il = a > 0. Note that
lim, e TnL”T/\(wn[)“z = 0. First, if liminf,_, 7, > 0, we might assume that 3v > 0s.t. 7,, > v >0, Yt > 1. So
it follows that

Tp, T, T,
lIra (@wn)IP = T—Ilm(wnl)llz < 7||r/\(wm)||2 = 7||7’A(wn,)||2, (17)

n

which immediately leads to 0 < a% = lim, e [I7A (s, )I* < limeof - 7y [l (wy,)II?} = 0. So, we attain a
contradiction.

If liminf, . T4, = 0, there exists a subsequence of {t,, }, still denoted by {7, }, s.t. lim, & T, = 0. We now
set

1 1 1
On, = szyn, +(1- zTn,)wn[ = Wn, — zTn,(wn, = Yn,)-

Then, from lim, e Ty, |[71(wy,)|I* = 0 we infer that

. 1
lim llon, =, |I* = Him 7, - T llra(@n)IP = 0. (18)
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Using the step size rule (5), one obtains (Aw,, —Agy,, 72 (Wy,)) > %Ilm(wm )|I2. Since A is uniformly continuous
on bounded subsets of C, (18) ensures that

tlgg [[Aw,, — Agyll =0, (19)

which hence yields lim, . |[rA(wy,)I| = 0. So, we attain a contradiction. Therefore, ry(w,) — 0 as n — oo.
This completes the proof. O

Theorem 3.6. Suppose that {x,} is the sequence constructed in Algorithm 3.1. Then x, — x* € Q provided
T"x, — T"'x,, — 0, where x* € Q is the unique solution to the HVI: {(oF — f)x*,p —x*) >0, ¥p € Q.
Proof. Since 0 < liminf, . 0, < limsup,_, 0, <1 and lim,_.« @ = 0, we may assume, without loss

of generality, that {0} C [4,b] C (0,1) and 6,2 + 6,,) < &= Vi > 1. We claim that Po(I — pF + f) : C — C
is a contraction. In fact, for all u,v € C, by Lemma 2.9, one has

IPo(I = pF + f)(u) = Po(l = pF + /)@l < [1 = (7 = O)]llu —oll,

which implies that Po(I — pF + f) is a contraction. Banach’s contraction mapping principle guarantees that
Po(I — pF + f) has a unique fixed point. Say x* € C, i.e., x* = Po(I — pF + f)(x*). Thus, there exists a unique
solution x* € Q = Fix(T) N Fix(G) N VI(C, A) of the HVI

(pF = f)x",p—-x")20, VYpeQ. (20)

Next we show the conclusion of the theorem. To the aim, we divide the rest of the proof into several steps.
Step 1. We show that {x,} is bounded. In fact, for x* € Q = Fix(T) N Fix(G) N VI(C, A). Then Tx* = x* and
Gx* = x*, ¥n > 1. We claim that the following inequality holds:

lzw — x| < |lwy, — x> = dist?(w,, Cy), VYn > 1. (21)
In fact, one has

2 2 2 2
llzn — x*|I° = IPc,w, — x*|I7 < |lw, — x*|° = [|Pc,wy — whl|

= llw, — x| = dist*(wy, C),
which immediately yields
Iz = x| < flw, — x|, VYn=1. (22)
From the formulation of w,, we get

lw, — x| < (1 = ow)llxy = x°|| + onlsllGw,, — x7|| + (1 = s)IT"x, — x7]]]
< (A =o)Xy — Xl + onlsllw, — x| + (1 = s)(1 + 6,)llx, — x7]1]
=[1=0,+0,(1=5)(1 + O)]llxy — X*|| + sopllw, — x7,

which hence arrives at

1-0,+0,(1-5)1+86,)
1 ”xn -
— 50y

0,(1 —5)0 * *
%]len =Xl < (1 + 0y)llxn — X7l
- 50,

llwy — x7|| < x|
=[1+

This together with (22), yields

llzn = X7l < llwn = 27|l < (L + Op)llcy =27, Yn 2 1. (23)
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Thus, using (23), from Lemma 2.9 we obtain

IXn41 = X7 < aubllx, — x| + (1 = anT)( + Op)llzy — X*|| + anll(f — pF)x7|
< @by = X'+ (1 = ap0)(1 + 6,)llxy — X' + anll(f — pF)x’||
< and + (1 = a,7) + 0,2 + 0,)]llx, = X7 + anll(f = pP)xl

3= Oy~ 2+ all(f = pE)Y

<[1-au(t-9)+ 7

=11~ Dy, e+ - B

B (T = 0) o an(t=0) 2l(f = pE)x"|]

=11~ 2 Dy, ¢ 22O TR
20(f - pP)¥|

8

< max(llx, — x|, 5

By induction, we obtain ||x, — x*|| < max{||x; — x*, W} Vn > 1. Thus, {x,} is bounded, and so are the
sequences {wy}, {ya}, {zu}, {f(xn)}, {Atn}, {Gwy} and {T"z,}.
Step 2. We show that

[1-a,T+ Qn]{GiS(l = S)|luy — Tnxn“2 +0,(1- Gn)[suxn - unuz + (1 =5s)llx, - Tnxn||2]

+ Iz = wallP} + 119 = Xl < My = 212 = lar = 1% + My
for some M; > 0. In fact, by Lemma 2.9 and the convexity of the function g(t) = t?>, Vt € R we obtain that

X1 = X1 < Mg = X1 = llgn = Xl
= [lan(f(xn) = F(x)) + (I = anpF)T"zy — (I = anpF)x" + au(f = pHX|* = llgn — x|
<Aaullf(xn) = FCN + I = anpF)T"z — (I = anpF)x' |1} + 225{(f — pP)X", g — x*)
—11gn = Xpsa|P
< Aandllxy — X'l + [(1 = 1) + Oplllzn — Pl + 200((f = pF)X", G — X*) = IG5 — X1 |
< apdllxy = I + [(1 = @) + Onlllzn — X1 + 200{(f = PP)X", G = X = |1 — Xnsa|I*.

(24)

On the other hand, using (23) and Algorithm 3.1 one has

llzw = X°I* < Iy — x> = llzn — wal®

< (1= a)lxy = X1 + ouls(1 + 6,)%l1x, — X[ + (1 = s)(L + 6,)?lIxy — x|
= 5(1 = 9)lltn = T"xulP] = 0u(1 = 0)sllxn — wul® + (1 = 8)llxy — T"xlI*
= 5(1 = 9)llun = T"xul"] = llz0 — wal®

< (1+ 0,)llxn — XI* = 055(1 = 9)lluy — T"x?
= on(1 = an)lsllxy — unl® + (1 = 8)llxy — T"xlI? (25)
= 5(1 = 9)llun = T"xul"] = llz0 — wl®

= (14 0,)%lxn — X1 = 0ps(1 = 9)lluty = T"xul* = |20 — will?
= 0n(1 = an)lsllxn — ual® + (1 = 8)llxy — T"xlI%]

=[xy = |7 + 042 + 0,)llxy — X°|* — 035(1 — )l — T"xlI*

~ 0u(1 = 0)[sllxn =l + (1 = 8)llx = T"xullP] = llz = 0] .
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Substituting (25) into (24), one gets
Iue1 = X1 < @bl — 17 + [1 = anT + Oplllxy — X' + 0,2 + O)llxy — X°IF = [1 = T + 6,]

X {Uﬁs(l = 9)lluy — Tnxn”z +0,(1 = 0,)[sllxn — ursz + (1 =s)llx, — Tnxn”z]
+llzn — wall®} + 200{(f = PF)X", g = X*) = |l — Xl ?

<1 = an(t = )llxg — XIP + 26,2 + Op)llxy — x| = [1 — @y + Oulloas(l — 8)lluy — T"xl*
+0n(1 = 0y)[sllx, — unHZ + (1 =9)llx, — TnanZ] + |z — wnuz}
+ 20,((f = X", G — X = |lgn — X II?

<l — X*HZ -[-a,T+ Gn]{aﬁs(l = 9)|luy, — Tnanz +0,(1 = 0y)[sllx, — ”n”2

+ (1 =9)llx, — T"xn||2] +llzn — wn||2} +a, My - ||‘In - xn+1”2/
where sup, .., 2|[(f — pF)x’|lllgn — x|l < M for some M; > 0. This immediately implies that

[1-ayTt+ 9,,]{0%15(1 - S)Hun - Tnxn”2 + Gn(l - Gn)[S”xn - unHZ
+ (1= 9)lxw = T"xallP] + llzn — wall?} + llgn — Xnsall®

<l = NP = llxnsr — 1P + @M.
Step 3. We show that

[1-ant+6, ][MLIIM(wn)II 2P <y = X1 = e — X7 + auMy.
In fact, we claim that for some L > 0,

llzn — | < Iy — x°|* —

1. (26)

2/\L

Since the sequence {At,} is bounded, there exists L > 0 such that ||At,|| < L Vn > 1. This ensures that for all
u,v€C,,

(1) = hu(0)] = KAty u — 0)| < |ALulllu — oIl < Lilu - o],

which hence implies that /,(-) is L-Lipschitz continuous on C,. By Lemmas 2.6 and 3.3, we obtain

w2 27)

) 1
dlSt(wn, Cn) > Zhl’l(wl’l) = 2L

Combining (21) and (27), we get ||z, — x*|]*> < [lw, — x*|* - [
that

sz |lra(wy) |12, From (24), (23) and (26) it follows

et — X% < @ndlley — 217 + [(1 = ay7) + O4]llzs — x| + 2an<(f - pE)x*, g — x%)

< ablly = 21+ [(A = 1) + B, ){llwn — 1P~ [55 (wn)” P} + 2a,((f = pP)X", g — %)

2/\L
< adllcy = X7 + [(1 = an7) + O,1{(L + 6,)]lx, — x|

2/\[, + (XHM1

< [1 = au(t = 0) + Op]llx, — X*HZ + 0,2+ Op)llx, — X*Hz [(Q-a,T)+ Gn][z (wn)” ] + a,M;

/\LHTA
<1 = an(t = 8) + 26,2 + O)llvy = xIP = [(1 ~ ay7) + 6 ][ IIYA(wn)II I+ .M
<l =X =1 -y + 0 ][2)\Lllm(wn)llzl2 + @M.

This immediately yields

[1-ant+06, ][ZALHV/\(wn)H P < ey = X1 = s = 1P + M.
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Step 4. We show that

,e 0, M 2(f - PP, g — X°)
Borer = 1P < [1 = (= )l — 12 + 2 My 4 — oy 2P0
a, T—0 T—0

(28)

for some M > 0. In fact, from Lemma 2.9 and (23), one obtains
1 — XN < llgn — X7
< e (f(xn) = F(x) + (= anpF) Tz, — (I — anpF)x"|* + 20,{(f — pF)x", g — x*)
< [and + (1= ant + 0)llxy — X1 + 04(2 + Oy — X*I* + 2a,((f — pF)x", G — X*)
2(f-pHx,qn—x) 6, M

< ay(T = 90)] p— + sl H L an(m = )l - x|,

where sup,,.; 2(2 + 0,)llx, — x*|[> < M for some M > 0.
Step 5. We show that {x,} converges strongly to the unique solution x* € Q of the HVI (20). In fact, from
(28), we have
A(f-pPx"gu—x) 6, M

Xn1 = X7 < (T = 0)] + = ——]+ (1 = an(t = O))llxy — x| (29)
=0 a, T—0

Putting I, = ||Ix, — x*||?>, we show the convergence of {I';} to zero by the following two cases.
Case 1. 3 (integer), 19 > 1s.t. {I',} is nonincreasing. It is clear that the limit lim,_,co I, = /i < +00 and
limy eI’y = I'y41) = 0. From Step 2 and {0} C [, ] C (0, 1) we obtain
[1 -yt + B,1{as(1 = s)lluy — T"xul* + a(1 = b)[sllx, — unll®
+ (1= 9)llx, - TnanZ] + |z — wnuz} + ||I7n - xn+1”2
<[1-apt+ 9-,1]{0'315(1 = 5)|lu, — Tnxn||2 +0,(1 = 0,)[sllxn — unllz
+ (1 = 5)|lxn — Tnxn”z] + |z — wnHZ} + ||Qn - xn+1||2
< ”xn - x*”2 - ||xn+1 - x*”2 + aan < Fn - 1—‘n+1 + aan'
Thanks to the facts that 6,, - 0, a, > 0and I', —I',,;; — 0, from s € (0, 1) one deduces that lim,,_,c |[tt;, —
Tnxn” = O/ 1imn—>oo ”xn - un” = Or and
31_1)130 Iy — T"x,ll = &1_1){}0 |z — wall = 1}1_1)?0 lgn — xp41ll = 0. (30)
So, it is easy to see that

[, = xull = oulls(un — x,) + (1 = 8)(T"x, = x0)ll
<y = xull + IT" x5 = x4l = 0 (n — 00),

X = zull < llxXn — wall + llwy —zull > 0 (1 — ),
and
llxn = Tzl < llxn = T"xull + [IT" X0 — Tzl
< lxew = T"xull + (L + On)llxy — zull = 0 (7 — o0).
Therefore, from (30) and Algorithm 3.1, it follows that
x4 = Xnll < |1Xns1 = Gall + llg — xall
= 1Xns1 = gall + llan f(xn) + T2 — X — AnpFT"z,||
< ¥t = Gall + 1 T"zn = xall + @nll f(xn) — pFT" 2yl 31)
< Mlxnsr = gull + 17" 20 = x4l + an (|| f el + |PFT" z,ll)

-0 (n— o).
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On the other hand, from Step 3 we obtain

T * ¥
[1-ayt+ Gn][zA—"LIlm(wn)llzl2 < ey = 1P = per = 1P + avaMy

=TI, - +a,M.

Noticing 6, = 0, @, = 0and I'; — I';4+1 — 0, one gets

o Ta 292 _
L [l @a)IF] = 0,

which together with Lemma 3.5, leads to
lim [[w, — yull = 0. (32)

From the boundedness of {x,}, we know that J subsequence {x,,} C {x,]} s.t.

lim sup((f — pF)x", x,, —x") = ngg((f — pF)x*, x,, — x7). (33)

n—oo

Since H is reflexive and {x,} is bounded, we may assume, without loss of generality, that x,, — x. Thus,
from (3.29) one gets

lim sup{(f — pF)x", x, — x") = im{(f — pF)x", x,,, — x*)
f—co (e (34)
={(f — pF)x",x —x").

Since x,, — x+1 = 0, Gw, —x, = 0, w, —y, = 0, x, —z, = 0, x, — T"x, and x,,, — X, by Lemma 3.4 we infer
that x € Q. Hence from (20) and (34) one has

limsup((f — pF)x", x, — x*) = {(f — pF)x",x —x*) <0, (35)

n—oo

which together with (30) and (31), arrives at

lim sup{(f — pF)x*, qn — x*) = limsup[{(f — pF)X", gn — Xn41 + Xp+1 — X) + {(f — pF)x*, x,, — x7)]

n—o00 n—-o0o
(36)

3
< Tim suplI(f = POX N0 = Xsall + st = %all) + ((F = PP, %, — x)] < 0.

n—oo

Note that {a,(t — 6)} € [0,1], Y.;rq an(T —0) = 0, and

2{((f — pF)x*, g, — x* B
lim sup| ¢ PT)_X(S‘] x>+2—-%}so.

Consequently, applying Lemma 2.4 to (29), one has lim, e [Ix,, — x*||*> = 0.
Case 2. Al,} c {Iy) st Ty, < Tys1 Ve € N, where N is the set of all positive integers. Define the
mapping ¢ : N = N by
¢(n) :=max{t<n: I, <T}.

By Lemma 2.8, we get

Ty <Topme1 and Ty < Tggnyer-
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From Step 2 we have
[1 = 2T + O Ha*s(L — 8)llugm — TP x|
+a(1 = b)[slxpe) — teml® + (1= 8)xom — T xpum]
+ 1zey — WounlP} + 1960 — X+l

< 1 = agon T + Opun 10,51 = )l = T2

(37)
+ Go0my (1 = G [8l1xp0m — toul? + (1 = )X — T xp0mP]
+ Izeny — WP} + 190 — X+l
< gy — XIP = Ixpmer — X'IP + apeMa
< Towmy) = Tpme1 + apmM,
which immediately implies that lim;, . |[t¢() — T‘P(”)xqg(n)ll =0, limy—e [|Xp(n) — tpmll = 0, and
,}1_{1(}0 sy — TP x| = }1_{{}0 IZony — Wl = JEEL Gy — Xp@m+1ll =0
From Step 3 we get
(1 = apmT) + 6q‘>(n)][ 2/\L ||7A(wq> T < xgm) — X1 = X1 — X' + oM
= Lo = Fom1 + agMi,
which hence leads to
Tep(n) 22
r}g{}o[z)\LHm(wq;(n))H I*=
Utilizing the same inferences as in the proof of Case 1, we deduce that
Iim flwoe = Yoell = Hm lIxXee = Zgell = M Ppeye = Xpell = 0
and
lim sup{(f — pF)x", qo@m) — x*) < 0. (38)
n—o0
On the other hand, from (29) we obtain
2(f = PP qooy = %) Opy M
_ < — .
o) (T = 0) () < @p(u)(T — O)[ p— + P 5],
which hence arrives at
2(f = pP)X", qomy = X)  Opwmy M
li Tooy < li ’ + <0.
P T < imsupl =2 4 T )
Thus, limy—e [lXe(r) — X*|I* = 0. Also, note that
xcsm+1 = X1 = s — X7 = 241 — Xy, Xom — X7 + IXommr1 — Xom)ll* (39)

< 2l sm+1 = Xoamllxoe — XN+ Ixsme1 — Yool
Owing to I'; < Tpn)+1, we get

e = 1P < Moy — X1 + 2lxgam1 = XomllXm — X7 + Xgam — Xomll* = 0(n — ).

That is, x, — x* as n — oo. This completes the proof. [J

Using the similar arguments to the proof of Theorem 3.6, we can deduce the following theorem.
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Theorem 3.7. IfT : C — Cis nonexpansive and {x,} is the sequence constructed in the modified version of Algorithm
3.1, that is, for any initial x, € C,

wy = (1 = 0p)xy, + oplsu, + (1 —5)Tx,],

Uy = Pc(l = p2Bo)wy,

un = Pc(I — p1B1)oy,

Yn = Pc(w, — AAw,), (40)
th = (1= Tp)w, + TnYn,

zy = Pc,(wy),

Xne1 = Pefanf(xn) + (I — anpF)Tz,], Vn 21,

where for each n > 1, C, and 7, are chosen as in Algorithm 3.1, then x, — x* € Q, where x* € ( is the unique
solution to the HVI: {((pF — f)x*,p—x") >0, Vpe Q.

Remark 3.8. Compared with the corresponding results in Cai, Shehu and lyiola [2], Thong and Hieu [24] and Reich
et al. [22], our results improve and extend them in the following aspects.

(i) The problem of finding an element of Fix(T) N Fix(G) in [2] is extended to develop our problem of finding an
element of Fix(T) NFix(G) N VI(C, A) where T is asymptotically nonexpansive mapping and G is the mapping defined
as in Lemma 1.1, i.e., G := Pc(I — p1B1)Pc(I — p2B2) for p1 € (0,2a) and p; € (0, 2B). The modified viscosity implicit
rule for finding an element of Fix(T) N Fix(G) in [2] is extended to develop our modified viscosity subgradient-like
extragradient implicit rule with line-search process for finding an element of Fix(T) N Fix(G) N VI(C, A), which is
based on the subgradient extragradient method with line-search process, hybrid Mann implicit iteration method, and
composite viscosity approximation method.

(ii) The problem of finding an element of Fix(T)NVI(C, A) with quasi-nonexpansive mapping T in [24] is extended to
develop our problem of finding an element of Fix(T) NFix(G) N VI(C, A) with asymptotically nonexpansive mapping T.
The inertial subgradient extragradient method with linear-search process for finding an element of Fix(T) N VI(C, A)
in [15] is extended to develop our modified viscosity subgradient-like extragradient implicit rule with line-search
process for finding an element of Fix(T) N Fix(G) N VI(C, A), which is based on the subgradient extragradient method
with line-search process, hybrid Mann implicit iteration method, and composite viscosity approximation method.

(iii) The problem of finding an element of VI(C, A) with pseudomonotone uniform continuity mapping A is
extended to develop our problem of finding an element of Fix(T) N Fix(G) N VI(C, A) with both asymptotically
nonexpansive mapping T and nonexpansive mapping G. The modified projection-type method with line-search
process in [22] is extended to develop our modified viscosity subgradient-like extragradient implicit rule with line-
search process, e.g., the original projection step vy, = Pc(x, — AAxy,) is replaced by the hybrid Mann implicit projection
step wy, = (1 — 0y)xy + 0n[sGwy + (1 — 5)T"xy,] and y, = Pc(w, — AAw,,); meantime, the original viscosity step
Xns1 = Anf(xy) + (1 — an)Pc,(x,) is replaced by the composite viscosity iterative step xn.1 = Pclanf(x,) + (I —
aupF)T" P, (w,)]

4. Examples

In this section, applying our main results we deal with the GSVI, VIP and FPP in an illustrated example.
Putp:2,p1:p2:%, yzl,s:/lzfz%, anzéandan:m.

We first provide an example of two inverse-strongly monotone mappings By,B; : C — H, Lipschitz
continuous and pseudomonotone mapping A and asymptotically nonexpansive mapping T with Q =
Fix(T) N Fix(G) N VI(C, A) # 0. We set H = R and use the (a,b) =aband || - || = | -| to denote its inner product
and induced norm, respectively. Moreover, we put C = [-2,4]. The starting point x; is arbitrarily picked in

[-2,4]. Let f(x) = F(x) = %x, Vx € C with

1 11
d=5<C=1-1-p@n-px?)=1- \/1—2(25—2(5)2)=1.
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Let Bix = Box := Bx = x—3sinx, Yx € C. Let A: H —> Hand T : C — Cbe defined as Ax := m_ﬁxl and
Tx := 2 sinx. We now claim that B is %—inverse—strongly monotone. In fact, since B is 1-strongly monotone
and 3-Lipschitz continuous, we know that B is Z-inverse-strongly monotone with a = § = 3. Let us show

that A is pseudomonotone and Lipschitz continuous. Indeed, for each x, y € H one has

[yl = ||| '+ || siny|| — || sin x]|
A+ llyIDA +Ix()” (1 +[Isinyl)(1 + || sinx]])
< llx = yll N || sin x — sin y|
T (D@ +lyl) (@ + [Isinx)(1 + [Isinyll)
<|lx =yl + || sinx — sin y||
< 2[lx = yll.

lAx — Ayl| < |

This implies that A is Lipschitz continuous with L = 2. Next, we show that A is pseudomonotone. For each
x,y € H, itis not hard to find that

1
- —x) >
T+jsing  T+p 0 =0
1 _ 1
1+][siny]l 1+]yl

(Ax,y—x) = (

= Ay, y—x) = )y —x) = 0.

Moreover, it is easy to check that T is asymptotically nonexpansive with 6, = (2)", ¥n > 1, such that
IT" %, — T"x,|| = 0 as n — oo. Indeed, we observe that

3 - . 3
IT" =Tyl < ST 2= Tyl < o < GVl = yil < (1+ Bl = il
and
3.,
I 2 = Tl < ()" IT % = Tl
3,03 . 3
= (§)n_1ll§ sin(Tx,) — 7 sin x|
< 2(;)" — 0.

It is clear that Fix(T) = {0} and

7"
lim & = lim 3/7)

—=0.
n—ooo @, n—o 1/3(n+1)

Therefore, 2 = Fix(T) N Fix(G) N VI(C, A) = {0} # 0. In this case, noticing G = Pc(I — p1B1)Pc(I — p2B2) =
[Pc( - %B)]2, we rewrite Algorithm 3.1 as follows:

Wy = 32 + 3[Fu, + 1T"x,],
Un = Pc(l - %B)wnr
Uy = Pe(l - %B)vl’l/
Yn = PC(wn - %Awn)r (41)
ty = (1 - Tn)wn + Tnln,
Zy = PCn(le)l
1

Xns1 = Pelagrgy - 3% + (U= 5) Tz, Y21,

where for each n > 1, C,, and 7, are chosen as in Algorithm 3.1. Then, by Theorem 3.6, we know that {x,}
converges to 0 € Q2 = Fix(T) N NFix(G) N VI(C, A).
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In particular, since Tx := 2 sinx is also nonexpansive, we consider the modified version of Algorithm
7

that is,

1 2r1 1
Wy = 3Xn + g[iun + ETxn],

vy = Pc(I - %B)wnz

Uy = Pc(l - %B)vnl

Yn = Pc(w, — %Awn)/ (42)
th = (1= Tp)w, + TnYn,

Zy = PC,, (wn)/

Xne1 = Pelagyy - 3% + (1= 55y T2al, V21,

where for each n > 1, C, and 7, are chosen as above. Then, by Theorem 3.7, we know that {x,} converges
to 0 € Q = Fix(T) N Fix(G) N VI(C, A).
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