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Abstract. In this paper, we consider two classes of boundary value problems in the frame of local
proportional fractional derivatives. For both of these classes, we obtain the associated Green’s functions
and discuss their properties. Using these properties, we go about the uniqueness of the solutions. In
addition, we establish Lyapunov-type and Hartman-Wintner-type inequalities and build sharp estimated
for the unique solutions of the considered equations.

1. Introduction

The non-local fractional calculus have attracted the interest of many scientists working on different
areas of science and engineering. In fact, this calculus permits differentiation and integration of any real
or complex orders and thus generalizes the usual calculus that studies integrals and derivatives of integer
orders. What makes the fractional calculus interesting is that there is a variety of fractional derivatives and
thus a researcher can choose the most suitable derivative which may help in understanding and modeling
a real world phenomena they are working on [1-7].

On the flip side, local fractional derivatives admits differentiation of non integer orders as well. One kind
of these derivatives was developed in [8, 9] and was called the conformable derivative. The disadvantage
of the conformable derivative is that it does not yield the function itself when the order is 0. To bypass this
defect, Anderson et al. [10, 11] suggested a modification of the conformable derivative so that if the order
of this derivative tends to 0, it gives the function itself and if the order tends to 1, it gives the first-order
derivative of the function. Later the authors in [12] presented a new type of fractional operators generated
from a certain class of the modified conformable derivatives and the authors investigated more properties
of this modified conformable derivative in [13].

One of the most important integral inequalities that played a noticeable role in the development of
differential equations is the Lyapunov inequality. The Russian mathematician A. M. Lyapunov [14] proved
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that if the boundary value problem (BVP)

n”(t) +qtnt) =0, te(ab), n =nb)=0,

where g is a real-valued continuous function, has a nontrivial solution, then

b
fa g(s)lds > ﬁ.

The constant 4 in the above inequality is sharp so that it cannot be replaced by a larger number. This
inequality has effectuated many applications in various fields of sciences and engineering; see [15-20] and
the references therein. On the top of this, many articles have discussed the extension of the Lyapunov
inequality in the presence of non-local and local fractional derivatives [28-33] by using maximum value
of a Green’s function [34, 35]. Moreover, sharp estimates for the solutions of certain classes of boundary
values problems were handled in [21-27].

Motivated by the aforementioned works on Lyapunov inequality and inspired by the work done in
[21-27], we intend to obtain specific inequalities and establish sharp estimates for the existence of a unique
solution for the following local fractional proportional differential equations with two-point boundary
conditions

{ @@+ ft,y#) =0, t €ab], 1
y@) =Ayb)=B, A BER,

where D € {,D" ,Df?, ,Df} such that ,D° denotes the local fractional proportional differential operator of
order o (0 = p1, p2, p) With0 < p1,p2 < 1,1 < p1+p2 <2,p1 #p2,1 <p <2and f : [a,b]XR — Ris a known
function.

Also, we investigate the Lyapunov-type and Hartman-Wintner-type inequalities for the following open
problems presented by Abdeljawad in [13].

(®y) () +q9(B)y () =0, t € [a,b], )
y(@) =0 = y(b),

where g : [2,b] X R — R is a continuous function.

2. Preliminaries
In this section, we present some basic concepts of local fractional proportional integral and derivative.

Definition 2.1 ([3]). Let a > 0. The fractional integral of Reimann Liouville type of the function W € L![a,b] is
defined by (I0%) (t) = ¥ (t) and

1

(W) () = T@

¢
f (t—1)* "W (1)dr, fora >0,

where t € [a,b] and T(a) = f0+°° @ De~7dr,

Definition 2.2 ([12]). Let p € [0, 1]. The local fractional proportional integral of order p of the function W is defined
by (aIO‘I/) (t) =W (t) and

t
GIPW) (t)=% f e'7 O (1) dr for p € (0,1], 3)

where t € [a,b].



Z. Laadjal et al. / Filomat 37:21 (2023), 7199-7216

7201

Definition 2.3 ([13]). Let p € (n,n+ 1], (n € N) and v = p — n. The local fractional proportional integral of order

p of the function WV is defined by

P noqv 1 ' n-1 %
MWWFﬂMwa=GijG—ﬂ (') (0) dr,
where t € [a,b].

Remark 2.4. Note that unfortunately "' ;1" #, I''*"2.

(4)

Definition 2.5 ([13]). Let p € (n,n+1], n € IN. The local fractional proportional derivative of order p of the function

W e C"*D[q, b] is defined by
(DPW)(t) = (,DP"D"W)(t), t € [a, b],

where, in case n = 0 the operator ,DP defined in [12] as follows
«DP =(1-p)+pD', (herep € (0,1].

Above, D" is the n-th order differential operator.

Remark 2.6. Formula (5) can be written as follows
DP)(E) = (1= p + m) W) + (p — W)W D).

Remark 2.7. Following Example 5.1 in [13],if p € (1,2), 0 = p— Land y, = =L = £22

o p—1’
JPp(t) = f[l t*s)](p(s)ds.

3. Main results
In this section we provide our main findings.
Theorem 3.1. For any p > 0 withn < p < n + 1, for an integrable function \V on [a, t] we have

(D) (a) Ot-0)

(t—a)f -

k=n-1 —n
(IPDPW)(t) = W (1) — Z ((Dk;’)(ﬂ) B (aD(:n_I:yId)(ﬂ)

k=0

p—n-1

where 6 = P

Proof. From Definitions 2.3 and 2.5, we have

(JIPDPW)(H) (I} 177" DPT"WO)(),

I [D"\y(t) — X0 (,DF"W)(a) |

\y(t) Z (Dk‘I’ (a) )k _ (qufn\I/)(a)Igeé(tfa)'

we have

(5)

(10)
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On other hand, we have

f
I';eé(t‘”) = T (111) f (t —s)" P60 dr
a
-1
_ (té_r@:) + %Ig—l eé(t—u)

(t _a)nfl _ (t _u)n72 N l

oI (n) PT(mn-1) &
(-0 (- -0 1
oI (n) PTm-1 8Tm-2) 8°

Ig—Zeé(t—u)

(- (-0 (t-0"  (t-a) 1 1 oit-a)
oT(n) &T(n-1 &Tnr-2) = & 1r@) o1°
n-1
I G0
k1on—k 5716 '
k=0 "
Substituting the value of I"¢?*= in the formula (10), we get
n—1 n—-1 k
(D"W)(a) " _ (t—af 1 5,
PDP = —y = Yk pet - —o(t=a)
(D)D) = W) kz;‘ g DT@)| ) S + e

W(t) -

n-1
(D"W)@a)  (,DP~"W)(a) v DPTW)@) s
( K ok )(t_a) T ¢ .

k=0
O

Lemma 3.2. Let p > 0 withn < p < n + 1. In view of Theorem 3.1 , we have the following property:

n—1

(JIPDPW)(t) = W(t) — Z o (t — @)t = ¢, ), (11)
k=0
wherec, € R, withk=0,1,2,...,nand 6 = p;f;l.

Now, we study the given problems according to the operator © (Case: © =,D ;D2 and Case: D =,DF).
In each case, by using the Green’s function and its properties for each problem, we obtain the uniqueness
of the solution, Lyapunov-type and Hartman-Wintner-type inequalities, non-existence of the solutions and
sharper lower bound of the eigenvalues associated.

3.1. Case: © =,DP1 ,DP?

Consider the sequential local fractional proportional boundary value problem:

{ (D ,DP2)y (t) + P(t) = 0, t € [a,b], P € Cla,b], 12)

y@) =A,yb)=B, A,BeR.

The following result plays a key role in deriving the main results for the problems (1) and (2) with ® =,D"
«DP2.

Lemma 3.3. The linear boundary value problem (12) has the unique solution represented by the integral equation

(B = A) (e71(t=0) — gra(t=0))
ey1(b—a) — pya(b-a)

b
yhH=A+ + f G(t,s)P (s)ds, (13)
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_ % [eyl(t—s) _ e)/z(t—s)] = gl(t,s), a<s<t<yp,

a<t<s<b,

where
1) _pyat=0) [ o1 (b=5) _pra(b-9)
[ [ |
B[t ]
G(t,s) =
1) _ pyat=0) [ o1 (b=5) _pra(b-9)
[ [ |
B[ D2l ]
. _ p1—1 _ pz—l
with y1 = V2= and

6=p1p2(y1=72) = p1 = p2.

Proof. From Remark 5.1 of [13], we have

= g2(tr S)/

y(t) =+ [ — 0] = (172 I P) (1),

where ¢1,¢, € R.

By the boundary conditions y(a) = A, we get c; = A, so

y(t) A+c [g?’l(t—ﬂ) _ eVz(t—a)] _

A + co I:eyl(t_ﬂ) — eVZ(t_a)] —

A+cy [e}’l(t*a) _ e}/z(t*ﬂ)] _

By Fubini’s Theorem, we get

yit) = A+ [e)/l(t—a) - en(t—a)] -
= Aoy [ontn gt
= A+o [eyl(f—a) _ eVz(t—a)] _
which implies that

(17 oI"P) (t)

1 [ 1 (°

_ f eyz(t—S)(_ f eyl(S_T)P(T) dT)ds
P2 Ja P1 Ja

1 t S

s f ( f e’/Z(tS)eVl(ST)P(T)dT)ds,
1P2 Ja a

1 t) ot
o f ( f eJ’Z(t‘T)e)’l(T_S)dT)P(s) ds
1P2 Ja s
1 t) ot
p1p f ( f e’/”‘“e(%—n)fdf)P(s)ds
1P2 Ja s

1 t( erat=y1s
(r1r2)t _ p(r1-12)s
p1p2 f,; ((71 ) [e e ])P(S) ds,

¢
y(t)=A+c [e’”l(t_”) - e”Z(t_“)] - % f [eVl(t_s) - eyZ(t_s)] P(s)ds,
a

where 0 is given by (15).
Using the boundary condition y(b) =

B-A 1

B, we obtain

2 0 — et ' 5 [entd —¢

b
y1(b—s) _ ,y2(b-s)
)/z(b—ﬂ)]‘fu‘ [e e ]P(s)ds.

7203

(14)

(15)

(16)

(17)

(18)
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Substituting the value of ¢; in (17) we get

(B—A)en™ —2™) - (™D — o) [em 9 - 09 p s)d
g}/l(b*ﬂ) — e}/z(b*ﬂ) o [el’l(b a) _ eVZ(b a)

t
a

(B = A)(ert=a) — gra(t-a))
erilb—a) _ py2(b—a)

+1 ft { [e},l(t_u) _ eyz(t—u)] ]:e)/l(b—s) - e3/2(b—5)] ~ [e}/l(t’s) _ e),z(ts)]JP (s)ds
a

yit) = A+

= A+

0 er1(b—a) — pya(b-a)

+

P(s)ds

1 fb [63/10*11) _ eyz(tfa)] [em(be) - eVz(b*S)]
t

0 ey1(b=a) _ py2(b-a)

_ yi(t—a) _ pya(t-a) b
_ a4 Bz ) . f G(t, )P (s) ds

24! (b—a) — e}’z(b_ﬂ)

where G(t, s) is given by (14).
Conversely, if y is given by (13), then y satisfies boundary value problem presented in (12). This can be
proved easily by applying ,D* ,Df* to both sides of (13) and substituting ¢ by 4 and b afterwards. [

3.1.1. On the Green’s function
72

Lemma 3.4. Let & = a,b € R(a < b), and let

)™
p(t,s) = [e)'l(f—u) — eralt= u)] [ey 1(b-5) _ e)/z(b—s)] ,(t,9) € [a,b]2. Then
t,s)| = ¢, 19
max [g(t,s) = ¢* (19)
where

max {|e}/1€ —er2€ , |6V1(h*ﬂ) _ e}/z(b*ﬂ)l} , lfé <b-a,
€= (20)
‘e}ﬁ(b—ﬂ) — e)’z(b—ﬂ)| , 1f§ >b—a.

And moreover 0 < € < 1.

Proof. Let ¢(t,s) = T(t)S(s), where T(t) = e/~ — r2(=0) ¢t € [g,b] and S(s) = €19 — e12=9) 5 € [g, b].
Note that T(t) is continuous function with T(a) = 0 and T(b) = 10~ — er2(b-9),
On other hand, the function T’(t) = y1e"1¢=" — y,¢72t=9 t € (4, b) has unique zero at the point
V2
71

(7/1 72)’

In £

t= (here t* > a). (21)

2

v n n

If * € (a,b) then T(t*) = eT D M5 et , we obtain maxe[, 5 [T(t)] = € where ¢ is given by (20).
Also, we have 5(s) is continuous function with S(a) = /1% — ¢2(b=9 and S(b) = 0

On other hand, the equation 5'(s) = 0,5 € (a,b) has unique solution at the point

)'z
s*=b— ————, (heres" <b). (22)
1-72)’
If s* € (a,b) then S(s*) = et T ev T %, we obtain maxe[, 5] |S(s)| = € where ¢ is given by (20).
We conclude that maxgse[q b |(p(t, s)| = maXe[qp] T ()| MaXsepapy [S(S)| = 2.
Finally, the inequality 0 < ¢ < 1is immediate. Hence the proof is complete. [
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Lemma 3.5. The Green’s function G (t,s) defined in Lemma 3.3 satisfies the following properties:
i). G(t,5) 20, foralls,t € [a,b],

.. e[en®=—e0-9]
ii). G(t,s) < W,for all t,s € [a,b],
iii). G(t,8) < m forall t,s € [a,b],

where ¢ is given by (20).

Proof. Let (i; j) € {(1,2),(2; 1)} . If either (i; j) = (1;2) or (i; j) = (2;1), then, we have

O<pi<pj<l & 1-p>1-p;>0and ;> >1
t )
1-pi 1-p;
-
TP 0
pi— pi—
P oo«
pi Pj 0
Yi<y;j< 0.

t ¢3¢

Therefore, if either p; < pa(or p1 > p2), then 6 < (>)0, 1= — 12(=0) < ()0, 1109 — 12=9) < (>)0,
and 1= — ¢2(-0 < (>)0 respectively, for alla < t < s < b,a # b. (i.e., the value 6 and the functions
eV (t=0) — gr2(t=a) or1(b=s) _ 12(0=5) and 1= — ¢12(-9) they have the same sign).

We conclude that

g2(t,8) 2 0, (23)

foralla<t<s<hb,

Now, Let g1(t,s) = Mh(t,s), where M = ol and

N S
5 [ng (b-a) _ oo (b

h(t,s) = [em(t—u) - e)/z(f—ﬂ)] [e)'l(b—S) - en(b—s)] - [e;q(b—m - em(b—a)] [en(t—s) - e}’z(l‘—s)],
a<s<t<b.

Note that, by the obove duscussion we have M > 0.
Next, we have
ht,s) = et [eyl(b—S) - e)fz(b—S)] — prali-a) [eyl(b—S) — e)/z(b—s)]
_ey1(6-0) [e}/l(t_s) - e)/z(t—S)] 4 r2-a) [eyl(t—S) - eyz(t—S)]
— eyl(b—s+t—a) _ eyz(b—s)+)/1(t—a) _ e)/1(b—s)+yz(t—a) + eyz(b—s+t—a)
_eyl(b—a+t—s) + eyz(t—s)+)/1(b—u) + e)/1(t—s)+;/2(b—a) _ e)/z(b—a+t—s)
= r2t=9)prib=a) _ py2(b=5)pr1(t=a) 4 py1(t=s)pr2(b=a) _ py1(0=s)pr2(t=a)

) + pr2(0=a) py1(b=s) (ng(ts) oVa(t-a) )

gVZ(t*S) eVl(t*a)
e1(b=s)  gya(b—a)
= n(b=a),y2(b-s) [E—Vz(b—f) _ e—Vl(b—t)] + V(=) py1(b=s) [E—Vl(b—f) _ 6—72(h—f)]

—  ori(b-a),y2(b-s) -
o (emb—s) D

_ [eyl(b—a)eyz(b—s) _ eyz(b—u)eyl(b—s)] [e—y/z(b—t) _ e—yl(b—t)]

= (=0 p2(b-9) [1 _ e(yz—y1)<s—a)] [e—yzw—t) _ e—mb—t)] ,
we obtain
qi(t,s) = Me?1 0= g2(b=s) [1 - 6(72‘7’1)(5_”)] [6_7’2(!’_” - e"”l(h_t)] ,a<s<t<h.
Note that, if y, < y1 < 0, then (27 7)6-0 < 1 and 77201 — g 110D > (0 we get g1(t,8) > 0.

On other hand, if y; <y, < 0, then (27160 > 1 and e72-0 — g1 < 0 we get gi1(t,s) > 0.
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We Conclude that
gl (t/ S) > O/ (24)

foralla<s<t<b.

Hence, by (23) and (24) we obtain the first property of above lemma.

Now, we prove the second and third properties.

From the first discussion above in this proof (above the inequality (23 ) we can conclude that, if
either p; < pa(or p1 > py), then the value 6 and the functions e?1(t=? — ¢2(=0) 11(6=5) — pr2(b=s) er1(t=s) _ era(t=s)
and €101 — 12079 they have the same sign, for alla < s < t < b. So, because g1 (t,s) > 0 we obtain

[emt—a) — e)/z(t—ﬂ)] [em (0-s) _ e]/z(b—s)]

0<qi(ts) < ,fora<s<t<b.

6 [en10-a) — er2b-a)]
This yields

[ew(t—u) - en(t—a)] [em (b-s) _ e)/z(b—s)]

S EIG e , forall t,s € [a, b]. (25)

0<G(t,s) <

From Lemma 3.4 we have

& e}’l(t*a) —_ eVZ(tfa)
0< | = ] < ﬁ (26)

Therefore, by (25) and (26) we get

c [eyl(b—s) - en(b—s)]

0] [er1@=n) — eralb=a)]°

G(t,s) <

Now, we conclude that
&2

[0 _ gr2-0]’ forallt,s € [a,b].

G(t,s) <
(t9) < -

The proof is complete. [

Proposition 3.6. The Green’s function G defined in Lemma 3.3, has the following property

b
1
max G(t,9s)ds = ———. 27
tE[a,b]fa G &) (p1 =D (p2-1) )

Proof. From the first proprety of Lemma 3.5, we have

b — - b
eri(t=a) _ pra(t-a)
= y1(0=s) _ py2(b—s)
fa IG(t, s)| ds ST ] fa‘ [e e ]ds

t
1 f [e716-9 = 726-9] s,
5

a
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This yields

b
Y172 f G(t, )| ds

)/26)/1 (b—a) _ yleyz(b—a
( 11 (0=0) _ gy2(b=0)

)) [emr—m _ e)/z(t—u)] _ [new(t—a) —_ yle)/z(f—ﬂ)]

b— Y2(b— b— b—
7/26)/1( - - r1e 0 -2 e1t-a) _ Vzeyl( Y~ 7/16)/2( ! -1 eV2(t=a)
eyib=a) _ py2(b—a) evib—a) — pya(b-a)

o (b— b— b— b—
7/26)2( “) — ylem( i eri(t=a) _ Vzeyl( ° - yleyl( i er2(t=a)
eri(b—a) _ py2(b—a) er1(b—a) _ py2(b—a)

(%) o72(b=0) pri(t=a) _ (%)ew—mem(t—a)
ey1(b-a) _ py2(b—a) ey1(b=a) _ py2(b-a)

eyl(bfa)eVZ(tfa) — eVZ(bfa)e}’l(tfa)
(1 =72) 1 0-2) — grab-)

Using the equalities y1 = p — y = pz Land 6 = p1P2 (Y1 — ¥2), we obtain
e
|G (t,8)lds = (28)
f (1 =D (p2-1)
where

e’ (bfa)eVZ(tfa) — eVZ(hfa)e)’l(tfﬂ)

P(t) =

erib-a) _ py2(b—a) , e [a’ b] (29)

Obviously ¢(a) =1 and ¢(b) =
Now, for t € (a, b) we differentiate the function ¢, we obtain

-)/263’1 (bfa)eVZ (t-a) _ yleVZ (bfa)e)/l (t—a)

P'(t) =

eri(b=a) _ oya(b—a)
The function ¢’(t) = 0 has unique solution at the point
In 2
F=b+—2" (heref > b).
(1=72)

Since ¢ is a continuous function on the interval [4,b] and f > b, which yields

max¢(t) = ¢(a) = 1. (30)

tela,b]

From (28) and (30) we conclude the formula (27). The proof is complete. [

3.1.2. Uniqueness result

In the result of uniqueness, we need the following assumption:
(H). Assume that f : [a,b] X R — R is continuous function and satisfies a uniform Lipschitz condition with
respect to the second variable on [a, b] X R with Lipschitz constant K, that is,

|f(t,m) = f(t,m)| < K|m -
for all (t,m), (t,m2) € [a,b] X R.
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Theorem 3.7. Let © =,Df" ,DF? and assume that (H) holds. If

_ K
(p1=D(p2-1)

then the fractional boundary value problem (1) has a unique solution on [a, b] for any values of A and B.

(31)

Proof. Let E = C([a, b], R) be the Banach space endowed with the norm Hy“ = SUP;(y 5] |y(t) ,and we define

the operator N : E — E by

(B = A) (e71t=0) — gralt=a))

Ny(t) = A+ — o —gatn

b
+f G(t,s)f(s, y(s))ds, (32)

where the function G is given by (14).

Notice that, the problem (1) (with © =, D ,Dr?) has a solution y € E if only if y is fixed point of the
operator N.

Let (t,y),(t,y) € [a,b] X E, we have

b
f Glt,5) (5, ¥(&)) — £(s, 7)) ds

Ny () -Ny ()] <
b
< fKG(t,s)|y(s)—y(s)|ds
b
< Kf G(t,s)ds“y—y ,

using the Proposition 3.6, we get

K _
INy - Ny| < m”}/—y”- (33)

The assumption (31) leads to principle of contraction mapping. Hence, N is contraction mapping, we
conclude that the problem (1) with © =,D" ,DF? has a unique solution. [J

3.1.3. Lyapunov-type and Hartman-Wintner-type inequalities
We present the following Hartman-Wintner-type inequality for the fractional boundary value problem

Q).

Theorem 3.8. Let © =,Df" ,DP2. If a nontrivial continuous solution to the problem (2) exists, then

b
f sign(o) [ew—s) _ e)/z(b—s)]lq(s)lds > g [en(b—m _ e)/z(b—a)] , (34)
a

1, ifo>0,

where y1, Y, and 6 are given in Lemma 3.3, and ¢ is difened by (20), and sign(0) = { 1, if6<0

Proof. From Lemma 3.3 (with A = 0 = B and P(t) = q(t)y(t)), problem (2) is equivalent to the following
integral equation

b
y(t):f G(t,s)q(s)y(s)ds,

So, we have

b
() < f G, NIy (E)lds,
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which yields

b e [e;q<b—s>.__e}a<b—s>]
yll <llyl f 19(5)is.

6] [e71b=) — er2(b-a)]

Since y is non trivial, with [§] = sig%, SO

b esign(o) [e% (b-s) _ e)/z(b—s)]
1< [
a

5 [er1-0) — gra(b-)] lg(s)lds,

from which the inequality in (34) follows. O

We have the following Lyapunov-type inequality.

Theorem 3.9. Let © =,D ;D2 If a nontrivial continuous solution to the fractional boundary value problem (2)
exists, then

b
f lg(s)lds > g [eyl(b’“) - eyza’*“)] , (35)
where v = 2= and v, = 21
V1= V2=

Proof. In the same way as above, by using the third property of Lemma 3.5, we get

b 2
e7lg(s)l
= ]a‘ 5 [erib-a) — eyz(b_u)]dsl ,

from which the inequality in (35) follows. [

3.1.4. Lower bound for the eigenvalues
Consider the following sequential local fractional proportional eigenvalue problem involving two dif-
ferent orders p1, p2 € (0,1)

{ (D™ aDPy) ()= Ay (), t € [a,b], 7

y(@) =0 = y(b).
Then, we have the following resut:

Theorem 3.10. If a nontrivial continuous solution to the fractional boundary value problem (37) exists, then

Al > (p1 —1)(p2—1). (38)

Proof. From Lemma 3.3, the solution of problem (37) can be written as follows

b
v == [ 169y

Thus, for all t € [a, b], we have
b
ol <l [ 1691y

b
<Al ”ny |G (t, 5)| ds

il
T (e -D(p2-1)
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which yields

Ayl
(p1 =D (p2-1)

Since y is non trivial, then ” y” #0,s0

vl <

1< M
(i =D(p2-1)

We obtain inequality (38). The proof is complete. [

3.1.5. Nonexistence results

We obtain the following result about the nonexistence for solutions of the fractional boundary value
problems (2) with © =,Df* ;D and (37).

Theorem 3.11. Let © =,D D>, If

b
5 V1 (b— Vo (b—i
fﬂ l9(s)lds < [er10=0) — ra=] (39)

Then problem (2) has no nontrivial solution.
Proof. The proof follows from Theorem 3.9. [
Theorem 3.12. If
A< (p1=1)(p2=1). (40)
Then the boundary value problem (37) has no non-trivial solution.

Proof. The proof follows from Theorem 3.10. [J

3.2. Case: © =,DF
Consider the following two-point local fractional proportional boundary value problem:

{ GDPy) () +P(t) =0, t € [a,b], (41)

y@) =A,yb)=B, A BER,

where 1 < p <2and P : [4,b] —» Ris a continuous function.
The following result plays a key role in deriving the main results for the problems (1) and (2) with
D =,Dr.

Lemma 3.13. Let 0 = Z;f. Problem (41) has the unique solution represented by the integral equation

B-A)[et0-1]
yhH=A+ prran + f G(t,s)P (s) ds, (42)
e - a
where
~ (B e =), asssisy,
G(ts)= 57— (43)

2 — p _o(t=a)1[1 _.0(b—s)
%:zhz(t,s), a<t<s<b
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Proof. Applying the operator ,I° on the differential equation (,Dy) (t) + P (f) = 0, and using Lemma 3.2, we
obtain

y(t) = co +c1e’™) — (,IPP) (1),

where ¢y, c1 € R.
By the formula (8) we get

1 ¢
(t) = co + ce”) — —— f 1-¢"9 P (s)ds. (44)
Y 0T C1 2-pJ, [ ]

Using the boundary conditions y(a) = A and y(b) = B, we obtain

B-A 1 b
— _ ,o(b-s)
e e 1] [1 [1 e ]P (s)ds

and
Cop = A- C1
Substituting the values of c; and c; in (44) we get

(B _ A) [ea(t—a) _ 1] o(t a) _ 1]

_ a(b s)
WO = A — T Y s p) i ] f[l |P(s)ds

1 ¢
3, [1 - eg(t_s)] P(s)ds
a
(B _ A) eo(t—a) -1 _ ea(t a) 1-— ea(b s)
= A+ eg(bL) 1 ] (2 ) f [ —eﬁ[(b - ] [1 - e"“‘s)] P(s)ds
1 — golt= a)] [1 a(b—s)]
- p)f et L O®
(B—A)[ert=0) - 1]
= A+ T f G(t,s)P (s)ds,
e

where a(t, s) is given by (43).
Conversely, any function y given by (42) is a solution of the boundary value problem shewed in (41).
One can show this just by implementing Df to both sides of (42) and finding the values of y ataand b. O

3.2.1. On the Green’s function

Lemma 3.14. The Green's function G defined in Lemma 3.13 satisfies the following properties:
7). G(t s)=0 for all (s, t) € [a,b] X [a,b],

ii). maxteabllG(t s)|= G(s,s), forall s € [a, b],
2
iii). maxseop|Gs, s)|= G(1£2, 12 = W (1-e).

Proof. Fora <t <s < b, it can be easily checked that

0 < hy(t,s) < ho(s, s). (45)
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Next, for a < s < t < b, we start by fixing an arbitrary s € [g, b]. Differentiating the function (¢, s) with
respect to t , we get

d —ge’(t=a) [1 - eo(b—s)]
ot = o(t—s)
athl(t’s) = — \ oo
= _geot-0) 1 — eot=9) ~ 0 (t=)
1 — eob—a)  golt-a)

Gea(t—a) (1 _ ea(b—s) eas)

1- ea(b—a) - e—oa

- —_eo(b-9) 0 .
Because o < 0, then we get —0e?“™ > 0,0 < 1=5— < 1and & > 1. So, we obtain

e—oa =

d
Ehl <0, (46)

i.e., hy is decreasing function with respect to t when t € [s, b], we get
0="h1(b,s) < hi(t,s) < h(s,s). 47)
By (45) and (47), we obtain
0 < G(t,s) < G(s, 9). (48)
Hence, the inequality (48) gives us the first and second properties.

Now, we prove the third property. We have

W(s)
2-p)[1-et]

IG(s, 5)|= (49)

where
W(s) = [1 - e”(s_“)] [1 - ea(b_s)] , S €la,b]

It follows that we only need to get the maximum value of the function V.
Obviously, W(a) = W(b) = 0. So, for s € (a,b), differentiate V(s).

\I"(s) = _Gea(s—a) [1 _ eo(b—s)] + Oeo(b—s) [1 _ ea(s—a)] .

On other hand we have

V(Es)=0 o eols—a) (1 — eo(b—s)] = ¢olb-s) [1 _ eg(s,a)]
o o5—a) _ polb-a) = po(b=s) _ po(b—a)
_b
©s= 30,
Since W is continuous function, we conclude that

max [W(s)| = \y(bzﬂ) = (1-eP) (50)

s€la,b]

From (49) and (50) we obtain the third property. O
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Proposition 3.15. The Green’s function G defined in Lemma 3.13 has the following property

¢

maxf IG (t,8)|ds = _P (51)

tela,b]

where

— 1 b-a 1, (¢-1)

¢=C " mra-1 & o(b—a) 52

Proof. From the first proprety of Lemma 3.14 we get

o ( )
1 e’ b-s
f |G (t, S) |dS (2 )) ed(b a) f [1

—ﬁ a [1 et S)]ds

[ea(t—a) _ 1]

1 o
(2-p)[eot - 1] [(b —a)+ S (1 — oo ))]

—ﬁ [t —a+ % (l - eg(t_“))]

Then we obtain after simplifications

b
f IG (t,5) |ds = %, (53)

where

O-a) i, b-a
gb(t) WE (¢ )—t+ﬂ—m, tE[lZ,b]. (54)

It follows that we only need to get the maximum value of the function ¢(t). Obviously ¢(a) = 0 and
¢(b) = 0. Now, for t € (a,b) we differentiate the function ¢, we obtain

a(b
3 = S t-n 1.

The function ¢’(t) = 0 has unique solution at the point

(e(r(b—u) _ 1)

f—a+1ln
B o o(b—a)

Since ¢ is a continuous function on the interval [, b] with ¢(a) = 0 and ¢(b) = 0, which yields n}aﬁ(p(ﬂ =
tela,
¢(f). By substituting the value f in (54) we obtain
_ et=m — 1
maxqb(t) gb 1 _boa 1lr1g.

55
te[a,b] o eba9-1 ¢ o(b—a) (55)

From (53) and (55) we conclude the formula (51). The proof is complete. [
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3.2.2. Uniqueness result
Theorem 3.16. Let © =,DF and assume that (H) holds. If

—

¢K

Then, the fractional boundary value problem (1) has a unique solution on [a, b] for any values of A and B.
Proof. We define the operator N:E—E by

(B—A)[ent=0 -1
eolb-a) — 1

b
Ny(t) = A + ] + f G(t,5)f(s, y(s))ds, (57)

where the function G is given by (43).
Notice that problem (1) with © =,Df has a solution y € E if only if y is fixed point of the operator N.
Let (t,v),(t,y) € [a,b] X E, we have

b o~
f Git,9) |5, () — 5,75 ds

Ny () - Ny (0] <
h —_—
< fKG(t,s)|y(s)—y(s)|ds
b
< Kf a(t,s)ds”y—y ,

using Proposition 3.15, we get

_ oK B
[Ny =Nl < 5= lly =31 (58)

The condition (56) leads to principle of contraction mapping. Hence, N is contraction mapping, we
conclude that the problem (1) with © =,Df has a unique solution. [J

3.2.3. Lyapunov-type and Hartman-Wintner-type inequalities
We present the following Hartman-Wintner-type inequality for the fractional boundary value problem

Q).

Theorem 3.17. Let © =,DP. If a nontrivial continuous solution to the problem (2) exists, then

fh [1 - eU(s_“)] [1 - e"(b_s)]lq(s)lds >(2-p) [1 - e(’(h‘”)] , (59)
where 0 = Z_j'

Proof. From Lemma 3.13 (with A = B = 0 and P(¢) = q(t)y(t)), problem (2) is equivalent to the following
fractional integral equation

b~
y(t) = f G(t, 9)q()y(s)ds,

Then, the rest of the poof is similar to the poof Theorem 3.8 above. [

We have the following Lyapunov-type inequality.
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Theorem 3.18. Let © =,Dr. If a nontrivial continuous solution to the fractional boundary value problem (2) exists,
then

o ampi—e)

ds > . 60

j; |q(s)] ds > (1_eﬂ<b%”>)2 (60)
where 0 = Z%;Z.

Proof. The proof follows by using the inequality (59) with the formula (50). O

3.2.4. Lower bound for the eigenvalues
Consider the following local fractional proportional eigenvalue problem

DY) () = Ay (1), 1<p<2, te[ab], o1
y(@) =0=y(b). (61)

Then we have the following resut:

Theorem 3.19. If a nontrivial continuous solution to the fractional boundary value problem (61) exists, then

2 —
N> =—=F 62)

where Zﬁis given by (52).

Proof. From Lemma 3.13, the solution of the problem (61) can be written as follows

b —_—
y(@) = —f AG (t,s)y (s)ds.

Then, the proof can be executed imititating the proof of Theorem 3.10 and using the formula (51). O

3.2.5. Nonexistence results

We obtain the following result about the nonexistence for solutions of the boundary value problems (61)
and (2) with © =,Dr.

Theorem 3.20. Let © =,D° and assume that

— — polb—a)
fblq(s)lds < 2-p) [1 i 5 ] (63)
a (1 - ea(%"))

Then problem (2) has no nontrivial solution.

Proof. The proof follows from Theorem 3.18. [

Theorem 3.21. If

2 —
A < ——, (64)

then, the boundary value problem (61) has no non-trivial solution.

Proof. The proof follows from Theorem 3.19. [J
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