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Inverse coefficient problem for quasilinear pseudo-parabolic equation
by Fourier method
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Abstract. In this research, we consider a coefficient problem of an inverse problem of a quasilinear
pseudo-parabolic equation with nonlocal boundary condition. We prove the existence, uniqueness and
continuously dependence upon the data of the solution by iteration method. Also we consider numerical
solution for this inverse problem by using linearization and finite difference method.

1. Introduction

Fourier series, which have an important place in various branches of mathematics, physics, engineer-
ing and applied sciences, are the series that are widely used especially in real world problems involving
periodic oscillations. Fourier series, which are encountered in differential equation problems related to ap-
plications in many fields such as electromagnetic theory, heat transfer and conduction, physical phenomena
involving oscillation, quantum theory, acoustics, magnetic and electronics, can be derived with the help of
trigonometric functions. Another advantage of these series is that they allow trigonometric presentation
for functions that do not need to be arbitrarily differentiable (see [7]).

Many methods are known for solving differential equations. However, sometimes it can be a difficult
process to detect arbitrary functions in the differential equation that satisfy the given boundary conditions.
In fact, it is impossible to solve the general solution of partial differential equations except in special cases.
For these reasons, various methods have been developed for the solution of boundary value problems. One
of the well-known methods is the Fourier method, which is based on the separation of variables.

The subject of inverse problems was first discussed in the 19th and 20th centuries and shed light on the
solution of many problems in heat transfer, diffusion problems, nuclear physics problems and seismology.
Although parabolic equations fall within the scope of inverse problems, they are a type of problem that can
be obtained by utilizing the solution to be obtained under certain conditions (see [2], [3], [4], [5], [6] and

[8]). Also, for some further results the readers can consider the paper [9]-[13] and [14]-[17]. We will deal
with the following problem in this study.

Consider the equation

a(t)uy — Uy — iy = () f(x, 1, 1), (x,t) € D, (1)
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with the initial condition
u(x,0) = p(x), xe[0,7], 2)
the periodic boundary condition
u(0,t) = u(1,t), u(1,t) =0, t [0, T], 3

and the overdetermination data

1
E(t) = fo u(x, tydx,0 <t < T, 4)

where
D:={0<x<1, 0<t<T}.

The functions ¢(x) and f(x, t, u) are given functions on [0,1] and D x (—oo, o), respectively.

In Section 2, the existence and uniqueness of the solution of inverse problem (1)-(4) will be proved by
using the Fourier method and iteration method. In Section 3, the continuous dependence upon the data
of the inverse problem will be demonsrated. In Section 4, the numerical procedure for the solution of the
inverse problem will be given. In Section 5, some examples will be presented to verify the main findings.

2. Existence and Uniqueness of the Solution of the Inverse Problem
Consider the following system of functions on the interval [0, 1] :
Xo(x) =2, Xpp_1(x) = 4 cos(2mkx), Xo(x) = 4(1 — x)sin(2mkx), k=1,2, ...,

Yo(x) = x, Yor_1(x) = x cos(2mkx), Yo (x) = sin(2mtkx), k=1,2, ....

The systems of these functions arise in [5] for the solution of a nonlocal boundary value problem in heat
conduction.

It is easy to verify that the system of function Xy(x) and Yi(x), k =0, 1,2, ... are bi-orthonormal on [0, 1].
They are also Riesz bases in L,[0, 1] [1] .

u(x, t) = Z UpX-

k=1
Definition 2.1. The problem of finding the pair {r(t), u(x, t)} in (1)-(4) is called an inverse problem.

The main result on existence and uniqueness of the solution of the inverse problem (1)-(4) is presented
as follows:

We have the following assumptions on the data of the problem (1)-(4).

(A1) E(t) € C'[0, T], (t) € C[O, T],

EA2; P(x) € C*[0,1], 9(0) = (1), ¢'(1) = 0, " (0) = ¢" (1),

As

(1) Let the function f(x, t, u) is continuous with respect to all arguments in D X (-0, o) and satisfies the

following condition

AW f(x, t,u) M f(x, t, i)
ox" B ox"

< b(trx) |1/l_12| = 0/1121

where b(x, t) € Ly(D), b(x,t) >0,
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(2) f(x, t,u) € CH0, 1], £e[0, T], f(x,t,w)| _, = fac tw)| _,, fel tw)] _ =0, fxlx )| o = fxla )] _,,

1
@) [ f(x,t,u)ydx # 0, Vte[0, T].
0

By applying the procedure of the Fourier method, we obtain the following representation for the solution
of (1)-(3) for arbitrary r(t) € C[0, T] :

t
u(x,t) = (Po+f7’(’[)fo(’f)d’[ Xo(x)
0
) [ t
@kt 1 _@rk2(-1)
1+¢(2mk)2 JR— 1+e(2nk)2 X
+; Pax e ( + 1+€(27Tk)2 fr(T)ka(T)e 2 dt Zk(x)
| (rk)2t Sty
+; _((PZk_1 1 +e(2nk)2(p2k e | Xop1(x)
[ t
. 1 (2mtk)? Py ey
+sz 1+ erk)? f ) (fz"‘l(T) T+ ey &~ D (@] € e dT) Xo () ®)
1 0
where

1

1
Qr = f(p(x)Yk(x)dx, fi(t) = ff(x,t,u)Yk(x)dx,k:O, 1,2,...
0

0

Assume that

t1
ut) = o +2 f f 1) f(&, T, u(E, 1))édédT
0
H = T T sin2mke ded
ux(t) = e 1+£(2nk)2ffr(T)f E 1, u(E,1)e sin 2mkE d&dt
27tk)?t —<2nk>2f

1 —@rk)(t— ZT
+W f f r(T)f(&, T, u(E, 7))e wew? & cos2mkEdédt

2 72nk2f1
a +(2gk)kz') f f (t = DD F(E T u(E, D) o7 sin 2mke dEdr.
E(LTT

Differentiating (4), we obtain

1
f w(x, )dx =E (1,0 <t < T. (6)

0



L. Baglan et al. / Filomat 37:21 (2023), 72177230 7220

from (5) and (6), we get

r(t) )
E'(t)

£
ff(x, t, u)dx
0

—@nk)?t —@nrk)(t-1)

t1 o)
Z m [<sz elrem? 4 1+£(2nk2 ffr ) f(&, T, u(&, t))e ew? sin2mké dédt
00

+

t
ff(x, t, u)dx
0

Definition 2.2. Denote the set of continuous functions
{u(®)} = {uo(t), uzk(t), up—1(t), k =1, ..., n}, on [0, T] satisfying the condition

2 up(t)| + 4 U ()] + Us—1(D)|] < o0, by By. Let [[u(®)|| = 2 up(t)| +
max | o)l El(&%' 2(D) + max Ju 1()I) oo, by By ()l max| o)l
4y, (max [tk (£)] + max |u2k_1(t)|), be the norm in By.

—1 \0<t<T 0<t<T

It can be shown that B, is the Banach space.

Theorem 2.3. Let assumptions (A1) — (A3) be satisfied. Then, the inverse problem (1)-(4) has a unique solution in
D.

Proof. An iteration for Fourier coefficient of (5) is defined as follows:

t
ug o = ué(”(f)*f f (@) F(E, T, uN(E, D)e T edede ®)

O = G0 Ty k)2f f P (@) f(E, 7, u(E e T sin 2k déde
w1 =yl (0+ 1+£(27'ck)2 f f (D) F(E, T, uN(E, T)E cos 2mkée 1wt dEd

9 -2 (-t
(1(2(+k)k2) f f(t _ T)1’<N>(T)f(f§, T, M(N)((SI 7)) sin 27k& e 1+ )Zn(k)z ) ddr
+ (2T

where, N =0,1,2,...
An iteration for (7) is defined as:

—Qmk)2t k)2 (t—1)

—@nk)* (t-1)
E'(t) + Z TreON? ((pzk e + e f f 1) f(&, T, uN(&, 1))e e sin2mke didt

e ©)
ff(x/ t/ H(N))dx
0
Let
) —<2nk>22
u, (t) = @o,U 2k (t) = Qope e’
0 (2mk)*t k2t
u(zk)—l(t) = (sz—l - m(ka el+&’(2nk)2 .
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From the conditions of the theorem, we have u©(t) € B;.
Let us write N = 0 in (8).

t 1
WO = w00+ f f FOLFE 7 uO(E, 1) — F(E, 7, 0)]Ededn
0 0

t 1
+ f f rO() f(&,7,0)&dEd.
0 0

Applying the Cauchy inequality, the Lipschitzs condition and taking the maximum of both sides of the
last inequality, we have:

2max |u 1)(i,‘)|

0<t<T

IA

2 o] + 2 VT llb(x, Ol ) 4Ol [FO Ol oz + 2 VT £ 06,0

L(D) "

) (1)
1

ug) (1) + 1+€(2nk)2 f f FO@FE, 7, uO(E 1) - fE, 7, 0)]e 1657 sin 2mkEdEd

0

1 —@rk2(t-1)
* 1 + e(27tk)? ff )(T)f(&,7,0)e 17 sin2nkédédr.
0 0

Applying the Cauchy inequality, the Holder inequality, the Bessel inequality, the Lipschitz condition
and taking maximum of both sides of the last inequality, we obtain:

(o8]

4) max|up)(] < 4;|¢2k|+3%nb(x,t)nmHu“”(t)ll.;l OO oy

+ L\/E “7’(0)(t)||c[0,T] !

Applying the same estimations to u{}) (), we deduce

2kl

00

1 Q)
) 152%% ,(0)

< 4) Jpua] +41T1Y |pxf
k=1 k=1

+(L+2ﬂ2‘/7

32 3\2

) 16Ce, DL, o) ””(O)(t)HB1 “r(O)(t)”C[O,T]

i 212 \T
+(3_\/§ 342 )” 00 HC[o,T]M'
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Finally, we have the following inequality:

P,

2max Juy (0] + 4 Z (max o] + maxu )

IA
=

22 NT
o LY ) Ny )

22T
T S 5 Ol

where H(p” =2 |(p0| +4 i [(1 +1T)) |q02k( + |(p2k_1|]. Hence u)(t) € B;. In the same way, for a general value
k=1

of N, we provide

(I

2522)} |uf)N)(t)) +4 Z (max |u(N)(t)( + max |u2k 1(i‘)‘)

0<t<T

IN

[

n 2m2NT _ _
(29 2 Z s o 0, 0

21 VT \ 1 e
[ g S I e

Since u™~V(t) € By and from the conditions of the theorem, we have u™(t) € By,

{M(t)} = {uO(t)/ qu(t)/ u2k—l(t)/ k= 1/ 2/ } € Bl‘

”r(l)(t)HcIo,T]

|(”+4¢hmwmmmWNWMIMWM

C[0,T]
+43n ||r(0)(t)HC[0,T] .

In the same way, for a general value of N, we have

IOl oy

E'(t)
< EOL bt i [0l 1Ol

+4V3n ||r(N‘1)(t)“

clo,T]"

Now, we prove that the iterations u™*D(#) and r™N*1(#) converge in B; and C[0, T], respectively, as
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N — oo.
M(l)(t) _ M(O)(t)

= 2(uy () - uy (1)) +4Z(u (B) = ug () + () (8) = u)  (B)]

t 1
= 2[ Of Of 1O (1) [f(é, 7, u®&, 1)) - f(cf,T,O)] cfdédr]

t 1
+2 f f rO1)f(&,7,0)8dEdT

1
—(27tk) Z(f T)

Z 1+ e(27zk)2 ffr(O)(T & 7 uE 1) - fE T 0)]3 weenk? gin 2mtkEdEdT

0

b 1 —@rk2(t-1)
S — ©) L@k kEEA

1
~(2nk)2

4 Z 1 +e(2nk)2 ffr(o)(T &7 u"E ) - fE 0)]6 e € cos 2nkEdEdT

0

b 1 = 2711()2 t-1)
—_— (O) T+e(2m
+4; T+ e @) ffr (t)f(&,T,0)e 2 & cos2mkEdEdt

(i et
—4;(1+8(2nk)2) f f (t = 0@ [£(& 710 1) - f& 7,07 sin2nkedéd

(2rik)? ) s
42‘(1+é(2nk)2) ff(t_T)r(o (1) f(&, T, 0)e +e? sin 2mk&dEdT

Applying Cauchy inequality, Holder inequality, Lipschitzs condition and Bessel inequality to the last
equation, we obtain:

V) = )],

2m2 T
< (2\/_+#+ n\/_ )||l7(x/f)||Lz(D)””(O)(f)“B1 ””(0)(t)||C[0,T]

S SRR [T

A = (29T e s 0 [ Ol O

2n 40
R R | L Y
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Applying the same estimations, we get

2t = u® e,

2
< (23T o D00y Dl o =
22T
+ (z VT + ﬁ + 731—«/\5/_) IFOt) = 0| .1 M-
”r(l) - r(O)“C[O,T]
43
MHT235Hﬂwwqmwwnmmmmw“—¢W&-
[OOREIGI
2 NT 43
< «ZVf+33§+ ZVE)(1+Aﬂl—4V®»HN“mkmn”“L”WﬂﬁA
where
B=(2VT+ = 2"2VT)(1 4V3 )
(quV?F3ﬁ +Ma—m®
By making use of the same estimations,
”r(Z) - r(l)“qo,T]
43
it =15 Ol 146 4 =

[#O®) - uP), < A B

V2

Ol m 2 Ollge 106 DI

For N :
443
”r(NH) - r(N)“C[O,T] = m Hr(N+1)(t)”C[0,T] 16, Dz, ) ”u(NH) B u(N)”Bl :
A
[0 - a0y, < = P Oleon POl - Ol 10

BN [1b(x, )1, -

By the Weierstrass M test, we deduce the last series is uniformly convergent to an element of B;. It is
easy to see that if uN*V) — 4™ N — oo, then rN*D — ™) N — co.

Therefore u™*D(t) and rN*D(t) converge in B; and C[0, T], respectively.

Now, let us show that there exists u and r such that

lim uN () = (), lim Nty = (1),
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Applying the Cauchy inequality, the Holder Inequality, the Lipschitzs condition and the Bessel inequality
to |u — u™N*D| and |r — rN)|

I~ r(NH)”qo,T] ()
4V3
M(1 - 4+/3)
43
M(1 - 4v3)

IrE)llcgory 16GE, oy [l = ™2

||7’(f)||c[0 ] [1b(x, t)”Lz(D) ||u(N+1) u(N)”

e = u® I < Blr®llegom oG, Oy [Ju = ™|

I E)llegory 106, Dy oy [[# ™+ = u®|[

Applying the Gronwall inequality to the last inequality, using inequality (9) and taking maximum of
both sides, we have

ey = ™02 (12)

2 BZ +
(N 1)

x{Ibe, DRSS Irleorm [ Ol 172 Ollegozs ~ I Ollcormy)

x exp 2B [[b(x, B)IIF ) Ir(D)llego1y -

Then N — oo we obtain u®™+D — 3, yWN+D 5 4,

For the uniqueness, we assume that problem (1)-(4) has two solution pairs (r, 1), (g,v) . Applying the
Cauchy inequality, the Holder Inequality, the Lipshitzs condition and the Bessel inequality to |u(t) — v(t)]
and |r(t) - , we obtain:

llua(t) — v(t)llsl
2
< (2 \/_ T+ —— + \/_) ||7’(t)||c[o;r] lIb(x, t)HLZ(D) || — 0”31

3\/' 3V2
272
+2VT + — ) t Hl| M, 13
( +N s [ - q(t)|| (13)
) - qt)|| < 14‘/; 7 P )llco.zy 1GE, Dl it = olls,

applying the Gronwall inequality to the last inequality, we have
u(t) = v(t). Hence r(t) = q(t). O

The theorem is proved.

3. Continuous Dependence of (4, #) upon the data

Theorem 3.1. Under assumption (A1)-(A3) the solution (r,u) of the problem (1)-(4) depends continuously upon the
data ¢, E.
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Proof. Let® = {p, E, f}and D= {@, E, f } be two sets of the data, which satisfy the assumptions (A1) —(A3) .
Suppose that there exist positive constants M;, i = 1,2 such that

lEllcijo,ry < Ma,

< M.

E“cl[o,T] < M, ”(P||c3[0,1] < My, ¢||c3[0,1] =

Let us denote [|P|| = (||E|lc1jo,r7 + ||(P“c3[o ut ”chw(B))' Let (r, ) and (7, u) be solutions of inverse problems

(1)-(4) corresponding to the data @ = {p, E, f} and ® = {@, E, f} respectively. According to (5), we can
write

u—1u
—@mk)2t

= 2(po— o) +4 ) sin2mkE (o — Pax) €T

k=1

—@nk)%t

+4 Z cos 2k& ((PZk—l - m) o 1+enk?

t 1
+2 (@) [f(& T uE, ) = f(E 7, uE, )] dédTJ
I

t 1
2 f f (r(r)—?(T))f(é,r,ﬂ(é,f))dédr]

—(2mk; 2([ T)

i Z 1+e(2nk)2f f (0 L€, 7 u(E, 1) = fE T TE V)] e 07 sin2mke dedy

+ Z 1+e(2nk)2f f (1) = FO) [F(E, 7 u(E, 1) = £, 7 TE, )] e o7 sin 2mkededn

[oe]
—anzt T)

+4Z 1+é(2nk)2 f f r(7) [F(E Tt u(&, 1)) — F(E, 7, U(E, 7))] e e & cos 2mkE dédt
+4; m f f (r(1) = 7(0)) [f(&, T, u(&, 1) — f(E, T, u(E, T))]e_iffi(k’)f £ cos 2mkE dédt

) 2 ~@nk2 (-t
—4; Qs i?zkr)ck)z) ff( — (1) [f(&, T, u&, 1) — f(&, 1, u 1))]e 1“(2"(’@ sin 2mtk&dEdt

42 1 (1 +(Z;k;<)2 f f (t— 1) (r(v) = () [f(E, T u(E, 1) - £ 71U T)]e T sin2nksdede

Therefore, we have

||u(t)—ﬁ(t)HBl < My|lo-9| (14)

+M3

t 7
f f POPE, ) u(e) - 70| ded
0 0
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) = 9Ol oy < Ms[[@ -]
+Ms lIrOllcgoy || = ][,

applying Gronwall’s inequality to (14), we obtain:

[ -m;, < 2020 -3
t
xexp 2M§ [f frz(’c)bz(é, T)chdT] .
0 0
For ® — ® then u — 7. Hence r » 7. [J

4. Numerical Procedure for the nonlinear problem (1)-(4)

We construct an iteration algorithm for the linearization of the problem (1)-(4):

&g(:) - 8;22;“) +rOf et u"™D), (o heD (15)
u™©,t) = u"@,t, tel0,T] (16)
(1,5 = 0, tel0,T] (17)
u(")(x,O) = @), x €[0,1]. (18)

Let u™(x, ) = v(x,t) and f(x,t,u D) = f(x,t). Then the problem (15)-(18) can be written as a linear
problem:

dv @

5 = oatrOfh (xhHeD (19)
v(0,t) = o(l,t), tel0,T], (20)
un(l,t) = 0, tel0,T], (21)
u(x,0) = @), xe[0,1] . (22)

In [1], the problems are linear. In this problem in order to use the similar methods in these papers, firstly
we use the method of the linearization, then we use the finite difference method to solve (19)-(22) with a
predictor-corrector type approach.

We subdivide the intervals [0,1] and [0, T] into N, and N; subintervals of equal lengths i = ﬁr and

T= Nl,’ respectively. We choose the Crank-Nicolson scheme, which is absolutely stable and has a second
order accuracy in both & and 7. The Crank-Nicolson scheme for (19)-(22) is as follows:
Lo —a) = s [l ~20/ o)
ol 20/ 4017
+411 (rf + rf”) (}?” + f?) , (23)
o) = ¢, (24)
vé = v{\]x, (25)
Ot = O 26)
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where 1 <i < Ny and 0 < j < N; are the indices for the spatial and time steps respectively, vf = v(x;, tj),

Qi = p(x;), fl./ = f(xi,tj), xi = ih, t; = jT. Atthe t = 0 level, adjustment should be made according to the initial
condition and the compatibility requirements.

Now, let us construct the predicting-correcting mechanism. First, integrating the equation (1) respect to
x from 0 to 1 and using (3) and (4), we obtain

E'(H) + 0:(0,t)
fo F(x, Bdx

The finite difference approximation of (27) is

_((Ej+1 E])/T) (N+1 'x)/h
(fin)i '

r(t) = (27)

where El = E(t), (fin)) = [ f(x,t)dx, j=0,1,...,Ny.
Forj=0

o (B =E) 1)+ (ono = o) /i

r = — ,

(fin)°

and the values of ¢; provide us to start our computation. We denote the values of p/, v{ at the s-th iteration
step ri®, o/
PO = 4 vfﬂ(o) = Ul]., j=0,1,2,..N;,i=1,2,..,N, Ateach (s + 1)-th iteration step we first determine

rit16+) from the formula

- ((EJ'+2 _ Ej+1) /1:) 4 (vj+1(s) _ vj+1(s)) I

, respectively. In numerical computation, since the time step is very small, we can take

e ICE N4l — "Ny
(fin)j+1
Then from (23)-(26) we obtain
1/ i) e 1/ jeie+n) ]+1(s+1) j1(s+1)
o (vi Y ) Y [(U ~ 27; + 0 )
Jj+1(s) J+1(s) Jj+1(s)
+ (07 = 20/ 4 011
1
2 (L j+1(s+1) j+1(s) J+1 ]
4(r +r )(f +f) (28)
16 — j+16)
Y% ON,+1 7 (29)
](b) j(s)
ON,-1 = ONt17 (30)
The system of equations (28)-(30) can be solved by the Gauss elimination method and vlj 16 s determined.

If the difference of values between two iterations reaches the prescribed tolerance, the iteration is stopped

and we accept the corresponding values r/*16+D), v]+1(s+])(1 1,2,..,N,) as ri*1, Z].Jr (i=1,2,..,N,), on the
(j + 1)-th time step, respectively. In virtue of this iteration, we can move from level j to level ] + 1.
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5. Numerical Example

Example 5.1. If we consider inverse problem (1)-(4), with

(1 + 4 cos2x — 4sin? x + 4¢? cos 2x — 4 sin’ x)u exp(-t),

flx, t,u)
P(x)

2
exp(cos 2x), E(t) = % exp(et), x€[0,m], t€[0,T],

then it is easy to check the analytical solution of the problem as following:
{r(t), u(x,t)} = {exp (), exp (et + cos(2x))}.

Let us apply the scheme which was explained in the previous section to the step sizes h = 0.0393, T = 0.01.
In the case when T = 1, the comparisons between the analytical solution and the numerical finite difference
solution are shown in Figures 1 and 2 when & = 0.1.

28

26 /7

24 2

0 o0t 02 03 04 05 06 07 08 09 1
t

Figure 1: Exact and approximate r(t) when T=1.

x10*

X

Figure 2: Exact and approximate solutions of u(x,t) at the T=1
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It is clear from these results that, this method has been shown to produce stable and reasonably accurate
results for these example.
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