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Abstract. In this manuscript, the authors introduce the concept of the semi P-geometric—arithmetically
functions (semi P-GA functions) and give their some algebraic properties. Then, they get Hermite-
Hadamard’s integral inequalities for semi P-GA-functions (geometric-arithmetically convex). In addition,
the authors obtain new inequalities by using Holder and Holder-fgcan integral inequalities with the help
of an identity. Then, the aouthors compare the results obtained with both Holder, Holder-Iscan integral in-
equalities and prove that the Holder-Iscan integral inequality gives a better approximation than the Holder
integral inequality. Also, some applications to special means of real numbers are also given.

1. Preliminaries and fundamentals

Let real function f be defined on some nonempty interval I of real line R. The function f is said to be
convex on I if the following inequality

flx+A-ty) <tf+A-t)f(y)

is valid for all x,y € [ and ¢ € [0,1]. If this inequality reverses, then f is said to be concave on interval
I # (. Convexity theory in connection with integral inequalities is an interesting and important field of
research. Many inequalities are direct consequences of the applications of convex functions. Mathematical
inequalities and convexity theory play a key role in understanding a range of problems in various fields of
mathematics and the other branches of sciences such as economics and engineering.

One of the most famous inequality for convex functions is so called Hermite-Hadamard's inequality as
follows:

Theorem 1.1 (Hermite-Hadamard integral inequality). Let f : I € R — IR be a convex function defined on the
interval I of real numbers and a,b € I with a < b. The following double integral inequality holds:

b b
f(”;b)sﬁfa f(x)dxsf—(u);f( ) (1)
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for all a,b € I with a < b. Both inequalities hold in the reversed direction if the function f is concave.
This double integral inequality is well known as the Hermite-Hadamard integral inequality [5]. Some
refinements of the Hermite-Hadamard integral inequality for convex functions have been obtained [3, 12].

In [2, 4], Dragomir et al. gave the following definition and related Hermite-Hadamard integral inequal-
ities as follow:

Definition 1.2. A nonnegative function f : I C R — R s said to be P-function if the inequality

fltx+(A=-y) < f)+f(y)

holds for all x,y € I and t € (0,1).

Theorem 1.3. Let f be a P-function on interval I (or f € P(I)), a,b € lwitha < band f € L[a,b]. Then

a+b 2 b
(550) < 5% [ roa<2r@e o, @
2 b-a/J,
Definition 1.4 ([11]). A function f : 1 C (0, 00) — R is said to be GA-convex (geometric-arithmetically convex) if

FAY) St @+ Q-0 f(y)

forall x,y € Iand t € [0,1], where x'y'~" and tf (x) + (1 —t) f (y) are respectively called the weighted geometric
mean of two positive numbers x and y and the weighted arithmetic mean of f (x) and f (y).

Definition 1.5 ([8]). A function f : I C (0, 00) — R is said to be P-GA-function (P-geometric-arithmetic function)
onlif

Fy) < F0+ £ )
foranyx,y € landt € [0,1].

Theorem 1.6 (Holder-Iscan integral inequality [9]). Let p > 1 and ; + 4 =1L If f and g are real functions
defined on interval [a,b] and if | f||

gr’ are integrable functions on [a, b] then

7

b b b b i
[l < 23 [@-nlsof a ([ @-nlocof a)

b 5/ b :
+( [ - |f<x>|’”dx) ( [ &= |g<x)|"dx) ©

This article is organized as follows. In chapter 2, we introduce a new concept, which is called semi
P-GA function, and we give by setting some algebraic properties of semi P-GA function. In chapter 3, we
obtain the Hermite-Hadamard integral inequality for the semi P-GA function. In chapter 4, by using an
identity, we obtain some refinements of the Hermite-Hadamard integral inequality for functions whose first
derivative in absolute value, raised to a certain power which is greater than one, respectively at least one,
is semi P-GA functions. Then, we compare the results obtained with both Holder, Holder-Iscan integral
inequalities and we prove that the Holder-Iscan integral inequality gives a better approximation than the
Holder integral inequality. In chapter 5, we give some applications to special means of real numbers.
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2. The definition of semi P-geometric-arithmetically function

In recent years, many function classes such as P-function, geometric convex, geometric P-function,
quasi-geometric convex, GA-s-convex function in the first sense, GA-s-convex function in the second sense,
geometric trigonometrically convex, GG-convex, GH-convex, geometric P-function, etc. have been studied
by many authors, and integral inequalities belonging to these function classes have been studied in the
literature (see [1, 4, 6-8, 10, 11]). There are many articles and books on this subject.

In this section, a new function class, semi-P-GA function definition will be given, and the relations of
this function class with the above-mentioned function classes will also be given.

Definition 2.1. A nonnegative function f : I C (0, 00) — R is called semi P-GA function if for every x,y € I and
te[0,1],

FY) < e+ A=) [F @) + £ ()] 4)

We will denote by SPGA (I) the class of all semi P-GA functions on interval I.
We note that if the function f : I C (0, o) — R is semi P-GA then

FO) = f('x'™) < (b + (1= DO [f () + £ ()] = 2xf ()

forall x € I,i.e. 2x—1)f(x) > 0 for all x € I. In this case, we can say that either “x > 1/2 and f(x) > 0” or
”x £1/2 and f(x) < 0”. Therefore, it must be x > 1/2.

Example 2.2. The function f : [1/2,00) = R, f(x) = x is a semi P-GA function.

Example 2.3. The function f : [1,00) = R, f(x) = x",r € R, is a semi P-GA function.

Example 2.4. The function f : [1,00) = R, f(x) = Inx is a semi P-GA function.

Example 2.5. For every c € R(c > 0), the function f : [%, oo) CR = R, f(x) = cisasemi P-GA function.

Remark 2.6. If f : [1, 00) — [0, o0) isa GA-function, then f is also semi P-GA function. Since, t < ta+(1-t)b, 1-t <
ta + (1 — t)b for every a,b € [1,00) and t € [0, 1], we can write

F(a'D' ) < tf(@) + (1= D) < (ta + (1 DY) [f@) + F)].

Remark 2.7. If f : [1,00) — [0, o) is a P-GA function, then f is also a semi P-GA function. Since, 1 < ta+ (1 —1t)b
for every a,b € [1,00) and t € [0,1], we can write

F(@B) < fl@)+ fb) < (ta+ (1= D) (@) + (ta + (1 - Hb) f(b) < (ta + (1 - D) [f(@) + F)].

Remark 2.8. If f : [1,00) — [0, o) is a quasi geometrically convex function, then f is also a semi P-GA function.
Since,

fl@) < (ta+ (1 -1)b) f(a), f(b)<(ta+(1-1)Db)f(b)
fora,be[l,oc0)andt e[0,1], we can write
f(atbl_t) < max{f(a), f(b)} < max{(ta + (1 - t)b) f(a), (ta + (1 — £)b) f(b)} < (ta + (1 — t)b) [f(a) + F(b)].

Remark 2.9. Let f : [1,00) — [0, 00) be a nonnegative and s € (0,1]. If f is a GA s-convex function in the first
sense, then f is also a semi P-GA function. Since, * <1 <ta+ (1 —-t)band 1 -t° <1 < ta + (1 — t)b for every
a,b e[l,00)andt €[0,1], we can write

F(@B') < Ff@)+ = F)fB) < (ta+ (1 - D) f@) + (ta+ (1 - D) f(b) = (ta + (1 - Hb) [f(@) + F(B)].
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Remark 2.10. Lef f : [1, 00) — [0, 00) be a nonnegative and s € (0,1]. If f is a GA s-convex function in the second
sense, then f is also a semi P-GA function. Since, t* <1 <ta+ (1 —t)band (1 —-1t)° <1 < ta + (1 — )b for every
a,be[l,00)andt €[0,1], we can write

F(@B) < Ef@)+ A= F) < (ta+ (1= 1) f@) + (ta+ (1= Hb) f(b) = (ta + (1~ OB [f(a) + f(B)].

Remark 2.11. If f : [1,00) — [0, o0) is a geometric trigonometrically convex function, then f is also a semi P-GA

function. Since, sin % <1, cos & <1and 1< ta+ (1 - t)b for every a, b € [1, 00) and t € [0,1], we can write

f(atbl’t) < sin %tf(a) + cos %tf(b) < f(a) + f(b)

IA

(ta + (1 = 1)b) f(a) + (ta + (1 — 1)b) f(b)
(ta + (1= 1)b) [f(a) + f(B)].

Remark 2.12. If f : [1,00) — (0,0) is a GG convex function, then f is also a semi P-GA function. Since,
t<ta+(1-t)b, 1-t<ta+ (1 —-t)bfora,be[l, o0)andte[0,1], we can write

F(@0) < @] [FOT < @) + (1= D) < (ta+ (1 - Hb) [f(@) + FO)].

Remark 2.13. If f : [1,00) — (0, 00) is a geometric harmonic (GH) convex function, then f is also a semi P-GA
function. Since,t <ta+ (1 —1t)b, 1 -t <ta+ (1 —t)bfora,be(l,o0)andt e [0,1], we can write

. f@)f(b)
flav) <5 B0 nf@ S @+ A-Df0) < (a+ -0 [1@) + O]

Proposition 2.14. Let f : I C [1,00) — R. If the function f is a P-function and nondecreasing, then f is a semi
P-GA-function on interval L.

Proof. This follows from

f(ath) < f(ta+ (1 —-1)b) < f(a)+ f(b) < (ta+ (1 - 1) [f(a) + f(b)]
foralla,belandt€[0,1]. O

Proposition 2.15. Let f : I C [1,00) — R. If the function f is a P-GA function and nonincreasing, then f is a semi
P-GA function on interval I.

Proof. The conclusion follows from

flta+1=0b) < f(a'b"™) < f(@) + () < (ta+ (1= Ob) [f(@) + f(D)]
foralla, b elandt € [0,1], respectively. O

Proposition 2.16. If the function f : I C [e, 00) — R is P-GA function on interval I then f oexp : InI — Ris semi
P- function on the interval InI = {Inx : x € I}.

Proof. Let f : I C [e,00) = R is a P-GA function. Then, we write

(foexp)(tlna+ (1—-t)Inb) f(atbl_t)

f(@) + f(b) = (f o exp) (Ina) + (f o exp) (Inb)
(tlna+ (1 -1 Ind) (f oexp)(Ina) + (f o exp) (Inb).

IA A

Hence, the function f o exp is a semi P- function on the interval Inl. [J

Theorem 2.17. Let f,g:1 C R — R. If the functions f and g are semi P-GA functions, then
(i) f + g is a semi P-GA function,
(ii) For c € R (¢ > 0) cf is a semi P-GA function.
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Proof. (i) Let f, g be semi P-GA functions, then

(f+ g) (atbl—t) — f(atbl_t) + g(atbl—t)

(ta+ (1 = 1)) [f(a) + f(b)] + (ta + (1 — 1)) [g(a) + g(b)]
(ta+ (1 -1b) [f(@) + g@] + (ta + (1 — H)b) [f(b) + g(b)]
(ta+ (1 -1b)(f +9) @)+ (ta+ (1 - 1) (f +g) (b),

foreverya,belandt€[0,1].
(ii) Let f be semi P-GA function and ¢ € R (c > 0), then

(cf) (a'b"") c(ta+ (1 -1b) [f(a) + f()]

(ta+ (1 - 1b) [cf(a) + cf(D)]

(ta + (1= 0b) [(cf) (@) + (cf) (B)],
foreverya,belandte[0,1]. O

I IA

IA

Theorem 2.18. Let f, : I C (0,00) — R be an arbitrary family of semi P-GA functions and let f(x) = sup,, fa(x).
IfT ={uel: f(u) < oo} is nonempty, then | is an interval and the function f is a semi P-GA function on interval].

Proof. Lett €[0,1] and a,b € | be arbitrary. Then
f(atbl_t) = supfa (a’bl_’)
< Szp [(ta + (1 = 1)b) fala) + (ta + (1 = 1)D) fa()]
< (tl:l + (1 -1)b) Sl;p fa(@) + (fa + (1 - )b) sgp fa(b)

= (ta+(1—1)Db) f(a) + (ta+ (1 - B)b) f(b)
= (ta+(1-1Db)[f(a) + f(b)] < oo.

This shows simultaneously that | is an interval, since it contains every point between any two of its points,
and that f is a semi P-GA function on J. This completes the proof of theorem. [

3. Hermite-Hadamard integral inequality for semi P-GA functions

The goal of this paper is to establish some inequalities of Hermite-Hadamard type integral inequality for
semi P-GA functions. In this section, we will denote by L [a, D] the space of (Lebesgue) integrable functions
on interval [a, b] .

Theorem 3.1. Let f : I C [1/2,00) — R be a semi P-GA function. If a < band f € Lla,b], then the following
Hermite-Hadamard type integral inequalities hold:

1 b ab " f(u)
f(Vab) < 1nb—1nafaf(”)d”+1nb—1na . 2

A(a, b)L(a, b)2[f () + f (b)].
b—a

Ala,b) = ‘%b is arithmetic mean and L(a, b) = == is logarithmic mean.

du, )

IA

Proof. Since f is a semi P-GA function on interval [a, D], we have for all x, y € [a, b] (with t = % in inequality

4)

X+y

F(VFY) s = F @ + F )]




M. Kadakal et al. / Filomat 37:21 (2023), 7017-7028 7022

By choosing x = a'b'™ and y = a' !, we have
() £ S [ ) )

Integrating the resultmg inequality with respect to t over [0, 1], we obtain

f(Vab) 1[ f 1afzal-f]f(mal-f)cit+ fo 1atb1‘tf(a1‘tbt)dt + fo 1al—fbff(afbl-f)dt+ fo 1a1—fbff(a1—fbf)dt]

2 [Jo

_r ab (7 fw b (S
= E[lnb—lnaj;f(u)du+lnb—lnaf 5 +lnb—lnafa o lnb ff(u)du]

_ 1 ! ab ? fu)
B lnb—lnafa‘ f(u)dqulnb—lna u? a,

and the first inequality is proved. For the proof of the second inequality in (5) we first note that if the
function f is a semi P-GA-function, then, for t € [0, 1], it yields

F(@') < (ta+Q-DB)[f@+fO),
F@) < (#t+ =D [f@+f D).

By adding side to side these inequalities and multiplying by a’b'~f, we have
b f (a'b' ) +a'b ' f (a'B) < a'b (@ + D) [f (@) + £ (D],

and, integrating the resulting inequality with respect to t over [0, 1], we obtain

! t,1-t t1-t fl t11-t 1-ty,t
foab f(a'b*")dt + Oab f(a"'0")

1 b b
1nb—lnaf fldu + lnbu—lna fuz @+b)[f @+ f ()] lnb —

This completes the proof of theorem. [

IA

IA

IA

IN

1
@+ 5)[f @+ f (O] f atbitdt

IN

4. Some new integral inequalities for the semi P-GA functions

The main purpose of this section is to establish new estimates that refine Hermite-Hadamard inte-
gral inequality for functions whose first derivative in absolute value, raised to a certain power which is
greater than one, respectively at least one, is semi P-GA function. In [13], Zhang et al. established some
Hermite-Hadamard type inequalities for geometric aritmetically (GA) convex functions and applied these
inequalities to construct several inequalities for special means and they used the following lemma to prove
their results. We will use the following Lemma:

Lemma 4.1 ([13]). Let f : I € R, = (0, 00) — R be differentiable mapping on I°,a,b € I° witha < b. If f’ € L[a, b],
then

b 1
bf(b) —af(a) —f f(x)dx = (Inb - 1na)fo B 200 (btal‘f) it

Theorem 4.2. Let f : [ C [1/2,00) — R be a differentiable function on I°, a,b € I° with a < b and assume that

< (0-aL @ bA(|f

)[L (%, b%) 22 — L(a, b)) + P°L(a, b)] (6)

b
‘bf(b) ~af(@) - f @

A(a,b) = ’”b is arithmetic mean and L(a, b) = % is logarithmic mean.
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Proof. Using Lemma 4.1 and the inequality

i (al—fbf)' <+ (-t

f@)|+|f )

I

we get

b
‘bf(b) ~af(a) - f @

IA

1
(Inb — Ina) f b0 | (vfal )
0

IA

(Inb — Ina) f 20 (b + - [|F@|+|F O] dt
0

IA

1
(lnb—lna)[ f(@)] + f’(b)” fo V200 (th + (1 = Ha) dt

1 1
f’(b)” [(b _ a)f thtQZ(l_t)dt + af bZtQZ(l—t)dt]
0 0

b2(21nb—21r1a—1)+a2+a b? — a2 ]
4(Inb — Ina)? 2(Inb—Ina)

= (Inb-Ina)|

f@]+

= (lnb—lna)[

f@|+|f o) |<b )

w] [L(, 1) 20 - La ) + 1L, )]

= (lnb—lna)[

= (b-a)L7'a,b)A(

F@||f®))[L (@ b?) @a-La,b) + b*Lia, b)),

7

where

7

1
_ P> Q2Inb-2Ina—-1)+a>
f t2a20-0gt = -
0 4(Inb —1na)

0 2(Inb —1na)’

This completes the proof of theorem. [

Theorem 4.3. Let f : I C [1/2,00) — R be a differentiable function onI°, a,b € I° witha < b, g > 1, % + % =1land
assume that f’ € L[a,b]. If |f’ i

is a semi P-GA function on interval [a, b], then the following inequality holds

<21 (b-a) L7 (@, b)AT @, )AT (| @', |F ©))LF (a2, 67) )

f'@)

b
‘bf(b) —af(@) - f F@x

Proof. Using Lemma 4.1, Holder’s integral inequality and the following inequality

Ik (al‘tbt)'q <(th+1-t0||f@| +

F )]
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’ q, we have

which is the semi P-GA function of the function

b
‘bf(b) ~af@ - [ fex
= (Inb-1na) f1 ’(btal_t)ldt
0
(Inb —Ina) (fl (bZtaz(l—t)rﬂ dt)p( ! ,(bta1—t)‘th)"
0 0
1 5ol i
_ 2pt 2p(1—t) q
(Inb 1na)(f0 bt dt) (fo (th + (1 ]dt)
s st i
119 2pt _2p(1-t) _
] (fo e dt) (f th + (1 t)a)dt)

o) (52
i ),

where fol bt (=Dt = [, (azf’, pr) , fol (tb + (1 — t)a) dt = A(a, b). This completes the proof of theorem. [J

IN

IA

= (Inb-

- 2; (b_a)(M) (

21 (b—a) L™ (a, b)A7 (a, D)A i (&

Theorem 4.4. Let f : I € [1/2,00) — R be a differentiable function on I°, a,b € I° witha < b, q > 1 and assume
that " € L[a, b].

b
‘bf(b) ~af(@) - f @

1
q

< (G-l @bl (a2 1?) AT (|f

Af ') [L(a% 1) 20 - L(a, b)) + bL(a, )] . 8)

Proof. Assume first that g > 1. From Lemma 4.1, Holder integral inequality and the property of the semi

P-GA function of the function ||, we get

b
bF(b) - af(a) - f f@x

< (Inb-1Ina) (fol b2ta2<1—t>dt)1_‘l’ (fol ) ‘th)é

< (Inb-Ina) ( j(; 1 bZtHZ(l—t)dt)l_é ( fo ! D0 (4 (1 | dt);

) anb_l“”’(%)w( r@+ 1ol [(b—a)b2 (21“’(71n bzinl:ma z(li - alna)])i
e e T

= (G-l @bl (a2 1) AT (| L (e %) 2a - L(a, b)) + L@, b)]",

where fol ba?1-0dt = L (az, bz). For g = 1 we use the estimates from the proof of Theorem 4.2, which
also follow step by step the above estimates. This completes the proof of theorem. [
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Corollary 4.5. Under the assumption of Theorem 4.4 with q = 1, we get the conclusion of Theorem 4.2.

< (b-a)LY(a,bA (

'®)[L (e 1) 22 - L(a, b)) + *L(a, b)]

b
‘bf(b) ~af(@) - f F@x

Now, we will prove the Theorem 4.3 by using Holder-Iscan integral inequality. Then we will show that
the result we have obtained in this theorem gives a better approach than that obtained in the Theorem 4.3.

Theorem 4.6. Let f : I C [1/2,00) — R be a differentiable function onI°, a,b € I° witha < b, g > 1, % + % =1land

assume that f’ € L[a,b].
1V (b-a
(5 (ies) 20

s (b+2a\ 2b+a
% 12 2 2 % 12
et ) - (2] o - (252 )
Proof. Using Lemma 4.1, Holder-Iscan integral inequality and the following inequality
i

q .
"I, we obtain

[a, b], then the following inequality holds

‘bf(b) —af(@) - f F(d| <

Lol 9)

’(btal‘t)r <(th+(1

b
|bf<b> ~af(@) - f )

1
(Inb —Ina) ( f (l—t)bzwazf’(l‘f)dt) ( f 1-
0
1
+(nb—-1na) ( f tbzwa2”(1‘t)dt) (
0
1 ,,
(Inb —Ina) ( f (1—t)b2pfazp<“>dt) (
0
+(Inb—1na) ( f th?Pta?r (- f>dt) (
0

IA

bt 1- t)‘ dt);

1
btlt‘ dt)q

IA

1 i
+|f@)'] j; (1—t)(tb+(1—t)a)dt)

1 '
‘@|"+|fF o] f t(tb+(1—t)a)dt)

L(gzplbzp)_azp v , -
= (lnb—lna)[mJ ([ '(b) ‘q] )
P - L (e, 1)) 2b+a
+(lnb—lna)[M] ( ] )

1V (b-a)i _— | Co

- () (g Irlene) ey 4t q,f(b))q)( )

(3 (b5 1o ety o

(l):’(f(a_b)) ( { (a,0%) - Zp];(b‘gza)

2b+a)

=

[ ()]} (”%)}



M. Kadakal et al. / Filomat 37:21 (2023), 7017-7028 7026

where

1 L (a2p, pr) — g 1 b2 — L (a2p, b2n)
f A -y a0 0gt = ————— f P a1 dt = ————
0 2p(Inp —1Ina) " J, 2p(Inp —Ina)

2b+a

1
b+2a f t(th + (1 — Ha)dt = .
0

1
f (1= 1) (th + (1 - ba) dt
0 6

This completes the proof of theorem. [

Remark 4.7. The inequality (9) gives better results than the inequality (7). Let us show that
1 % b_a % Ll ’ q 2 2 > 1 b+2a% 2 ) ) 1 2b+g%
(5) (L(u,lﬂ) Al ro ){[L(a R Rt el B et Gt | i e

< 210-o L7 @A @bA ([F @l |[F o)L (@, 5)

Using the well known classic inequality x*Py!7 + zUrw!/1 < (x + 2)VP(y + w)'/9, x,y,z,w € (0,00), by sample
calculation we get

1 ’ b—a i 1
(5) (L(a,w) A

1V (b-a)l 1 ,
(3) (s) « 0o
21 (b—a) L™\ (a, b)A (a, ))A" (

q

f'(@)

7

4

q

@,

ron e )= (S52) ol (25}

O [ -] @+ )

7

q
7

o)L (@07

f'@)

which is the required.

5. Applications for special means

Throughout this section, for shortness, the following notations will be used for special means of two
nonnegative numbers a, b with b > a:
1. The arithmetic mean

A::A(a,b):a;b, a,b>0,

2. The geometric mean
G:=G(a,b) = Vab, a,b>0

3. The harmonic mean
2ab

H:=H(,b) = —

(@b) a+b’

4. The logarithmic mean

a,b>0,

b—a
L::L(a,b):{ mita 0 >0

5. The p-logarithmic mean

1
prHl_gr+l \p
L, = Ly(a,b) = { (feim) - a#bpe le\{—1,0} ; a,b>0.
a, a=
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6.The identric mean

bb

=
[:=1(a,b) = %(a") , a,b>0,

These means are often used in numerical approximation and in other areas. However, the following
simple relationships are known in the literature:
H<G<L<LI<LA.
It is also known that L, is monotonically increasing over p € R, denoting Ly =Iand L_; = L.
Proposition 5.1. Leta, b € [1,00) witha < band n € R\ {-1,0,1,2}. Then, the following inequalities are obtained:
@@msumﬂq@m+qj@w§@kamem¢mwmw
Proof. The assertion follows from the inequalities (5) for the function
flx)=x", x€[1,00).
0
Proposition 5.2. Let a,b € [1/2,00) witha < b . Then, the following inequalities are obtained:
1 < A(a,b)L(a,b) + L(a',b™1)G?(a, b) < 4A(a, b)L(a, b).
Proof. The assertion follows from the inequalities (5) for the function
fx)=1, xe€[1/2,00).
0
Proposition 5.3. Let a,b € [1,00) with a < b. Then, the following inequalities are obtained:
G(a,b) < A(a, b)L(a, b) + G*(a,b) < 4A%(a, b)L(a, b).
Proof. The assertion follows from the inequalities (5) for the function
fx)=x x€[l,00).
0
Proposition 5.4. Let a,b € [1,00) with a < b. Then, the following inequalities are obtained:
G%@sn@mmﬁﬁ+@@MSM@wwwmﬁm.
Proof. The assertion follows from the inequalities (5) for the function
fx) =% x€[l,00).
0

Proposition 5.5. Let a,b € [1,00) with a < b. Then, the following inequalities are obtained:

A(a,b)(b - a)

-1
G (b <1+ Ga.D)

< 4A(a,b)L(a, b)H ' (a, b).

Proof. The assertion follows from the inequalities (5) for the function

flx) = x, xe [1,0).



M. Kadakal et al. / Filomat 37:21 (2023), 7017-7028 7028

References

(1]
[2]
3]

[4

[5

[6

[7]
(8]

[9

[10]

[11]
[12]

[13]

Dragomir, SS., Inequalities of Hermite-Hadamard type for GH-convex functions, Electronic Journal of Mathematical Analysis
and Applications, 7(2) (2019), 244-255.

Dragomir, SS., Hermite-Hadamard type inequalities for MN-convex functions, Aust. . Math. Anal. Appl., 18(1) (2021), Art. 1,
127 pp.

Dragomir, SS. and Pearce, CEM., Selected Topics on Hermite-Hadamard Inequalities and Its Applications, RGMIA Monograph,
2002.

Dragomir, SS., Pecari¢, j. and Persson, LE., Some inequalities of Hadamard Type, Soochow Journal of Mathematics, 21(3) (1995),
335-341.

Hadamard, J., Etude sur les propriétés des fonctions entiéres en particulier d’une fonction considérée par Riemann, J. Math.
Pures Appl., 58 (1893), 171-215.

Iscan, I, New general integral inequalities for quasigeometrically convex functions via fractional integrals, Journal of Inequalities
and Applications, 2013 (2013) article 491.

I§can, _I,, Hermite-Hadamard type inequalities for GA-s-convex functions, Le Matematiche, 69(2) (2014), 129-146.

Iscan, I, Hermite-Hadamard and Simpson Type Inequalities for Differentiable P-GA-Functions, International Journal of Analysis,
2014 (2014).

Iscan, 1., New refinements for integral and sum forms of Holder inequality, Journal of inequalities and applications, 2019(1)
(2019), 1-11.

Kadakal, M., Geometric trigonometrically convexity and better approximations, Numerical Methods for Partial Differential
Equations, 36(6) (2020), 1830-1844.

Niculescu, CP., Convexity according to the geometric mean, Mathematical Inequalities & Applications, 3(2) (2000), 155-167.
Zabandan, G., A new refinement of the Hermite-Hadamard inequality for convex functions, J. Inequal. Pure Appl. Math. 10(2)
(2009), Article ID 45.

Zhang, T.-Y,, Ji, A.-P. and Qi, F,, Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to
means, Le Matematiche, 68(1) (2013), 229-239.



