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Abstract. This article deals with the generalization of the abstract Fourier analysis on the compact Haus-
dorffgroup. In this paper, the generalized Fourier transform F is defined as F

(
ψ
)

(α) =
∫
ψ (h) Mα

(
h−1

)
dµ (h)

for all ψ ∈ L2 (G)
⋂

L1 (G), where Mα is a continuous unitary representation Mα : G → UC
(
Cn(α)

)
of the

group G in Cn(α), and its properties are studied. Also, we define the symplectic Fourier transform and the
generalized Wigner function WA

(
ψ, φ

)
and establish the Moyal equality for the Wigner function.

We show that the homomorphism π : G → U
(
L2 (G/K,H1)

)
induced by Λ : G × (G/K) → U (H1) by(

π
(
ψ
)) (
1, h

)
=

(
Λ

(
h−1, 1

))−1 (
ψ

(
h−11

))
, 1 ∈ G/K, h ∈ G, ψ ∈ L2 (G/K,H1) is a unitary representation of the

group G, assuming the mapping h 7→
(
π

(
ψ
)) (
1, h

)
is continuous as morphism G→ U

(
L2 (G/K,H1)

)
.

We study the unitary representation π̃ : G→ H induced by the unitary representation V : K→ U (H1)
given by π̃1

(
ψ
)

(t) = ψ
(
1−1t

)
for all t ∈ G/K.

1. Introduction

Let G be a compact communicative group equipped with a Haar measure µ and let Ĝ be a Pontrjagin
dual group consisting of the characters of G. A character of the group G is a continuous homomorphism
from G to the first unitary group U (1).

The Fourier transform F of the function ψ ∈ L2 (G)
⋂

L1 (G) is defined by

F
(
ψ
)

(χ) =
∫
ψ

(
1
)
χ
(
1
)

dµ
(
1
)

(1)

for all χ ∈ Ĝ.
The inverse Fourier transform F−1 can be expressed by a similar formula

F−1 (
ψ
)

(χ) =
∫
ψ

(
1
)
χ
(
1
)

dµ
(
1
)

(2)

for all χ ∈ Ĝ.
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Mappings F and F−1 are connected so that F
(
ψ
) (
χ−1

)
= F−1 (

ψ
)

(χ) and

F
(
ψ
) (
χ−1

)
=

∫
ψ

(
1−1

)
χ
(
1
)

dµ
(
1
)
=

=
∫
ψ

(
1−1)χ (

1
)

dµ
(
1
)
.

(3)

Example. Let us consider a special case when the main group G = Rn is an additive group. The
representation of Rn in a Hilbert space H = L2 (Rn) of functionsψon Rn is a shift τgiven by τ

(
y, ψ

)
= ψ

(
· − y

)
.

All mappings τ
(
y
)

: Rn
→ L2 (Rn) constitute a semigroup. Assume τ

(
y
)

is bounded on H = L2 (Rn) then
representation τ is called the regular representation on H = L2 (Rn).

The Fourier transform F
(
ψ
)

of ψ ∈ L2 (Rn)
⋂

L1 (Rn) is defined by

F
(
ψ
)

(λ) = ψ̂ (λ) =
∫

Rn
exp (−iλ · x)ψ

(
1
)

dx (4)

for all λ ∈ Rn. Since the mapping exp (−iλ·) : Rn
→ S1 is continuous with respect to the compact

convergence topology, homomorphism exp (−iλ·) : Rn
→ S1 can be rewritten as factorized as follows

exp (−iλ·) : G = Rn λ·
→R

exp(−iλ·)
→ S1 = U (1). The system

{
exp (−iλ·)

}
constitutes an orthogonal basis in

H = L2 (Rn).
The main part of the paper is devoted to the generalization of the Fourier transform and the Fourier-

Stieltjes calculus, and developing the basic apparatus of a new approach to problems of quantum physics,
so we propose a new type of the Wigner function and establish the Moyal identity for it. The Wigner
function W

(
ψ, φ

)
allows us to define the wavepacket transform Wφ

(
ψ
)

with the window φ by Wφ
(
ψ
)
=

(2π)
n
2 W

(
ψ, φ

)
where the function ψ ∈ S (Rn) is going backward and the window φ ∈ S (Rn) moves forward

at the same speed.
For a function ψ ∈ L2 (Rn

⊕ Rn)
⋂

L1 (Rn
⊕ Rn), the classical symplectic Fourier transform Fσ is given by

Fσ
(
ψ
)

(λ) = Fψ (Jλ) where J is the standard symplectic matrix J =
[

0 I
−I 0

]
and I is an identity matrix.

We propose to generalize the symplectic Fourier transform as a function defined on Ĝσ by an integral
Fσ

(
ψ
)

(χσ) =
∫
ψ (h)χσ (h)d

(
µ ⊗ µ

)
(h) where Ĝσ is a set of all continuous homomorphisms from G ⊕ G

to USp (2), so Ĝσ constitutes a group with the operation of pointwise multiplication and the uniform
convergence topology. For the generalized Wigner function, the analog of Moyal identity can be proved so
for arbitrary φ ∈ L2 (G) the mapping ψ 7→WA

(
ψ, φ

)
is a partial isometry on a closed subspace of L2 (G ⊕ G)

thus the wavepacket transform can be defined by WA
φ

(
ψ
)
= A1WA

(
ψ, φ

)
: L2 (G)→ L2 (G ⊕ G) with the

window φ ∈ L2 (G), this approach facilitates analysis of Bopp calculus.

2. The results of Peter-Weyl theorems

Let G be a compact Hausdorff group equipped with a Haar measure µ.
Definition 1. A complete Hilbert algebra of the square-integrable functions on the group G is denoted by L2 (G).
According to the Peter-Weyl theorem, L2 (G) algebra can be represented as an orthogonal sum ⊕α∈RΛα =

L2 (G) of topologically simple algebrasΛα, whereΛα equals to matrix algebra Mn(α) (C) of (n (α))2-dimension,
where α is a finite-dimensional representation of the compact group G. Each function Λα : G→ Mn(α) (C)
is a continuous function on the compact group G.

Definition 2. The set of all equivalence classes of an irreducible representation of the group G is called Ĝ.
From ϕα =

∑
k=1,..,n(α) ek, we have

∑
k=1,..,n(α) ψ∗ek = ψ∗ϕα for the presentationψ =

∑
α ψ∗ϕα. Each element

Λα uniquely corresponds with a continuous function, so that for each finite-dimensional representation
α there is a decomposition Λα = ⊕1≤k≤n(α)Λα ∗ mk where mk is an irreducible idempotent, and so that
ϕα =

∑
k=1,..,n(α) mk. Let {ak}1≤k≤n(α) be a Hilbert basis in Λα ∗m1 with the condition ak ∈ mk ∗Λα ∗m1.
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Definition 3. For every finite-dimensional representation α, we define a matrix Mα
(
1
)

of n (α)×n (α)-dimension
with coefficients

ai j
(
1
)
= (n (α))−1

(
ai

(
1
)
∗ a j

(
1−1)) (5)

for 1 ≤ i ≤ n (α) and 1 ≤ j ≤ n (α).
From definition 3 we have aii = mi.
Definition 4. The Fourier transform F

(
ψ
)

of the function ψ ∈ L1 (G) is a mapping defined by

F
(
ψ
)

(α) =
∫
ψ (h) Mα

(
h−1

)
dµ (h) , (6)

where Mα is a continuous unitary representation Mα : G→ UC
(
Cn(α)

)
of the group G in Cn(α) .

We denote the set
⋂
α Mn(α) (C) by Θ

(
Ĝ
)
.

Theorem (first theorem) 1. Let G be a compact group then the mapping F : L2 (G)→ L2
(
Ĝ
)

defined by

F
(
ψ
)

(α) =
∫
ψ

(
1
)

Mα

(
1−1

)
dµ

(
1
)

(7)

is an isometric isomorphism.
For each element ψ ∈ L2 (G), we have a representation

ψ =
∑
α

n (α)
∑

i,k=1,...,n(α)

〈〈
F
(
ψ
)

(α) (ei (α)) , (ek (α))
〉〉
ϕik (α) , (8)

where {ei (α)}i=1,...,n(α) is an orthonormal basis in Cn(α) and coordinate functions ϕik are defined as

ϕik (α)
(
1
)
=

〈
Mα

(
1
)

ei (α) , ek (α)
〉

(9)

for all 1 ∈ G and i, k = 1, ...,n (α).
Theorem (second theorem) 2. Let G be a compact group then the inverse Fourier transform F−1 : L2

(
Ĝ
)
→ L2 (G)

is defined by

ψ
(
1
)
=

∑
α

n (α) tr
(
F
(
ψ
)

(α) Mα
(
1
))

(10)

for any Fourier transform F
(
ψ
)
∈ L2

(
Ĝ
)

of ψ ∈ L2 (G) and the series converges in L2 .

3. The structure of L2 - algebra

Let G be a compact group then L2 (G) is a separable complete Hilbert algebra. Let ℓ be a closed left ideal
of L2 (G) and let ψ, φ ∈ ℓ then there exist a sequence {en} of irreducible self-adjoint idempotents en of ℓ such
that ψ =

∑
n ψen and

〈
ψ, φ

〉
=

〈∑
n ψen,

∑
n φen

〉
.

We remind matrix coefficients of G are mappings 1 7→ ϕ∗
(
Mα

(
1
)
ϕ
)

for all ϕ∗, ϕ ∈ Cn(α).
Theorem (orthogonality of matrix coefficients). Let α be an irreducible representation of the compact

group G in the separable Hilbert space H. Then for all given ψ1, φ1, ψ2, φ2 ∈ H, there is a strictly positive
constant d such that∫

G

〈
α
(
1
)
ψ1, φ1

〉 〈
α
(
1
)
ψ2, φ2

〉
dµ

(
1
)
=

1
d
〈
ψ1, ψ2

〉 〈
φ2, φ1

〉
. (11)

The PeterWeyl theorem allows us to elucidate the structure of L2 (G) algebra as follows.
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Theorem. (First) 3. Let G be a compact Hausdorff group then L2 (G) is a complete Hausdorff-Hilbert algebra,
which can be decomposed into a countable or finite Hilbert sum L2 (G) = ⊕α∈RΛα of topologically simple orthogonal
algebras Λα under conditions Λα1Λα2 = {0} for all α1 , α2. Each simple algebra Λα can be decomposed as a finite
sumΛα = ⊕ jℓ j of minimal left ideals such that there does not exist a pair of isomorphic ideals ℓ j. Since G is a compact
group, there exists an isomorphism of Λα to finite-dimensional matrix algebra Mn(α).

(Second) 4. Let U : G → UR (H) be a unitary representation of a group G in the separable Hilbert space H.
Then Hilbert space H can be presented as a direct sum of finite irreducible representations each of the representations
is equivalent to the matrix Mn(α).

Proof. The first part follows from the density in Hilbert space L2 (G) of the set of matrix coefficients of
the compact group G and the theorem of orthogonality of matrix coefficients. Under the density, we mean
that for every fixed ψ ∈ L2 (G) and for any ε > 0 there exists a matrix coefficient ψ̃ such that

∥∥∥ψ − ψ̃∥∥∥ < ε.
To show the validity of the second part of the theorem, we employ the first part of the theorem so that

for any φ ∈ C (G) and ε > 0 there exists matrix coefficient ψ̃ such that∥∥∥∥∥∫
G

(
φ

(
1
)
− ψ̃

(
1
))
α
(
1
)

f dµ
(
1
)∥∥∥∥∥ < ε ∥∥∥ f

∥∥∥ (12)

for all f ∈ H.
Let ˘̃ψ

(
1
)
= ϕ∗

(
α̂
(
1
)
ϕ
)

be a matrix coefficient of the same dimensional dual representation α̂ on n E. We
define a nonzero mapping E∗ 7→ H by(

ϕ 7→

∫
G
ϕ∗

(
α̂
(
1−1

)
ϕ
)
α
(
1
)

f dµ
(
1
))
∈ HomG (E∗, H) . (13)

The image
(
ϕ 7→

∫
G ϕ
∗
(
α̂
(
1−1

)
ϕ
)
α
(
1
)

f dµ
(
1
))

(E∗) is a nonempty finite-dimensional subspace of H. We
partially order a set Ξ of finite-dimensional irreducible invariant subsets by the inclusion. Employing the
choice axion, we have that there exists a maximal θmax element of the partially ordered set Ξ. Assuming
the span of θmax does not coincide with Hilbert space H then the complement of the span of θmax contains
at least one irreducible subspace so θmax can not be maximal since their union is larger than θmax, thus we
obtain that the span of θmax does coincides with the Hilbert space H.

By the second part of the last theorem, we have obtained that let U : G → UR

(
L2 (G)

)
a unitary

representation of a compact group G in L2 (G). Then L2 (G) decomposed into a direct sum of finite irreducible
representations each of the representations is equivalent to the matrix Mn(α).

4. Induce representation of a locally compact group

Let G be a locally compact separable group and let K be a closed subgroup of G. The G/K is a metrizable
space with a positive Borel measure µ on G/K. Our goal is to construct a unitary representation π : G →
U (H) and the Hilbert space H under the assumption that the unitary representation V : K → U (H1) is
given and H1 is a separable Hilbert space.

Let
{
ϕk

}
be a Hilbert basis of H1 so that an arbitrary function ψ : G/K → H1 can be presented as a

convergent sequence
∑

k ψkϕk = ψ, where ψk : G/K→ C so that we take∥∥∥ψ (
1
)∥∥∥2

H1
=

∑
k

∣∣∣ψk
(
1
)∣∣∣2 . (14)

The Egoroff theorem yields that the µ-measurability of each function ψk : G/K → C of the sequence{
ψk

}
implies the µ-measurability of the function ψ : G/K → H1. For the arbitrary basis

{
ϕk

}
of a Hilbert

basis of H1, we denote L2 (G/K,H1) the space of all µ-measurable functions G/K→ H1 so that we have the
following equalities∫

G/K

∥∥∥ψ (
1
)∥∥∥2

H1
dµ

(
1
)
=

∑
k

∫
G/K

∣∣∣ψk
(
1
)∣∣∣2 dµ

(
1
)
=

∑
k

∥∥∥ψk

∥∥∥2

L2 .
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The inner product in L2 (G/K,H1) is given by∫
G/K

〈
ψ

(
1
)
, φ

(
1
)〉

dµ
(
1
)
=

∑
k

∫
G/K

ψk
(
1
)
φk

(
1
)

dµ
(
1
)

for any pair ψ,φ ∈ L2 (G/K,H1) which is presented as ψ =
∑

k ψkϕk and φ =
∑

k φkϕk. Now, we can consider
a quotient space of L2 (G/K,H1) as a space of all classes of equivalent functions of L2 (G/K,H1), this quotient
space will be again denoted by L2 (G/K,H1).

Theorem. Let G be a locally compact separable group and K be a closed subgroup of G. Let µ be a positive Borel
measure µ on G/K. Then the space L2 (G/K,H1) of all equivalence classes of all µ-measurable functions G/K → H1
is a separable Hilbert space under the assumption that H1 is a separable Hilbert space.

Proof. Assume the sequence
{
ψ j =

∑
k ψ j,kϕk

}
⊂ L2 (G/K,H1) satisfies the Cauchy condition in L2 (G/K,H1),

for any ε > 0, there exists some j0 such that the inequality∫
G/K

∥∥∥ψi
(
1
)
− ψ j

(
1
)∥∥∥2

H1
dµ

(
1
)
=

=
∑

k

∫
G/K

∣∣∣ψi,k − ψ j,k

∣∣∣2 dµ
(
1
)
≤ ε

holds for all i, j > j0. Thus, the sequence
{
ψi,k

}
i≥1 ⊂ L2 (H1, C) satisfies the Cauchy condition. So, for any

ε > 0, there exists an element γk ∈ L2 (H1, C) and some k0 such that we have∑
k=1,...,k0

∥∥∥γk − ψ j,k

∥∥∥2

L2 ≤ ε

and ∑
k=1,...,k0

∥∥∥γk

∥∥∥2

L2 ≤

∑
k=1,...,k0

∥∥∥γk − ψ j,k

∥∥∥2

L2 +
∑

k=1,...,k0

∥∥∥ψ j,k

∥∥∥2

L2 ≤ ε +
∥∥∥ψ j

∥∥∥2

L2

so
∑

k=1,...

∥∥∥γk

∥∥∥2

L2 =
∥∥∥γ∥∥∥2

< ∞, the inequality∑
k=1,...

∥∥∥γk − ψ j,k

∥∥∥2

L2 ≤ ε

holds for all j > j0, thus, we have

lim
j→∞

ψ j = γ,

the limit is understood in a topology of L2 (G/K,H1). The set of functions ψ =
∑

k=1,...,k0
ψkϕk that can be

presented as a finite linear combination of µ-measurable ψk
(
1
)
=

〈
ψ

(
1
)
, ϕk

〉
and elements of the basis

{
ϕk

}
is dense in L2 (G/K,H1) with the natural norm.

Definition. Let a linear automorphism Λ : G × (G/K)→ GL (H1) satisfies the conditions:
Λ (e, a) = id (H1) for all a ∈ G/K

and

Λ
(
1h, a

)
= Λ

(
1, h · a

)
·Λ (h, a)

for all for all 1, h ∈ G and a ∈ G/K. Then the mapping Λ : G × (G/K) → GL (H1) will be called a cocycle of the
group G in a general linear group over H1.

Theorem. Let V : K → U (H1) be a unitary representation of K in H1. Let µ be an outer regular, σ-inner
regular, finite on compact subsets Borel measure such that

µ
(
1−1E

)
= µ (E) (15)
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for all 1 ∈ G and all µ- measurable sets E. Let each cocycle Λ : G × (G/K) → U (H1) satisfies the following
conditions: for all s ∈ K, there isΛ (s, a) = U (s); for each t ∈ G and ψ ∈ L2 (G/K,H1), the mapping G/K→ H1 given
by 1 7→ Λ

(
1, t

) (
ψ

(
1
))

is µ- measurable.
Then the homomorphism π : G→ U

(
L2 (G/K,H1)

)
induced by Λ : G × (G/K)→ U (H1) according to(

π
(
ψ
)) (
1, h

)
=

(
Λ

(
h−1, 1

))−1 (
ψ

(
h−11

))
, 1 ∈ G/K, h ∈ G, ψ ∈ L2 (G/K,H1)

is a unitary representation of the group G, if the mapping h 7→
(
π

(
ψ
)) (
1, h

)
is continuous as G→ U

(
L2 (G/K,H1)

)
.

Proof. Assume ψ ∈ L2 (G/K,H1) and 1, h ∈ G, we have∥∥∥(π (
ψ
)) (
1, h

)∥∥∥
H1
=

∥∥∥∥(Λ (
h, h−11

)) (
ψ

(
h−11

))∥∥∥∥
H1
=

∥∥∥∥ψ (
h−11

)∥∥∥∥
H1

so ∫
G/K

∥∥∥∥ψ (
h−11

)∥∥∥∥2

H1
dµ

(
1
)
=

∫
G/K

∥∥∥ψ (
1
)∥∥∥2

H1
dµ

(
1
)
,

thus, we obtain
∥∥∥(π (

ψ
))

(h)
∥∥∥

L2(G/K,H1) =
∥∥∥ψ∥∥∥

L2(G/K,H1) for all ψ ∈ L2 (G/K,H1).

Thus, we have constructed the unitary representationπ : G→ U
(
L2 (G/K,H1)

)
defined as

(
π

(
ψ
)) (
1, h

)
=(

Λ
(
h−1, 1

))−1 (
ψ

(
h−11

))
induced by the unitary representation V : K→ U (H1) and cocycleΛ : G×(G/K)→

U (H1).

5. The Gerald Folland modified method

Now, we are going to construct a Hilbert space H and unitary representation π̃ : G → H induced by
V : K→ U (H1) assuming that K is a closed subgroup of G and µ is an outer regular, σ-inner regular, finite
on compact subsets Borel measure such that µ

(
1−1E

)
= µ (E) for all 1 ∈ G and all µ- measurable sets E.

Let a continuous function ϕ : G→ H1 be supported on a compact set. We define a function 1 7→ φϕ
(
1
)

by an integral formula

φϕ
(
1
)
=

∫
K

V (h)
(
ϕ

(
h1

))
dνK (h) ,

where νK is Haar’s measure on the subgroup K.
The Hilbert space H is defined as the completion of the set of all functions φϕ in the norm naturally

induced by the inner product given by〈
ψ1, ψ2

〉
=

∫
G/K

〈
ψ1

(
1
)
, ψ2

(
1
)〉

H1
dµ

(
1K

)
for all functions ψ1 and ψ2 such that sets P

(
sup p

(
ψk

))
, k = 1, 2 are compact and ψk

(
1h

)
= V

(
h−1

) (
ψk

(
1
))

,
k = 1, 2 for all 1 ∈ G, h ∈ K, where P : G→ G/K is the quotient mapping.

The unitary representation π̃ : G → H induced by unitary representation V : K → U (H1) is defined as
π̃1

(
ψ
)

(t) = ψ
(
1−1t

)
for all t ∈ G/K.

Let G be a compact separable group and let K be a closed subgroup of G. Let us take H1 = C then
to construct a unitary representation G 7→ L2 (G/K, C), we can use the Peter-Weyl theorem to consider a
restriction W : K → U

(
Cn(α)

)
of representation Mα : G → U

(
Cn(α)

)
on the subgroup K. By the second

Peter-Weyl theorem, we can define orthogonal projection Pn(α) : Cn(α)
→ Pn(α)

(
Cn(α)

)
⊂ Cn(α) by

Mα

(
1

n (α)
χ (α)

)
=

1
n (α)

∫
K

Mα (h)χ (α) (h) dνK (h) .
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So, there is decomposition Cn(α) = ⊕
β

Pβ
(
Cβ

)
where β is representation on K, and the Hilbert space

L2 (G/K, C) can be presented in the form ⊕Lα of a Hilbert series of subspaces Lα ⊂ Λα so that Lα =
⊕

i=1,...,d
⊕

j=1,...,n(α)
C ·

(
n (α) ai

(
1
)
∗ a j

(
1−1)) if the trivial representation γ of the subgroup K is d = α

γ ≥ 1 times in

the restriction of Mα to K.

6. The symplectic Fourier transform and a generalization of the ambiguity function and Wigner func-
tions

The set Sp (2n,K) of all symplectic matrices over the field K is called a symplectic group. The compact
symplectic group Sp (2n,C)

⋂
U (2n) is denoted by USp (2n).

Now, let G be a compact communicative group with a Haar measure µ on G. We define a group Ĝσ as a
group of all continuous homomorphisms from G ⊕ G to USp (2).

Definition 5. The symplectic Fourier transform Fσ of ψ ∈ L2 (G ⊕ G)
⋂

L1 (G ⊕ G) is defined by

Fσ
(
ψ
)

(χσ) =
∫

G×G
ψ (h)χσ (h)d

(
µ ⊗ µ

)
(h) (16)

for all χσ ∈ Ĝσ.
The inverse of the symplectic Fourier transform F−1

σ is the same Fourier transform Fσ.
Now, let A be a compact communicative algebra.
Let ψ, φ ∈ L2 (A). We define the pair of functions Am

(
ψ, φ

)
and WA

(
ψ, φ

)
by formulae

Am
(
ψ, φ

)
(χ, z) =

∫
A
χ
(
y
)
ψ

(
y +

1
2

z
)
φ

(
y −

1
2

z
)

dµ
(
y
)

(17)

and

WA
(
ψ, φ

)
(χ, z) =

∫
A
χ
(
y
)
ψ

(
z +

1
2

y
)
φ

(
z −

1
2

y
)

dµ
(
y
)
, (18)

these functions will be called ambiguity and Wigner functions respectively.
The classical ambiguity and Wigner functions are defined by integrals with respect to the Lebesgue

measure

Amb
(
ψ, φ

) (
p, z

)
=

( 1
2π

)n ∫
A

exp
(
−ip · y

)
ψ

(
y +

1
2

z
)
φ

(
y −

1
2

z
)

dy (19)

and

W
(
ψ, φ

) (
p, z

)
=

( 1
2π

)n ∫
A

exp
(
−ip · y

)
ψ

(
z +

1
2

y
)
φ

(
z −

1
2

y
)

dy. (20)

By changing variables u = y + 1
2 , v = y − 1

2 z, we obtain that the classical Wigner function has an exact
marginal

〈
W

(
ψ, φ

)
(·, z)

〉
= ψ (z)φ (z) and

〈
W

(
ψ, φ

) (
p, ·

)〉
= F

(
ψ

(
p
))

F
(
φ

(
p
))

. So, we introduce the next
definition.

Definition 6. . Let ψ, φ be L2 (A). If functions Am
(
ψ, φ

)
and WA

(
ψ, φ

)
defined (17) and (18) such that

WA
(
ψ, φ

)
satisfies the marginal conditions∫

A
WA

(
ψ, φ

)
(χ, z) dµ (χ) = ψ (z)φ (z)

and ∫
A

WA
(
ψ, φ

) (
χ, y

)
dµ

(
y
)
= F

(
ψ (χ)

)
F
(
φ (χ)

)
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then functions Am
(
ψ, φ

)
and WA

(
ψ, φ

)
are called the ambiguity and Wigner functions respectively.

The centralizer CA (a) of a in A is the set given by

CA (a) =
{
1 ∈ A : 1a = a1

}
.

For 1, h ∈ A we have

χ
(
1
)
χ (h) =

{ ∣∣∣CA
(
1
)∣∣∣ , i f 1 and h are conju1ate

0 otherwise.

We calculate an integral∫
Â

∫
A WA

(
ψ1, φ1

)
(χ, z) WA

(
ψ2, φ2

)
(χ, z) dµ (z) dµ (χ) =

=
∫

Â

∫
A

∫
A

∫
A χ

(
y
)
χ (x) ψ1

(
z + 1

2 y
)
ψ2

(
z + 1

2 x
)
×

φ1

(
z − 1

2 y
)
φ2

(
z − 1

2 x
)

dµ
(
y
)

dµ (x) dµ (z) dµ (χ) =
= |A|

〈
ψ1, ψ2

〉 〈
φ1 , φ2

〉
so we have obtained an analog of the Moyal identity in the form of the following theorem.

Theorem 5. The Moyal equality〈
WA

(
ψ1, φ1

)
,WA

(
ψ2, φ2

)〉
L2 = |A|

〈
ψ1, ψ2

〉
L2

〈
φ1, φ2

〉
L2

or 〈
WA

(
ψ1, φ1

)
,WA

(
ψ2, φ2

)〉
L2 = |A|

(
ψ1, ψ2

)
L2

〈
φ1, φ2

〉
L2

holds for all ψ1, φ1, ψ2, φ2 ∈ L2 (A).
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