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Abstract. This article aims to provide the equivalent criteria for the distinguishability of linear descriptor
systems (LDS). Regularity of the matrix pencil, which, loosely speaking, guarantees the existence, and
uniqueness of the solution of LDS for any inhomogeneity, is required in this article. A characterization
of observability for LDS in terms of distinguishability is given. The Laplace transform together with the
Cayley-Hamilton theorem exploited to derive Hautus-type criteria for the distinguishability. In addition,
we present examples of distinguishable systems.

1. Introduction and Preliminaries

Let Fn×m denote the set of all n × m matrices over the field F (real or complex). Let N (P) and rank(P)
denote the null space and rank of P ∈ Fn×m, respectively. The smallest number k ∈ Z+ ∪ {0} is called the
index of F ∈ Cn×n, denoted by ind(F) , if rank

(
Fk+1

)
=rank

(
Fk

)
. Let F ∈ Cn×n. A matrix X ∈ Cn×n such

that satisfies Fk+1X = Fk,XFX = X and FX = XF, is called the Drazin inverse (DI) of F and denoted by
FD. If ind(F) ≤ 1, then the DI of F is called the group inverse and denoted by F#. The set of all k-time
continuously differentiable vector-valued functions defined on the domain X is denoted by Ck (X, Rm) . Let
C
∞ [a, b] denote the set of all analytical vector-valued functions on the domain [a, b] .

Consider the following differential algebraic system with a state variable z (·) ∈ Rn, a control input
u (·) ∈ Rm

Fz′ (t) = Pz (t) +Qu (t) , (1)

where F, P ∈ Rn×n, Q ∈ Rn×m are constant matrices.
If F has nonzero entries, then derivatives of respective components of z are involved. If F has a zero

row, then there does not involve any derivative and equation becomes purely algebraic. This justifies to
call (1) a differential algebraic system. Assume that det (F) = 0 and det (aF − P) , 0 for some a ∈ C, then
(1) is known as LDS with regular pencil (F,P). The inspection of LDS have taken many attentions, see, for
example, [1, 9, 10]. Since LDS can be analyzed though Jordan canonical form but this study seems to be
complex as pointed out in [13]. Hence, an efficient tool to analyze the LDS is with the help of DI. There are
applications of DI to solve LDS [2, 12]. The DI of any square matrix always exist and unique, see in [1].
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In [6], steps to find FD of F are expressed. The following

FD = E
[
J−1 0
0 0

]
E−1 (2)

is DI in terms of the Jordan canonical form of F = E
[
J 0
0 N

]
E−1, where N is nilpotent and J constitutes the

Jordan blocks corresponding to non-zero eigenvalues.
An example for finding the DI is:

Example 1.1. For any F =
[
a 0
0 0

]
, a ∈ Z\ {0} where Z is the set of integers, while det F = 0, and rank(F) = 1, F is

decomposed as F =WV with W =
[
a
0

]
,V =

[
1 0

]
, then FD =W (VFW)−1 V =

[
1/a 0
0 0

]
.

Theorem 1.2. [2] Consider that FP = PF and N (F) ∩ N (P) = {0}, then there exists a unique solution of (1) with
z (0) = z0, if and only if

z0 = Hq + (H − I)
k−1∑
n=0

(
FPD

)n
PDu(n) (0) ,

where k =ind(F), H = FDF and q is an arbitrary constant vector.

Pre-multiplying (1) by (aF − P)−1 to overcome the commutative condition of Theorem 1.2, as a result, we
get

F̂z′(t) = P̂z(t) + Q̂u(t), (3)

with

F̂ = [aF − P]−1F, P̂ = [aF − P]−1P, (4)

and Q̂ = [aF − P]−1Q.
The following Lemma is related to some properties of F̂ and P̂.

Lemma 1.3. [2] From (4), we have

1. N
(
P̂
)
∩N

(
F̂
)
= {0} ,

2. P̂F = F̂P, P̂DF̂ = (F̂P)D, F̂DP̂ = (P̂F)D and P̂DF̂D = F̂DP̂D,

3. (F̂F
D
−I)P̂P

D
=

(
F̂F

D
−I

)
and (I−F̂F

D
)(F̂P

D
)k = 0,

4. F̂ = S
[

J 0
0 N

]
S−1, F̂D = S

[
J−1 0
0 0

]
S−1, det (S) , 0, N ∈ Rn2×m2 , J ∈ Rn1×m1 , J is non-singular, Nk = 0,

while Nk−1 , 0, n1 + n2 = n.

The following theorem states the solution of LDS (3) (and (1)):

Theorem 1.4. [2] Consider (F,P) to be a regular pencil, then (3) (and (1)) has a unique solution

z (t) = eF̂DP̂tĤq + F̂DeF̂DP̂t
∫ t

0 e−F̂DP̂sQ̂u(s)ds +
(
Ĥ − I

) k−1∑
i=0

(
F̂P̂D

)i
P̂DQ̂u(i) (t) , for all t ≥ 0, (5)

if and only if

z0 = Ĥq +
(
F̂DF̂ − I

) k−1∑
i=0

(
F̂P̂D

)i
P̂DQ̂u(i) (0) , (6)

where q is arbitrary constant vector, F̂DF̂ = Ĥ and k =ind(F) .
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Putting left hand side of (6) in (5) results

z (t) = eF̂DP̂tz0 − eF̂DP̂t
(
Ĥ − I

) k−1∑
i=0

(
F̂P̂D

)i
P̂DQ̂u(i) (0) +

(
Ĥ − I

) k−1∑
i=0

(
F̂P̂D

)i
P̂DQ̂u(i) (t)

+F̂DeF̂DP̂t
∫ t

0 e−F̂DP̂sQ̂u(s)ds, for all t ≥ 0.
(7)

If ind(F) = 1, (7) becomes

z(t) = eF̂DP̂t
(
x0 −

(
Ĥ − I

)
P̂DQ̂u (0)

)
+ F̂DeF̂DP̂t

∫ t

0 e−F̂DP̂sQ̂u(s)ds + (Ĥ − I)P̂DQ̂u(t), for all t ≥ 0. (8)

Next, firstly recall that observability theory has been a long-run research interest by many investigators,
see in [3, 11]. Following this work, the notion of distinguishability is used to define observability [7].
Roughly speaking about the distinguishability is that two modes are said to be distinguishable if for the non-
zero state and control inputs, their outputs are distinct. Recently, easily verifiable distinguishability criteria
for hybrid system are presented in [8]. This study motivates us to describe the idea of distinguishability
in LDS and its characterization. Consider the following time-invariant LDS with z (·) ∈ Rn, u (·) ∈ Rm,
y (·) ∈ Rp as

Ti :
{

Fiz′ (t) = Piz (t) +Qiu (t) ,
y (t) = Riz (t) , (i = 1, 2, · · · , p), (9)

where Fi, Pi ∈ Rn×n, Qi ∈ Rn×m, Ri ∈ Rp×n are constant matrices. There is no loss of generality in assuming
(9) for i = 1, 2. Hereafter, pre-multiply (9) by (aiF − P)−1, for a closed form solution and consistent initial
conditions, we have

T̂i :


F̂iz′ (t) = P̂iz (t) + Q̂iu (t) ,
z (0) = zi0,
y (t) = Riz (t) .

(10)

It is easy to see that system (9) is equivalent to (10).
For notational simplicity, hereafter, we will denote

F =
[

F̂1 0
0 F̂2

]
, P =

[
P̂1 0
0 P̂2

]
, Q =

[
Q̂1

Q̂2

]
(11)

R =
[

R1 −R2

]
, Z0 =

[
z10
z20

]
, Y (·) = y1 (·) − y2 (·) . (12)

Remark 1.5. (i) From F̂i and P̂i, it is easy to see that FP = PF andN (F) ∩N (P) = {0}.

(ii) Pencils (F1,P1) and (F2,P2) are regular, if and only if the pencil (F,P) is regular.

(iii) If ind(F1) = k1, ind(F2) = k2, then ind(F) = max{k1, k2} ≡ k.

(iv) From the definition of DI:

PD =

[
P̂D

1 0
0 P̂D

2

]
, FD =

[
F̂D

1 0
0 F̂D

2

]
. (13)

Let us recall the consistency space V̄∗i of inhomogeneous system for distinguishability of LDS, which is:

V̄
∗

i :=
{

z0 ∈ Rn such that there exists u ∈ C∞ [0,T] ,
z is a solution of (9) with z (0) = z0

}
.
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Definition 1.6. T̂1 and T̂2 are said to be distinguishable on X := [0,T] , if for any 0 , (z10, z20,u (·)) ∈ V̄∗1 × V̄
∗

2 ×

C
∞ [0,T], the outputs y1 (·) and y2 (·) are not identical to each other on X.

Definition 1.7. Consider that U ⊆ C∞ [0,T]. We say that T̂1 and T̂2 are U input distinguishable on X if for
0 , (z10, z20,u (·)) ∈ V̄∗1 × V̄

∗

2 ×U, the outputs y1 (·) and y2 (·) are not identical to each other on X.

Therefore, the distinguishability of T̂1 and T̂2 on X is equivalent to that for

W :


FZ′ (t) = PZ (t) +Qu (t) ,
Z (0) = Z0,
Y (t) = RZ (t) ,

(14)

(Z0,u (·)) , 0 implies that Y (·) . 0 on X. Thus this problem of distinguishability of LDS relates to the notion
of nontrivial zero dynamics. From Remark 1.5, it follows that the closed form solution with consistent
initial condition of the system (14) is

Z (t) = eFDPt

(
Z0 − Fp

k−1∑
i=0

(
FPD

)i
PDQu(i) (0)

)
+ Fp

k−1∑
i=0

(
FPD

)i
PDQu(i) (t)

+FDeFDPt
∫ t

0 e−FDPsQu(s)ds, for all t ≥ 0,
(15)

where Fp = FDF − I.
For the distinguishability, it is clear from equation (15) that the input u (·) have to smooth enough that is to

avoid impulsive situation of the solution and to switch from one mode to other, at least u (·) ∈ Ck−1 (X, Rm) ,
where k =ind(F) .

The organization of this paper is as: Section 2 has covered the certain consequences and equivalent
criteria of distinguishability with the approach of DI. In Section 3, conclusion is given.

2. New Results

In this section, different criteria related to distinguishability are described. For our next results, let us
state the following full column rank, block matrices M̂ and M̂N, respectively as:

M̂ =


R 0 0 · · ·

RFDP RFDP · · · 0

R
(
FDP

)2
R

(
FDP

)2
· · · RFp

(
FPD

)k−1
PDQ

...
... · · ·

...

 (16)

and

M̂N =



R 0 0 · · ·

RFDP RFDQ · · · 0

R
(
FDP

)2
R

(
FD

)2
PQ · · · · · ·

...
... · · ·

...

R
(
FDP

)N+1
R

(
FD

)N+1
PNQ · · · RFDQ

...
... · · ·

...


, (17)

for ind(F) > 0.
For characterization of polynomial input distinguishability, let us define the following polynomial

classes:

P (X) :=
{
f : X→ Rm : f is polynomial function

}
.

PN (X) :=
{
f : X→ Rm : f ∈ P (X) , deg f ≤ N

}
.
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Theorem 2.1. Consider that ind(F) = k, u ∈ P (X) , T̂1 and T̂2 are distinguishable, if and only if every sub-matrix
constitutes of the left finite column vector of M̂ has full column rank (FCR) and it does not depend on T. Furthermore,
for u ∈ PN (X) , equivalent distinguishability condition of T̂1 and T̂2 is that M̂N has FCR.

Proof. For u (·) ∈ Rm, output (14) becomes:

Y (t) = ReFDPt

(
Z0 − Fp

k−1∑
i=0

(
FPD

)i
PDQu(i) (0)

)
+ RFp

k−1∑
i=0

(
FPD

)i
PDQu(i) (t)

+R
∫ t

0 eFDP(t−s)FDQu (s) ds, for all 0 ≤ t.
(18)

Consider that u ∈ PN (X) provided that

u (t) = α0 + α1t + · · · +
αN

N!
tN, t ∈ X, and α j ∈ R

m.

Accordingly, we have

Y (t) = ReFDPt

(
Z0 − Fp

k−1∑
i=0

(
FPD

)i
PDQαi

)
+ RFp

k−1∑
i=0

(
FPD

)i
PDQ

N∑
j=i

α j

( j−i)!
t j−i + R

∫ t

0 eFDP(t−s)FDQ
(

N∑
i=0

αi
i! si

)
ds.

From this, Y (·) is analytic which implies that Y ≡ 0, if and only if

Y( j) (0) = 0, for all j = 0, 1, 2, · · · .

There is no loss of generality in assuming that ind(F) ≤ N, then we have

RZ0 = 0

RFDPZ0 + · · · + RFp

(
FPD

)k−1
PDQαk = 0

R
(
FDP

)2
Z0 + · · · + RFp

(
FPD

)k−1
PDQαk+1 = 0

...

R
(
FDP

)N+1
Z0 + · · · + RFDQαN = 0

...

(19)

We acquire that (19) is equivalent to:

M̂N [Z0;α0; · · · ;αN] = 0. (20)

Thus, it is N-th polynomial input distinguishable (ID) and does not depend on T which proves our theo-
rem.

Note that, it is evident that the observability of each mode is the necessary condition of the distinguisha-
bility. We can demonstrate it by a trivial example that two similar observable systems implies that they are
clearly not distinguishable.

Corollary 2.2. For u ∈ P (X) , distinguishability of T̂1 and T̂2, implies m ≤ 2n.

Next, we have the following necessary and sufficient criteria for analytical input distinguishability:

Theorem 2.3. T̂1 and T̂2 are distinguishable for analytic input u, if and only if

M̂ [Z0;α0;α1; · · · ] = 0, (21)
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which has only trivial solution provided that

u (t) =
∞∑
j=0

α j

j!
t j

converges in an interval which is open and including X.

Recall certain concepts from [7] to derive further results:
An infinite dimensional matrix having infinite rows and infinite columns is F-type if in every row of

that matrix , there are only finite non-zero elements. A particular kind of F-type:

G ≡


A11 A12 · · · A1k 0 · · ·

A21 A11 A12 · · · A1k 0
A31 A21 A11 A12 · · · A1k
A41 A31 A21 A11 A12 · · ·

...
...

...
...

...
. . .


is p ×m A-type matrix if {Ai j}

∞

i=1 ∈ Qp,m,where

Qp,m≡
{
{Qi j}

∞

i=1 : Qi j ∈ R
p×m, Mi

≥

∥∥∥Qi j

∥∥∥ , for some M > 0
}
,

for all j = 1, · · · , k.
Henceforth, we consider that there are (Type I-III) three invertible transformations for p × m A-type

matrices, [7].
Next, one of the consequence of [7, Lemma 4.6] is:

Theorem 2.4. Consider that RFp

(
FPD

)k−1
PDQ has FCR m, then the analytic ID does not depend on T. Indeed, it is

equivalent to that (21) has only trivial solution.

Proof. Consider that rank
(
RFp

(
FPD

)k−1
PDQ

)
= m, then m ≤ p and there exist A ∈ Cm×m, and B ∈ Cp×p with

det A , 0, det B , 0 such that BRFp

(
FPD

)k−1
PDQA = Im when m = p or

BRFp

(
FPD

)k−1
PDQA =

[
Im
0

]
, (22)

when m < p. There is no loss of generality in assuming m < p and consider that (22) holds. Then applying
[7, Lemma 4.6] to

G1≡



RFp

(
FPD

)k−1
PDQ 0 0 · · ·

RFp

(
FPD

)k−2
PDQ

. . . 0 · · ·

RFp

(
FPD

)k−3
PDQ

. . . RFp

(
FPD

)k−1
PDQ · · ·

...
...

... · · ·

...
...

...
. . .


,

implies
D̃11 · · · D̃1k−1 Im 0 · · ·

D̃21 · · · D̃1k−2 0 Im · · ·

... · · ·
...

...
... · · ·




A−1z0
A−1z1
...

 =


0
0
...

 , (23)
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where {D̃i j}
∞

i=1 ∈ Qm,m with j = 1, · · · , k − 1. Hence, it is clear that {zi}
∞

i=1 ∈ Qm,1 and if (23) has non-trivial
solutions, it must admits non-trivial solution provided that

∞∑
i=1

zi

i!
ti converges in (−∞,+∞) .

Therefore, T̂1 and T̂2 are analytic ID on X, if and only if (23) has trivial solution. Accordingly, it does not
depend on T.

Beside that RFp

(
FPD

)k−1
PDQ has m as FCR, by [7, Lemma 4.6], we have the following theorem:

Theorem 2.5. Consider that m > p. Then T̂1 and T̂2 are not analytic ID.

Next, we have another result related to analytic ID which is as follows:

Theorem 2.6. T̂1 and T̂2 are analytic ID on X, if and only if (21) has only trivial solution. Accordingly, it does not
depend on T.

Proof. The proof is in the same way as in [7].

Theorem 2.7 implies that analytic and smooth ID are equivalent:

Theorem 2.7. T̂1 and T̂2 are analytic ID, if and only if they are smooth ID.

The above criteria are not easy to verify. Let us go further for an equivalent criteria which are relatively
easy to derive.

If T̂1 and T̂2 are not analytic ID from Theorem 2.5, then there exists (Z0,u (·)) provided that

(Z0,u (·)) , 0; (24)
Y (t) = 0;

u (t) =
∞∑
j=0

α j

j!
t j for t ∈ R+ ∪ {0} , (25)

with ∣∣∣α j

∣∣∣ ≤M j+1, for all j = 0, 1, 2, · · · , (26)

for some 0 <M. It results

|u (t)| ≤MeMt, for all t ∈ R+ ∪ {0}

and Laplace transform L (u (·)) (s) can be defined for any M < s.

Remark 2.8. Let λk ∈ C and Pk (·) be polynomial (k = 1, 2, 3, · · · ). 1 (·) has the following form:

1 (t) = eλ1tP1 (t) + eλ2tP2 (t) + · · · + eλntPn (t) ,

if and only if L
(
1
)

is a proper rational function.
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By using notations, L
(
ReFDP

)
(s) = Φ (s) ,

Φ (s) FDQ = Ψ (s) , L (u (·)) (s) = U (s) ,

and suppose the Laplace transform of (24) which implies that L (Y (·)) (s) is

Φ (s)
(
Z0 − Fp

k−1∑
i=0

(
FPD

)i
PDQu(i) (0)

)
− RFp

k−1∑
i=0

(
FPD

)i
PDQ

i∑
j=0

si− ju(i− j) (0)

+

(
Ψ (s) + RFp

k−1∑
i=0

(
FPD

)i
PDQsi

)
U (s) = 0.

(27)

Moreover(
Ψ (s) + RFp

k−1∑
i=0

(
FPD

)i
PDQsi

)
U (s) = −Φ (s)

(
Z0 − Fp

k−1∑
i=0

(
FPD

)i
PDQu(i) (0)

)
+RFp

k−1∑
i=0

(
FPD

)i
PDQ

i∑
j=0

si− ju(i− j) (0) .

Assume that

r = rank

Ψ (s0) + RFp

k−1∑
i=0

(
FPD

)i
PDQsi

0


= max

s∈R+∪{0}

Ψ (s) + RFp

k−1∑
i=0

(
FPD

)i
PDQsi

 .
The next consequences are the direct generalization of [8, Lemma 3.1 and Lemma 3.2]:

Lemma 2.9. If T̂1 and T̂2 are not distinguishable, we can obtain a
(
Ẑ0, ū (·)

)
which satisfies (24) with

ū (·) = eλ1tP1 (t) + eλ2tP2 (t) + · · · + eλqtPq (t) ,

where Pi (·),
(
i = 1, 2, 3, · · · , q

)
are vector-valued polynomials and λi ∈ C.

Lemma 2.10. If T̂1 and T̂2 are not distinguishable, we can find a
(
Z̃0, ũ (·)

)
satisfying (24) with

ũ (·) = eλtς,

where ς ∈ Cm and λ ∈ C.

From above, it is clear that the equivalent criteria for 0-th polynomial ID and the k-th polynomial ID are
analogous. Hereafter, for any 0 ≤ N,

R 0 0 · · ·

RFDP RFDQ · · · 0

R
(
FDP

)2
R

(
FD

)2
PQ · · · · · ·

...
... · · ·

. . .

R
(
FDP

)N+1
R

(
FD

)N+1
PNQ · · · RFDQ

...
... · · ·

...


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has FCR, if and only if

R 0
RFDP RFDQ

R
(
FDP

)2
R

(
FD

)2
PQ

...
...

R
(
FDP

)N+1
R

(
FD

)N+1
PNQ

...
...


(28)

has FCR.

Example 2.11. Consider F =
[
3 0
0 0

]
, R =

[
2 0
0 1

]
, FD =

[
0.33 0

0 0

]
, P =

[
2 0
0 1

]
, Q =

[
1 4
2 0

]
corresponding to

(14), where ind(F) = 1,we can determine (28) as


2.00 0 0 0
3.00 1.00 0 0
1.32 0 0.66 2.64
1.98 0 0.99 3.96
...

...
...

...


, since it has FCR 4, so the corresponding

system is polynomial ID.

Furthermore, for the next results, keeping in view [4, Theorem 1] and [5, Theorem 9] for DI matrices
and singular systems respectively, we have:

Corollary 2.12. Suppose that FP = PF and n > r =rank(F) , we have

r∑
i=0

ai

(
FDP

)i
= 0, (29)

if

det (sF − P) = arsr + ar−1sr−1 + · · · + a1s + a0. (30)

Hence, it follows from Corollary 2.12, (28) is equivalent to

R 0
RFDP RFDP

R
(
FDP

)2
R

(
FD

)2
PQ

...
...

R
(
FDP

)r
R

(
FD

)r
Pr−1Q


has a FCR.

Let us consider the following modified LDS:

T̃i :


F̂iz̃′ (t) =

(
P̂i − λF̂i

)
z̃ (t) + Q̂iũ (t) ,

z̃i0 (0) = z̃i0,
ỹ (t) = Riz̃ (t) ,

for λ ∈ C. Similar to previous notations (see e.g. (11) and (12)), let us consider the following system
FZ̃′ (t) = (P − λF) Z̃ (t) +Qũ (t)
Z̃ (0) = Z̃0

Ỹ (t) = RZ̃ (t) ,
(31)



Z. Dastgeer, A. Younus / Filomat 37:22 (2023), 7455–7465 7464

where, for Z̃0 ∈ C2n and ς ∈ Cm,
(
Z̃0, ς

)
, 0.

We claim that the solution of (31) related to Z̃0 and ũ (t) ≡ ς satisfying Ỹ (t) . 0 onR+ ∪ {0} , analogously,
T̃1 and T̃2 are 0-th polynomial ID. If it is not the situation, then

(
Z̃0, ς

)
, 0 provided that Ỹ (t) ≡ 0. Consider

that

Z (t) = eλtZ̃ (t) , Y (t) = eλtỸ (t) ,

implies
(
Z̃ (·) ,Y (·)

)
solves (14) with the following

Z0 = Z̃0 and u (t) = eλtũ (t) .

Since Y (t) = eλtỸ (t) = 0. By Lemma 2.10, T̂1 and T̂2 are not distinguishable. This is a contradiction. Thus,
from Theorem 2.1

M̂λ :=



R 0
RFD (P − λF) RFDQ

R
(
FD (P − λF)

)2
R

(
FD

)2
(P − λF) Q

...
...

R
(
FD (P − λF)

)r
R

(
FD

)r
(P − λF)r−1 Q


(32)

has FCR. While, if T̂1 and T̂2 are not distinguishable, then Lemma 2.10 implies that we can determine(
Z̃0, ũ (·)

)
satisfies (24) with

ũ (·) = eλtς,

where λ ∈ C and ς ∈ Cm. It follows that T̃1 and T̃2 are not 0-th polynomial ID. As a consequence, M̂λ has
not FCR.

Summing up the above arguments, we acquire our main result as:

Theorem 2.13. T̂1 and T̂2 are analytic ID, if and only if for any λ ∈ C,Mλ has a FCR.

Example 2.14. Consider the following in (31) as: P =
[
1 2
2 0

]
,Q =

[
3 1
2 0

]
, R =

[
0 3
1 0

]
, F =

[
2 0
0 0

]
and take λ = 1.

We get that (32) is

M̂λ =


5 3 0 0
1 0 0 0
−2.5 5 7.5 2.5
−0.5 1 1.5 0.5

 .
Since, M̂λ has FCR 4, so the corresponding system is analytic ID.

3. Conclusion

This paper has examined the observability of time-invariant descriptor systems. We have given char-
acterizations of different distinguishability criteria in terms of rank conditions. Some rank conditions and
also the equivalent criteria related to polynomial input distinguishability, analytic and smooth input dis-
tinguishability has been developed. We see these criteria are somehow difficult to verify. To overcome this,
with the help of Laplace transform and Cayley-Hamilton theorem, we obtained a more simple Hautus-type
condition for distinguishability ( see, Theorem 2.13).
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