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Abstract. Degradation of habitat is a direct outcome of anthropogenic activities, which includes urban-
ization, mining, the emission of industrial waste, and many others. Many living organisms experience
severe surviving challenges as a result of habitat degradation. Here, we have studied the impact of habitat
destruction caused by human activities on the dynamics of a prey-predator interaction with prey refuge.
Our analyses reveal that a higher rate of habitat destruction than the habitat regeneration rate is always
detrimental to the survival of predators. Predator species may still be threatened with extinction even if
the rate of habitat degradation is slightly lower than the habitat recovery rate. So, in order to maintain bio-
diversity, we must appropriately step up our efforts to slow down the rate of habitat degradation as well as
accelerate the habitat restoration. Further, our investigation suggests that in order to achieve cohabitation,
we should effectively control the habitat deterioration caused by human activity, rather than artificially
introducing or eliminating the hiding places of prey species.

1. Introduction

The anthropogenic activities, these days, include urbanization, deforestation, industrialization, mining,
etc., and these processes cause habitat loss on a global aspect. The habitat degradation creates serious
trouble for many living organisms as it decreases the survival rate causing a drop in the biomass of a
population. Acres of land are cleared because of grazing, mining, farming, etc., and almost 70%-80% of
wildlife creatures are affected by these processes. It is quite surprising that approximately 15 billion trees
have been cut down each year which has become a threat to the survival of many animals. An experiment
regarding tree density on a global scale reveals that the number of trees has fallen by 46% since the start
of human civilization [28]. Several forests, lakes, and other habitats disappear continuously because of
agriculture, industrialization, etc. Almost 70%-75% of deforested areas were used for agricultural purposes
in 1990. Between 2000 and 2010, approximately 5.2 million hectares of forest have undergone per year,
among which the tropical and subtropical woodlands are affected the most [10]. Moreover, the marine
and coastal ecosystems get hampered because of human interference with terrestrial and marine natural
resources. Kruess and Tscharntke (1994), in their experiment, have observed that the prey biomass increases
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rapidly in a system when their predators die out due to habitat loss [3]. It means habitat destruction leads
to a crowding situation for some particular species. On the other hand, Schneider (2001) has stated in
his work that landscape management makes a significant impact on predator strategy and frequency of
predators on their prey [19].

Habitat loss makes a negative impact on biodiversity. Donovan and Flather, in 2002, have shown
that habitat destruction reduces the growth rate of a population [4]. Also, it is shown in the experiment
conducted by Fahrig (2003) that habitat destruction decreases the count of specialist predators by a large
amount, reduces the breeding success rate and dispersal ability of a species, etc [15]. A huge number of
birds, mammals, and amphibians are in danger because of agriculture and hunting. Let us take a real-life
example where habitat destruction has detrimental effects on prey-predator interaction and holds most
of the assumptions of the proposed model. Many habitats in Latin America, Africa, and Asia have been
destructed due to the plantation of palm oil plants, and it has affected the wildlife of many species also
[20, 31]. Acres of rainforest are cut down to grow this plant on a large scale. As a consequence, tigers,
elephants, orangutans, and many other species face trouble while searching for food and shelter. This is
the reason they come to the locality to search for foods in lack of natural habitats and often get killed (or,
captured).

In recent years, a lot of ecological model have been studied to understand the population dynamics of an
ecosystem in terms of the long-term survival of various interacting species by analyzing the corresponding
system of differential equation, fractional differential equation, or delayed differential equation [2, 7, 8, 21,
25, 29]. A refuge is considered as a habitat that is a protected zone for prey species. In some literature, the
effect of prey refuge on prey-predator interaction is studied [24, 27]. The common observation of all these
works states that the increase of prey refuge leads to the declination of their predator biomass. The use
of prey refuge is one of the relevant behavioral traits which decreases the predation rate. As there is no
risk of predation in the refuge patches, the survival rate of prey species increases if they are provided with
sufficient resources. Prey species can adjust their activities and change their suitable habitat as the foraging
of predators is quite higher in an open patch. When a portion of a species moves into some areas which are
out of reach from their predators, then only a fraction of prey species is left for consumption of the predator
[5]. The prey who successfully avoids predation by moving to the protected zone is considered as a prey
refuge. The predation strength of predators follows a declination (at low prey biomass) as they opt for an
alternative food source in this case, and this switching gives the prey population enough time to hide at
a safer place to save themselves from the verge of extinction [1, 6]. There are some articles discussing the
stabilizing effect of a system in presence of prey refuge [23–25, 27]. Hoy (1985), in his work, has mentioned
that the hotspots of high spider mite densities set off outbreaks in almond orchards, as the predator cannot
control the prey population in those areas [18]. The places with high mite density are unfit for the predator
and can be considered as refugia because predator species no longer enable to survive there. On the other
hand, Du and Shi (2006) have observed the dynamical nature of a diffusive prey-predator model with
the consideration of a reserved zone for prey population [32]. Lv et al. (2013), in their experiment, have
considered a two-patch prey-predator model where the second patch is considered as a reserved zone for
the prey [33].

There are some works that are dealt with the impact of habitat destruction on population dynamics
[9, 11, 17, 22, 26, 30]. In this work, we have focused on the effect of biodiversity degradation due to
population expansion on a prey-predator system along with the incorporation of prey refuge. The paper
is organized as follows: In Section 2, a prey-predator interaction is formulated, where the growth and
death of the species are affected due to anthropogenic activities. The biological existence of the system is
shown in Section 3 by showing the positivity and boundedness of the system variables. The feasibility of
the equilibrium points is analyzed in Section 4. The next section displays the local dynamical behavior
of equilibrium points of the proposed system. The persisteny of the system is checked in Section 6. The
change of stability of the equilibrium points via transcritical and Hopf bifurcations is proved in Section 7.
The effect of habitat destruction on the system dynamics is observed through numerical figures in Section
8, and the work ends with a concise conclusion in Section 9.
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2. Mathematical Model

Anthropogenic activities including urbanization and industrialization have resulted in an environmental
crisis. In this work, we have proposed a prey-predator model in such destructed environment. Let H be
the human population that causes the anthropogenic activities, resulting in habitat loss as these activities
pollute environments with a high quantity of organic pollutants, and D denotes the amount of habitat which
is destroyed in those processes. The prey and predator population are denoted by N and P respectively. The
human population is assumed to grow according to the logistic law, where r is the growth rate of humans
and b is the rate of crowding effect because of the large size of the human population. It is considered that
habitat loss takes place at a rate γ only when the size of the human population crosses a threshold value,
i.e., H > Hc. The prey-predator interaction follows the Rosenzweig–MacArthur model with prey refuge
until the human population reaches the critical value Hc. The rate of reduction in habitat degradation,
when proper efforts are applied, is denoted by η. Now, the habitat loss reduces the growth rate of prey
population r(D), and is given as r(D) = r0

1+r1D , where r0 is the intrinsic growth rate of prey population and
r1 is the rate of decrease in growth per unit habitat destruction. Also, when the habitat is destroyed, the
carrying capacity of prey (K(D)) drops, and the amount becomes K(D) = K0e−K1D, where K0 is the natural
carrying capacity for prey population and K1 is the rate of loss in carrying capacity for habitat destruction.
The predator consumes the prey population with coefficient of rate of consumption as c, whereas a−1 is the
half-saturation constant in absence of destruction. The parameter e is the predator’s biomass conversion
efficiency. Prey refuge is the portion of the prey population who hide themselves to avoid high predation,
and habitat destruction affects the portion of refuge also. If the surrounding environment becomes polluted
due to urbanization, etc., then there will be space constraints for the prey species for hiding which makes
the refuge term as m(D) = m0

1+m1D ∈ [0, 1], where m0 ∈ [0, 1] is the portion of prey hiding in the natural
environment and m1 is the measure of decrease of the natural availability of prey refuge due to habitat
destruction. So, in a destructed environment, only

(
1 − m0

1+m1D

)
portion of prey will be available for predation.

Moreover, the death rate of predator also increases in this case for which the death rate function becomes
d(D) = (d0 + d1D), where d0 is the natural death rate of predator population and d1 is the death rate per unit
habitat destruction. Assuming all these conditions, we propose the system as follows:

dH(t)
dt
= rH − bH2,

dD(t)
dt
= γ(H −Hc) − ηD,

dN(t)
dt
=

r0N
1 + r1D

(
1 −

N
K0e−K1D

)
−

c
(
1 − m0

1+m1D

)
NP

1 + a
(
1 − m0

1+m1D

)
N
,

dP(t)
dt
=

ec
(
1 − m0

1+m1D

)
NP

1 + a
(
1 − m0

1+m1D

)
N
− (d0 + d1D)P,

(1)

with positive initial conditions: H(0) > 0, D(0) > 0, N(0) > 0 and P(0) > 0.
Now, lim

D→∞
K(D) = 0, which means that the population will go extinct with time for very large destruction

due to lack of their habitat. So, for the biological existence of such models, it is considered that the
proportion of habitat destruction lies in a finite range, and can not increase boundlessly. Moreover, dD

dt may
be positive only when H > Hc which supports the assumption that habitat destruction takes place only
when human population goes beyond a certain limit Hc. And, the parameters, in this model, are assumed
to be non-negative due to biological restrictions. Description of the model parameters are summarized in
Table 1.
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Table 1: Description of the system parameters

Parameter Description
r Growth rate of human population
b Measure of crowding effect due to large size of human population
γ Rate of habitat destruction due to H when H > Hc
η Rate of habitat restoration
r0 Coefficient of intrinsic growth rate of prey population
r1 Rate of decrease in prey population per unit habitat destruction
K0 Natural carrying capacity for prey population
K1 Rate of loss in carrying capacity from its natural level due to habitat destruction
c Consumption rate of predator

m0 Natural available refuge protecting prey population
m1 Rate of loss in naturally available prey refuge due to habitat destruction
a−1 Half saturation constant

e (0 < e < 1) Biomass conversion rate
d0 Natural death rate of predator population
d1 Death rate of predator population per unit habitat destruction

3. Positivity and Boundedness

The following two theorems in this section demonstrate the well-posedness of the system, i.e., every
positive solution remains positive and uniformly bounded over time. In the context of ecology, these indicate
that the interacting species in our model behave in a manner that is compatible with the environment and
the abundance of each species is constrained by limited resources.

Theorem 3.1. The solutions of system (1), starting from R4
+, are positive.

Proof. The right hand side of system (1) are continuous locally Lipschitzian functions, which indicates
the existence of an unique solution (H(t),D(t),N(t),P(t)) with positive initial conditions on [0, κ), where
0 < κ ≤ +∞ [14]. The first equation of (1) gives

dH
dt
= H(r − bH),

⇒ H(t) = H(0) exp
[∫ t

0
(r − bH(s)) ds

]
> 0, for H(0) > 0.

Similarly, the third and fourth equations give

N(t) = N(0) exp
(∫ t

0
ϕ1(D(s),N(s),P(s)) ds

)
> 0, for N(0) > 0,

P(t) = P(0) exp
(∫ t

0
ϕ2(D(s),N(s)) ds

)
> 0, for P(0) > 0,

where, ϕ1(D(s),N(s),P(s)) = r0
1+r1D(s)

(
1 − N(s)

K0e−K1D(s)

)
−

c
(
1− m0

1+m1D(s)

)
P(s)

1+a
(
1− m0

1+m1D(s)

)
N(s)

and ϕ2(D(s),N(s)) =
ec
(
1− m0

1+m1D(s)

)
N(s)

1+a
(
1− m0

1+m1D(s)

)
N(s)
− (d0 + d1D(s)).

Next, we want to show that D(t) ≥ 0, ∀t ∈ [0, κ). If the statement does not hold, then ∃ t1 ∈ (0, κ) such
that D(t1) = 0, Ḋ(t1) < 0 and D(t) ≥ 0, ∀ t ∈ [0, t1). From the second equation we get,

dD
dt

∣∣∣∣∣
t=t1

= γ{H(t1) −Hc} − ηD(t1) = γ{H(t1) −Hc}

≥ 0, (as, H(t) > Hc, ∀t > 0 holds for the persistence of the system)
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which is a contradiction to Ḋ(t1) < 0. So, D(t) ≥ 0, ∀ t ∈ [0, κ), where 0 < κ ≤ ∞. So, the solutions of the
system (1) are feasible with time when H(t) > Hc.

Theorem 3.2. The solutions of system (1) in R4
+ are bounded with time.

Proof. The first equation of (1) is dH
dt = H(r − bH), which is a logistic equation. So, lim sup

t→∞
H(t) ≤

r
b

.

Also, from the second equation of the system, we have

dD
dt
= γ{H −Hc} − ηD ≤

γr
b
− ηD.

Then, D(t) ≤ D(0)e−ηt +
γr
bη

(1 − e−ηt)

⇒ lim sup
t→∞

D(t) ≤
γr
bη
.

From the third equation of (1), we have

dN(t)
dt
=

r0N
1 + r1D

(
1 −

N
K0e−K1D

)
−

c
(
1 − m0

1+m1D

)
NP

1 + a
(
1 − m0

1+m1D

)
N

≤
r0N

1 + r1D

1 −
N(
K0

1+K1D

) ≤ r0N

1 −
N( K0bη

bη+γrr1

)


⇒ lim sup
t→∞

N(t) ≤
K0bη

bη + γrr1
< K0.

Let us consider, W(t) = eN(t) + P(t).

Then,
dW
dt
=

er0N
1 + r1D

(
1 −

N
K0e−K1D

)
− (d0 + d1D)P

≤
er0N

1 + r1D
− d0P

≤ e(r0 + 1)N − τW where τ = min{1, d0}

≤
e(r0 + 1)K0bη
(bη + γrr1)

− τW (for large time t),

then W(t) ≤
e(r0 + 1)K0bη
τ(bη + γrr1)

(1 − exp(−τt)) +W(H(0),D(0),N(0),P(0)) exp(−τt);

As t → ∞, 0 < W(t) ≤
eK0bη
τ

(
r0 + 1

bη + γrr1

)
. Henceforth, the solutions of the proposed system eventually

enter into the region:

Ω =

{
(H(t),D(t),N(t),P(t)) ∈ R4

+ : 0 < H(t) ≤
r
b
+ ϵ; 0 < D(t) ≤

γr
bη
+ ϵ; 0 < N(t) ≤

K0bη
bη + γrr1

+ ϵ;

0 < W(t) ≤
eK0bη
τ

(
r0 + 1

bη + γrr1

)
+ ϵ, for any ϵ > 0

}
.

This proves the theorem.
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4. Equilibrium Points

In system (1), it is considered that the habitat can be destroyed only when the human population, H
exceeds a threshold value Hc. And the human population grows according to logistic law, so, H(t) , 0 is

taken into account here. Moreover, system (1) gives the carrying capacity of H as
r
b

.
Let us consider the case D = 0. Then we have H = Hc =

r
b , and the prey-predator interaction turns into a

Rosenzweig–MacArthur model with prey refuge. The equilibrium points become: E1(Hc, 0, 0, 0), E2(Hc, 0,K0, 0)
and E3 (Hc, 0,N3,P3), where N3 =

d0
(1−m0)(ec−ad0) and P3 =

r0
c(1−m0)

(
1 − N3

K0

)
{1 + a(1 −m0)N3}. So, the equilibrium

point E3 exists when ec > ad0.
Next we consider the case when D , 0. We get the equilibrium points as E4(H4,D4, 0, 0) ≡

(
r
b ,

γ(r−bHc)
bη , 0, 0

)
and E5 = (H5,D5,N5, 0) ≡

(
r
b ,

γ(r−bHc)
bη ,K0e

−

{
K1γ(r−bHc)

bη

}
, 0

)
. The feasibility of E4 and E5 exist when r > bHc holds.

The model system (1) has a unique interior equilibrium point E∗(H∗,D∗,N∗,P∗), where
H∗ = r

b , D∗ = γ(r−bHc)
bη , N∗ = (d0+d1D∗)(

1− m0
1+m1D∗

)
{ec−a(d0+d1D∗)}

, and

P∗ =

(
r0

1+r1D∗

)
c
(
1− m0

1+m1D∗

) (1 − N∗

K0e−K1D∗

) {
1 + a

(
1 − m0

1+m1D∗

)
N∗

}
. So, the existence of the coexisting state depend on the

following conditions: (i) bη(ec − ad0) > ad1γ(r − bHc) > 0, and (ii) N∗ < K0e−
K1γ
bη (r−bHc).

5. Local Stability Analysis

This section contains the local stability criterion of the equilibrium points which can be determined by
analyzing the eigenvalues of corresponding Jacobian matrices. The Jacobian matrix of system (1) is

J =


a11 0 0 0
a21 a22 0 0
0 a32 a33 a34
0 a42 a43 a44

 , (2)

where a11 = r − 2bH, a21 = γ, a22 = −η, a32 = −
r0N

(1+r1D)2

{
r1 +

N{K1(1+r1D)−r1}

K0e−K1D

}
−

cm0m1NP

(1+m1D)2
{
1+a

(
1− m0

1+m1D

)
N
}2 , a33 =

r0
1+r1D

(
1 − 2N

K0e−K1D

)
−

c
(
1− m0

1+m1D

)
P{

1+a
(
1− m0

1+m1D

)
N
}2 , a34 = −

c
(
1− m0

1+m1D

)
N

1+a
(
1− m0

1+m1D

)
N

, a42 =
ecm0m1NP

(1+m1D)2
{
1+a

(
1− m0

1+m1D

)
N
}2 − d1P, a43 =

ec
(
1− m0

1+m1D

)
P{

1+a
(
1− m0

1+m1D

)
N
}2

and a44 =
ec
(
1− m0

1+m1D

)
N

1+a
(
1− m0

1+m1D

)
N
− (d0 + d1D).

Theorem 5.1. E1 is an unstable equilibrium point.

Proof.

For E1(Hc, 0, 0, 0) : J|E1 =


−r 0 0 0
γ −η 0 0
0 0 r0 0
0 0 0 −d0

 .
So, λ1 = −r < 0, λ2 = −η < 0, λ3 = r0 > 0 and λ4 = −d0 < 0. Positive sign of one eigenvalue proves that E1
is an unstable equilibrium point.

Theorem 5.2. E2 is locally asymptotically stable (LAS) when (ec − ad0)(1 −m0)K0 < d0 holds.
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Proof.

For E2(Hc, 0,K0, 0) : J|E2 =


−r 0 0 0
γ −η 0 0
0 −r0K0K1 −r0 −

c(1−m0)K0
1+a(1−m0)K0

0 0 0 ec(1−m0)K0
1+a(1−m0)K0

− d0

 .
So, λ1 = −r, λ2 = −η, λ3 = −r0 and λ4 =

ec(1−m0)K0
1+a(1−m0)K0

− d0. Here all the eigenvalues are always negative except

λ4 and so, E2 is locally asymptotically stable only when λ4 < 0, i.e., when ec(1−m0)K0
1+a(1−m0)K0

< d0 holds.

Theorem 5.3. E3 is locally asymptotically stable when (ec − ad0)(1 −m0)aK2
0 < (ec − aK0d0) holds.

Proof.

For E3(Hc, 0,N3,P3) : J|E3 =


−r 0 0 0
γ −η 0 0
0 a32 a33 −

c(1−m0)N3
1+a(1−m0)N3

0 a42 a43 0

 ,
where a32 = −

r0K1N2
3

K0
−

r1c(−m0)N3P3
1+a(1−m0)N3

−
cm0m1N3P3
{1+a(1−m0)N3}

2 , a33 = −
r0N3
K0
+

ca(1−m0)2N3P3

{1+a(1−m0)N3}
2 , a42 =

ecm0m1N3P3
{1+a(1−m0)N3}

2 − d1P3, a43 =
ec(1−m0)P3

{1+a(1−m0)N3}
2 . Two eigenvalues corresponding to J|E3 are given by So, λ1 = −r, λ2 = −η which are always

negative, and other two eigenvalues are roots of the equation λ2 + A1λ + A2 = 0, where A1 = −a33 and
A2 = −a34a43 > 0. According to Routh-Hurwitz criterion, E3 is LAS when the equation has roots with
negative real parts, and this happens if a33 < 0, i.e., aK2

0(ec − ad0)(1 −m0) < (ec − aK0d0).

Theorem 5.4. E4 is an unstable equilibrium point.

Proof.

For E4(H4,D4, 0, 0) : J|E4 =


−r 0 0 0
γ −η 0 0
0 0 r0

1+r1D4
0

0 0 0 −(d0 + d1D4)

 ,
The eigenvalues are λ1 = −r < 0, λ2 = −η < 0, λ3 =

r0
1+r1D4

> 0 and λ4 = −(d0 + d1D4) < 0. As one of the
eigenvalues is positive, so, E4 is an unstable equilibrium point.

Theorem 5.5. E5 is locally asymptotically stable when {bη(ec − ad0) − ad1γ(r − bHc)}{bη(1 − m0) + m1γ(r −
bHc)}K0e−K1D5 < {d0bη + d1γ(r − bHc)}{bη +m1γ(r − bHc)} holds.

Proof.

For E5(H5,D5,N5, 0) : J|E5 =


−r 0 0 0
γ −η 0 0
0 a32 a33 a34
0 0 0 a44

 ,
where a32 = −

r0N5
(1+r1D5)2

{
r1

(
1 − N5

K0e−K1D5

)
+

N5K1(1+r1D5)
K0e−K1D5

}
, a33 = −

r0N5

(1+r1D5)K0e−K1D5
, a34 = −

c
(
1− m0

1+m1D5

)
N5

1+a
(
1− m0

1+m1D5

)
N5

, and a44 =

ec
(
1− m0

1+m1D5

)
N5

1+a
(
1− m0

1+m1D5

)
N5

− (d0 + d1D5). The eigenvalues corresponding to J|E5 are given by λ1 = −r, λ2 = −η, λ3 =

−
r0N5

(1+r1D5)K0e−K1D5
and λ4 =

ec
(
1− m0

1+m1D5

)
N5

1+a
(
1− m0

1+m1D5

)
N5

− (d0+d1D5). By Routh-Hurwitz criterion, E5 is LAS when λ4 < 0, i.e.,

{bη(ec− ad0)− ad1γ(r− bHc)}{bη(1−m0)+m1γ(r− bHc)}K0e−K1D5 < {d0bη+ d1γ(r− bHc)}{bη+m1γ(r− bHc)}.
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Theorem 5.6. E∗(H∗,D∗,N∗,P∗) is locally asymptotically stable when a
(
1 − m0

1+m1D∗

)
K0e−K1D∗ < ec+a(d0+d1D∗)

ec−a(d0+d1D∗) holds.

Proof.

For E∗(H∗,D∗,N∗,P∗) : J|E∗ =


−r 0 0 0
γ −η 0 0
0 a32 a33 a34
0 a42 a43 0

 ,

where a32 = −
r0N∗

(1+r1D∗)2

{
r1 +

N∗{K1(1+r1D∗)−r1}

K0e−K1D∗

}
−

cm0m1N∗P∗

(1+m1D∗)2
{
1+a

(
1− m0

1+m1D∗

)
N∗

}2 , a33 = −
r0N∗

(1+r1D∗)K0e−K1D∗ +
ac

(
1− m0

1+m1D∗

)2
N∗P∗{

1+a
(
1− m0

1+m1D∗

)
N∗

}2 ,

a34 = −
c
(
1− m0

1+m1D∗

)
N∗

1+a
(
1− m0

1+m1D∗

)
N∗

, a42 =
ecm0m1N∗P∗

(1+m1D∗)2
{
1+a

(
1− m0

1+m1D∗

)
N∗

}2 − d1P∗ and a43 =
ec
(
1− m0

1+m1D∗

)
P∗{

1+a
(
1− m0

1+m1D∗

)
N∗

}2 . Now, J|E∗ has two

negative eigenvalues λ1 = −r and λ2 = −η, and other two eigenvalues are the roots of the equation:

λ2 + B1λ + B2 = 0, (3)

where B1 = −a33 and B2 = −a34a43 > 0. So, the equation has roots with negative real parts if B1 > 0 which

gives a33 < 0, i.e., a
(
1 −

m0

1 +m1D∗

)
K0e−K1D∗ <

ec + a(d0 + d1D∗)
ec − a(d0 + d1D∗)

.

6. Persistence

From a mathematical viewpoint, persistence of a system ensures that its solutions are always away
from zero. Ecologically, it refers to the sustainability of all interacting species over the long term period
irrespective of any initial population size. We use the average Lyapunov function to verify the persistence
of the proposed system.

Theorem 6.1. Prey-predator subsystem of system (1) is persistent if (ec − ad0)(1 − m0)K0 > d0 holds when D = 0
and {bη(ec− ad0)− ad1γ(r− bHc)}{bη(1−m0)+m1γ(r− bHc)}K0e−K1D5 > {d0bη+ d1γ(r− bHc)}{bη+m1γ(r− bHc)}
holds when D , 0.

Proof. Consider the situation when the habitat is not destroyed (D = 0). The average Lyapunov function is
considered as V0(H, 0,N,P) = Hβ1 Nβ2 Pβ3 , where βi > 0 for i = 1, 2, 3.

Then we have,
V̇0

V0
= ψ(H, 0,N,P) = β1[r − bH] + β2

[
r0

(
1 −

N
K0

)
−

c(1 −m0)P
1 + a(1 −m0)N

]
+ β3

[
ec(1 −m0)N

1 + a(1 −m0)N
− d0

]

Here we get, ψ(E1) = ψ(Hc, 0, 0, 0) = β2r0 − β3d0,

and ψ(E2) = ψ(Hc, 0,K0, 0) = β3

[
ec(1 −m0)K0

1 + a(1 −m0)K0
− d0

]
.

So, ψ(E1) is positive for some positive βi, i = 2, 3. And, ψ(E2) > 0 if (ec− ad0)(1−m0)K0 > d0 for some β3 > 0,
and system (1), in absence of destruction, is persistent under this condition.
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Now, the average Lyapunov function, in presence of habitat destruction (D , 0), is considered as
V(H,D,N,P) = Hθ1 Dθ2 Nθ3 Pθ4 , where θi > 0 for i = 1, 2, 3, 4. In the interior of R4

+, we get

V̇
V
= ϕ(H,D,N,P)

= θ1[r − bH] +
θ2

D
[γ(H −Hc) − ηD] + θ3

 r0

1 + r1D

(
1 −

N
K0e−K1D

)
−

c
(
1 − m0

1+m1D

)
P

1 + a
(
1 − m0

1+m1D

)
N


+ θ4

 ec
(
1 − m0

1+m1D

)
N

1 + a
(
1 − m0

1+m1D

)
N
− (d0 + d1D)


Then we have, ϕ(E4) = ϕ(H4,D4, 0, 0) = θ3

( r0

1 + r1D4

)
− θ4(d0 + d1D4)

and ϕ(E5) = ϕ(H5,D5,N5, 0) = θ4

 ec
(
1 − m0

1+m1D5

)
N5

1 + a
(
1 − m0

1+m1D5

)
N5

− (d0 + d1D5)

 .
So, ϕ(E4) is positive for some positive θi, i = 3, 4. Also, ϕ(E5) > 0 if {bη(ec− ad0)− ad1γ(r− bHc)}{bη(1−m0)+
m1γ(r− bHc)}K0e−K1D5 > {d0bη+ d1γ(r− bHc)}{bη+m1γ(r− bHc)} for some θ4 > 0, and system (1) is persistent
[12] under this condition.

Remark 6.2. Persistence of prey-predator subsystem implies the instability of the boundary equilibrium points E2
and E5 respectively.

7. Bifurcation Analysis

The local bifurcations around the equilibrium points are analysed mainly with the help of Sotomayor’s
theorem [16] and Hopf-bifurcation theorem [13].
Let system (1) is written as Ẋ(t) = f (X(t)), where X(t) = (H(t),D(t),N(t),P(t))T and f = ( f1, f2, f3, f4)T with

f1 = H(r− bH), f2 = γ(H−Hc)−ηD, f3 =
r0N

1+r1D

(
1 − N

K0e−K1D

)
−

c
(
1− m0

1+m1D

)
NP

1+a
(
1− m0

1+m1D

)
N

and f4 =
ec
(
1− m0

1+m1D

)
NP

1+a
(
1− m0

1+m1D

)
N
− (d0+d1D)P.

Theorem 7.1. System (1) exhibits a transcritical bifurcation around E5(H5,D5,N5, 0) taking d1 as a bifurcation
parameter, when {bη(ec − ad0) − ad1γ(r − bHc)}{bη(1 −m0) +m1γ(r − bHc)}K0e−K1D5 = {d0bη + d1γ(r − bHc)}{bη +
m1γ(r − bHc)} holds good.

Proof.

J|E5 =


−r 0 0 0
γ −η 0 0
0 a32 a33 a34
0 0 0 a44

 ,

where a32 = −
r0N5

(1+r1D5)2

{
r1

(
1 − N5

K0e−K1D5

)
+

N5K1(1+r1D5)
K0e−K1D5

}
, a33 = −

r0N5

(1+r1D5)K0e−K1D5
, a34 = −

c
(
1− m0

1+m1D5

)
N5

1+a
(
1− m0

1+m1D5

)
N5

, and a44 =

ec
(
1− m0

1+m1D5

)
N5

1+a
(
1− m0

1+m1D5

)
N5

− (d0 + d1D5). The eigenvalues are λ1 = −r, λ2 = −η, λ3 = −
r0N5

(1+r1D5)K0e−K1D5
and λ4 =
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ec
(
1− m0

1+m1D5

)
N5

1+a
(
1− m0

1+m1D5

)
N5

− (d0 + d1D5). Let, J|E5 has a simple zero eigenvalue at the threshold d1 = d[Tc]
1 .

So, at d1 = d[Tc]
1 =

bη[K0e−K1D5 (ec − ad0){bη(1 −m0) +m1γ(r − bHc)} − d0{bη +m1γ(r − bHc)}]
γ(r − bHc)[bη{1 + a(1 −m0)} +m1γ(r − bHc)(1 + K0e−K1D5 )]

:

J|E5 =


−r 0 0 0
γ −η 0 0
0 a32 a33 a34
0 0 0 0

 ,
and λ4 = 0 in this case. Moreover, at zero eigenvalue, the right eigenvector of J|E5 is V = (v1, v2, v3, v4)T =
(0, 0,−a34, a43)T, whereas the left eigenvector is W = (w1,w2,w3,w4)T = (0, 0, 0, 1)T. Hence,

Ω1 =WT. fd1

(
E5, d

[Tc]
1

)
= −(DP)E5 = 0,

Ω2 =WT
[
D fd1

(
E5, d

[Tc]
1

)
V
]
= −a33D5 , 0,

Ω3 =WT
[
D2 f

(
E5, d

[Tc]
1

)
(V,V)

]
= −

2ec
(
1 − m0

1+m1D5

)
a33a34{

1 + a
(
1 − m0

1+m1D5

)
N5

}2 , 0.

By Sotomayor’s Theorem, the system undergoes a transcritical bifurcation around E5 at d1 = d[Tc]
1 .

Theorem 7.2. If E∗ exists with the feasibility conditions, then a simple Hopf-bifurcation occurs at unique d1 = d[H]
1 ,

where d[H]
1 is the positive root of B1(d1) = 0 (stated in equation (3)).

Proof. From the Jacobian matrix corresponding to E∗ (J|E∗ ), we get the eigenvalues as λ1 = −r and λ2 = −η,
and other two eigenvalues are the roots of the equation λ2 + B1λ + B2 = 0, where B1 = −

r0N∗

(1+r1D∗)K0e−K1D∗ +

ac
(
1− m0

1+m1D∗

)2
N∗P∗{

1+a
(
1− m0

1+m1D∗

)
N∗

}2 and B2 =
ec2

(
1− m0

1+m1D∗

)2
N∗P∗{

1+a
(
1− m0

1+m1D∗

)
N∗

}3 > 0. Now,

Tr (J|E∗ ) =

(
r0N∗

1+r1D∗

){
1 + a

(
1 − m0

1+m1D∗

)
N∗

} a (
1 −

m0

1 +m1D∗

) (
1 −

N∗

K0e−K1D∗

)
−

{
1 + a

(
1 − m0

1+m1D∗

)
N∗

}
K0e−K1D∗


=

r0N∗X

(1 + r1D∗)
{
1 + a

(
1 − m0

1+m1D∗

)
N∗

} ,
where X = a

(
1 − m0

1+m1D∗

)
−

1
K0e−K1D∗

{
1 + 2a

(
1 − m0

1+m1D∗

)
N∗

}
.

At d1 = d[H]
1 =

(ec − ad0)aK0e−K1D∗
(
1 − m0

1+m1D∗

)
− (ec + ad0)

aD∗
[
1 + aK0e−K1D∗

(
1 − m0

1+m1D∗

)] , we get X(d[H]
1 ) = 0. So, the characteristic equation

has a pair of purely imaginary rootsλ1,2 = ±i
√

B2 at d1 = d[H]
1 as B1 = Tr (J|E∗ ) |d[H]

1
= 0 and B2(d1) is continuous

function of d1.

Now, the transversality condition for Hopf-bifurcation is
(

d
dd1

[B1(d1)]
) ∣∣∣∣∣

d1=d[H]
1

, 0, for i = 1, 2. Here,

the calculation gives
(

d
dd1

[Tr (J|E∗ )]
) ∣∣∣∣∣

d1=d[H]
1

= −
2ar0N∗

(
1 − m0

1+m1D∗

)
dN∗
dd1

K0e−K1D∗ (1 + r1D∗)
{
1 + a

(
1 − m0

1+m1D∗

)
N∗

} , 0, where dN∗
dd1
=

ecD∗(
1− m0

1+m1D∗

)
{ec−a(d0+d1[H]D∗)}2

. Hence it is proved.
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8. Numerical Simulation

It has been already demonstrated that whenever the human population H does not exceed a threshold
level Hc, the prey-predator interaction evolves through a Rosenzweig-MacArthur model with constant prey
refuge. The dynamical behaviour of such type of Rosenzweig-MacArthur model with the impact of constant
prey refuge are well studied. Therefore, in this section, we primarily focus on some numerical simulations
under the consideration of H(0) > Hc, i.e., the human population exceeds the threshold level Hc and that
includes the effect of habitat destruction in our proposed system. The system has three non-trivial steady
states, identified as E4(H4,D4, 0, 0), E5(H5,D5,N5, 0), and E∗(H∗,D∗,N∗,P∗), each of which describes a variety
of rich predator-prey dynamics. The equilibrium state E4 is always unstable while the other two equilibrium
points E5 and E∗ are locally asymptotically stable under some parametric restrictions stated in Theorem 5.5
and Theorem 5.6, respectively. This claims that even if the habitat is being destroyed rapidly, both prey
and predator species cannot go extinct together. We have recognized some fundamental thresholds in the
system while exploring the various kinds of phases around each stationary point whose in-depth analyses
are presented numerically in the subsequent paragraphs. The default value of the different parameters are
taken from Table 2.

Parametric Values
r b γ Hc η r0 r1 K0 K1 c m0 m1 a e d0 d1

1.5 0.02 0.06 1.0 0.1 5 0.05 200 0.01 0.8 0.4 0.1 0.1 0.5 0.2 0.075

Table 2: Parameter values used for numerical simulation of system (1)

For this set of parametric values, the system exhibits a stable behaviour around a unique interior
equilibrium point E∗(75, 44.4, 81.07, 6.56) (Fig.1(b)). However, if the death rate of predator due to habitat
destruction (d1) is slightly increased to d1 = 0.08, predator species goes extinct and the system settles
into a predator-free steady state E5(75, 44.4, 128.3, 0) (Fig.1(a)). Therefore, it follows immediately that a
transcritical bifurcation occurs at a certain value of d1 = d[Tc]

1 ∈ (0.075, 0.08) through which the system
exchanges its stability from E∗ to E5 or vice-versa.
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Figure 1: Time series of population biomass and the proportion of habitat destruction for system (1) describing various types
of dynamical behaviour. (a): Predator-free equilibrium point E5(75, 44.4, 128.3, 0) is locally asymptotically stable for d1 = 0.08. (b):
Interior equilibrium point E∗(75, 44.4, 81.07, 6.56) is locally asymptotically stable for d1 = 0.075. Other parameter values are taken from
Table 2.

Next we investigate the impact of habitat destruction caused by H on the qualitative dynamics of the
proposed system. For the parametric set in Table 2, it is observed that the system exhibits a stable behaviour
around a unique interior equilibrium point E∗(75, 44.4, 81.07, 6.56). Now if the rate of habitat destruction γ is
approximately increased to γ = 0.063, the system experiences a transcritical bifurcation at which the interior
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equilibrium point E∗ trades its stability with E5. However, if the value of γ is decreased to γ = 0.057, a Hopf-
bifurcation occurs and the system starts to exhibit oscillating behaviour around the interior equilibrium
point E∗. Since the first Lyapunov coefficient is negative, the resulting Hopf-bifurcation is supercritical. The
pictorial description of these bifurcation analyses with respect to γ are depicted in Figs.2(a,b). Time series
of the state variables are also plotted in Figs.2(c,d,e) for different representative values of γ (0 < γ < 0.057,
0.057 < γ < 0.063 and 0.063 < γ) to illustrate the dynamical behaviour of the system. Since increasing
(decreasing) γ have similar impact on the system dynamics with decreasing (increasing) η, the bifurcation
diagram with respect to η is qualitatively comparable with γmoving in opposite direction (see Fig.3). That
means if γ is increased from lower value to higher value, the system first undergoes a Hopf-bifurcation and
then a transcritical bifurcation, but for the case of increasing η, the system first experiences a transcritical
bifurcation and then a Hopf-bifurcation. A more precise depiction of the system dynamics in terms of
stability region in γ − η parametric plane is shown in Fig.4. A Hopf-bifurcation curve and a transcritical
bifurcation curve divide the entire parametric plane into three regions: (i) region above the Hopf-bifurcation
curve where the system exhibits oscillatory behaviour around E∗, (ii) region in between the Hopf-bifurcation
curve and the transcritical bifurcation curve where the interior equilibrium point E∗ is stable, and (iii) region
below the transcritical bifurcation curve where the predator-free equilibrium point E5 is stable. Ecologically,
this means that the higher rate of habitat destruction (γ) than the rate of reduction in habitat degradation (η)
is always detrimental to the survival of predators. But the most surprising fact is that even if the value of η
is slightly higher than the value of γ, the predator species may still face extinction possibility. Therefore, we
must appropriately boost our efforts to increase the rate of habitat restoration in order to sustain biodiversity.
Mean prey and predator biomass with changing γ and η are depicted in Fig.5 which demonstrates that
higher rate of habitat degradation always drives the predator species to extinction. Moreover, for greater
values of γ, a larger value of η is still not sufficient for the survival of predators. For instance, if we take
γ = 0.15, survival of predator species is not possible even if we take η = 0.2. This suggests that in addition
to accelerating habitat regeneration, we also need to slow down the rate of habitat deterioration in order to
maintain the biodiversity.

Now we explore the dynamical behaviour of the system with the variation of the rate of loss in carrying
capacity due to habitat destruction (K1). From Fig.6, we observe that lower value of K1 causes the oscillatory
behaviour around E∗ which becomes asymptotically stable via supercritical Hopf-bifurcation at K[H]

1 ≈

0.00328. Further increasing of K1 may remove the existence of E∗ and stabilize the system in E5 through a
transcritical bifurcation at K[Tc]

1 ≈ 0.0203. From the two parametric bifurcation diagram in Fig.7, one can
conclude that a higher value of K1 may drive the predator species to extinction. However, this extinction
possibility can be avoided by increasing η or decreasing γ.

In Fig.8, we have depicted the variation of prey and predator equilibrium biomass with increasing or
decreasing the parametric values of m0 and m1 which are related to the refuge term m(D) = m0

1+m1D . Enhancing
the proportion of natural available refuge (m0) is beneficial for uplifting the prey equilibrium biomass N∗.
In this scenario, prey species can locate sufficient hiding places to protect against the unexpected attack of
predator species. Then the absence of sufficient prey biomass in open habitat can be expected to result in
a fall in predator biomass. However, as seen in Fig.8(a), the predator equilibrium biomass remains almost
same with the variation of m0. This occurs as a result of the rising of prey biomass (by reproduction), which
fills the gap left by the lack of prey species (by hiding from predator). On the other hand, increasing of
m1 that measures the decrease of natural availability of prey refuge due to habitat destruction has negative
impact on prey equilibrium biomass and positive impact on predator equilibrium biomass. According
to Fig.8(b), growing m1 from a very low level causes a sustained drop in N∗ and a steady increase in P∗.
However further increasing of m1 has no significant impact on the population biomass. Therefore, a rapid
steady decline in prey species caused by habitat loss may not be a warning sign for population extinction
in long time run.

In Fig.9, we have plotted two-parametric bifurcation diagrams in γ −m0 and γ −m1 parametric planes.
The vertical Hopf-bifurcation and transcritical bifurcation curves in Fig.9(a) indicate that a certain dynamical
behaviour of the system for some fixed γ can not be changed only by varying the value of m0. Therefore,
once a predator species begins to go extinct for a fixed γ, it cannot be prevented from going extinct by
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(c) γ = 0.04
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(d) γ = 0.06
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(e) γ = 0.07

Figure 2: (a,b): Bifurcation diagram with respect to the bifurcation parameter γ. The system exhibits a transcritical bifurcation at
γ[Tc] = 0.063 and a supercritical Hopf-bifurcation at γ[H] = 0.057. (c,d,e): Time series of the state variables for different representative
values of γ. For γ = 0.04 < γ[H], oscillations around E∗ occurs (Fig.c); for γ = 0.06 ∈ (γ[H], γ[Tc]), E∗ is stable (Fig.d) and for
γ = 0.07 > γ[Tc], E5 is stable (Fig.e). Other parameter values are taken from Table 2.
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Figure 3: Bifurcation diagram with respect to the bifurcation parameter η. The system exhibits a transcritical bifurcation at
γ[Tc] = 0.096 and a supercritical Hopf-bifurcation at γ[H] = 0.104. Other parameter values are taken from Table 2.
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Figure 4: Two parametric bifurcation plane (γ − η) consisting of a Hopf-bifurcation curve and a transcritical bifurcation curve.
In the region above the Hopf-bifurcation curve, the system exhibits oscillatory behaviour around E∗. In the region in between the
Hopf-bifurcation curve and the transcritical bifurcation curve, the interior equilibrium point E∗ is stable. In the region below the
transcritical bifurcation curve, the predator-free equilibrium point E5 is stable. Other parameter values are taken from Table 2.

Figure 5: Mean prey and predator biomass with changing γ and η, demonstrates that a slightly higher value of η than γ leads to
prey outbreak and predator extinction. Higher value of γ is always detrimental to the survival of predators. Other parameter values
are taken from Table 2.
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1 = 0.00328. Other parameter values are taken from Table 2.
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artificially building or eliminating the natural hiding places of prey species. However, in Fig.9(b), we can
observe a tiny parametric interval of γ, where the dynamics of the system undergoes a transition from
stable E∗ to oscillatory E∗ via Hopf-bifurcation (Fig.11) or stable E∗ to stable E5 via transcritical bifurcation
(Fig.10) with the variation of m1.

Fig.12 depicts the variation of equilibrium level of population biomass and the bifurcation points with
respect to the bifurcating parameter d1. For lower values of d1, in particular d1 < d[H]

1 = 0.0716, the system
exhibits oscillatory behaviour around E∗. In a tiny intermediate interval of d1 (0.0716 < d1 < 0.0786), E∗

is stable and for d1 > d[Tc]
1 = 0.0786, E∗ exchanges its stability with E5, causing the extinction of predator

species.

0 0.2 0.4 0.6 0.8 1
m

0

0

20

40

60

80

100

N
, 

P

N

P

(a)

0 0.2 0.4 0.6 0.8 1m
1

0

20

40

60

80

100

120

140

N
, 
P

N

P

(b)

Figure 8: Equilibrium biomass of N and P varies with (a) m0 and (b) m1. Other parameter values are taken from Table 2.

Now, we compare our proposed model with the dynamics of a Rosenzweig–MacArthur prey-predator
system with constant prey refuge (without habitat destruction) in order to determine the role of habitat
degradation on long-term population biomass. From Fig.13, it is observed that equilibrium biomass of
predator species greatly declines in habitat-destructive environment which in turn enhances the equilibrium
level of prey biomass. As illustrated in Fig.14(a), increasing the amount of refuge up to a certain level can
raise the population biomass and cause a population outbreak for the model without habitat degradation.
However, once the refuge parameter (m0) reaches a certain critical level (m0 = 0.9974), the predator biomass
declines to the point of extinction and the prey species reaches its carrying capacity, i.e., one can observe
a transition from the coexistence equilibrium state to a predator-free equilibrium state at m0 = 0.9974. In
contrast, population explosions and the transitions between equilibrium states do not arise in the model with
habitat degradation as m0 increases. In this case, raising m0 does not significantly change the equilibrium
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and a transcritical bifurcation curve. Other parameter values are taken from Table 2.
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level of predator biomass (Fig.14(b)). In Fig.15 and Fig.16, we have plotted the mean population biomass of
prey and predator in m0 − d0 parametric plane for the model without habitat destruction and with habitat
destruction respectively.
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Figure 13: Phase portrait of prey and predator population with or without habitat degradation demonstrates the fluctuation in
equilibrium biomass. Here a = 0.001 and other parameter values are taken from Table 2.

9. Discussion

Anthropogenic activities which include deforestation, urbanization, mining, release of industrial waste,
and many more, have a great impact on climate change and hence result in habitat degradation. It affects
living species in the habitat by decreasing their survival and dispersal ability, breeding mechanisms, and
many more. This study describes how the dynamics of a prey-predator community living in a habitat is
being affected due to destruction. We, therefore, develop a predator-prey model that takes into account
the effect of habitat degradation caused by human activities associated with their growth. Additionally,
it is assumed that the impact of habitat degradation occurs when the human population reaches a certain
threshold Hc, below which the prey-predator interaction behaves according to the Rosenzweig-MacArthur
model with constant prey refuge. The well-posedness of our proposed model is verified by establishing the
positivity and boundedness of the solutions inR4

+. In absence of habitat destruction, the corresponding sys-
tem with Rosenzweig–MacArthur prey-predator interaction incorporating constant prey refuge possesses
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Figure 14: Equilibrium level of prey and predator biomass with the variation of m0. Here a = 0.001 and other parameter values are
taken from Table 2.

Without Habitat Destruction

Figure 15: Mean prey and predator biomass in m0 − d0 parametric plane for the model without habitat destruction. The expansion
of the prey equilibrium biomass benefits from increasing m0, whereas predator species goes extinct after a certain critical value of m0.
Here a = 0.001 and other parameter values are taken from Table 2.

With Habitat Destruction

(a) (b)

Figure 16: Mean prey and predator biomass in m0 − d0 parametric plane for the model with habitat destruction. A higher predator
mortality rate is always advantageous for the expansion of prey biomass and detrimental to the biomass of the predator for any
amount of prey refuge. Here a = 0.001 and other parameter values are taken from Table 2.
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three equilibrium states, E1(Hc, 0, 0, 0), E2(Hc, 0,K0, 0) and E3 (Hc, 0,N3,P3) whose stability conditions are
stated in Theorem 5.1, 5.2 and 5.3, respectively. Since the dynamical behaviour of such type of equilibrium
states with the impact of prey refuge is well studied, we, therefore concentrate our study only on the
effect of habitat destruction. By assuming H(0) > Hc and incorporating the effect of habitat destruction,
the resulting system possesses three non-trivial steady states, identified as E4(H4,D4, 0, 0), E5(H5,D5,N5, 0),
and E∗(H∗,D∗,N∗,P∗), each of which describes a variety of rich predator-prey dynamics. The equilibrium
state E4 is always unstable, which suggests that neither prey nor predator can go extinct simultaneously.
According to the stability analysis of equilibrium state E5, predator populations go extinct at higher rates of
habitat degradation, and prey populations will eventually approach some equilibrium level (under some
parametric restriction) that is lower than the natural carrying capacity K0. The coexistence of prey-predator
populations is ensured by the stability of equilibrium point E∗. The system is persistent, meaning that
over a long period of time, regardless of the initial population size, all of the species (which are present
initially) in the system survive and it is generated under some parametric restriction stated in Theorem
6.1. Sotomayor’s theorem [16] and the Hopf-bifurcation theorem [13] are the two basic theorems used to
analyse the local bifurcations near the equilibrium points.

We observe the effect of habitat loss on the qualitative behaviour of the system dynamics by varying
the parameters γ (rate of habitat destruction) and η (rate of habitat regeneration). In the set of parametric
values for stable interior equilibrium point, if only the value of γ is increased to a certain value γ[Tc], the
system experiences a transcritical bifurcation at which the interior equilibrium point E∗ trades its stability
with predator-free steady state E5. Now, if that γ is decreased at γ[H], we observe that the stable coexisting
behavior is transformed to coexisting oscillatory behavior (see Fig.2). The two parametric bifurcation
analysis in the γ − η parametric plane reveals that a higher rate of habitat destruction than that of habitat
restoration is always harmful for the survival of predators (see Fig.4). Surprisingly, even if the value of η is
slightly larger than the value of γ, the predator species may still be in danger of going extinct. Therefore, we
must appropriately boost our efforts to increase the rate of habitat restoration in order to sustain biodiversity.
Therefore, in order to maintain biodiversity, we must suitably step up our efforts to accelerate the rate of
habitat restoration. However, no efforts to restore the habitat will be successful in ensuring the survival
of predators if the rate of habitat degradation is too high. This suggests that in addition to accelerating
habitat regeneration, we also need to slow down the rate of habitat deterioration in order to maintain the
biodiversity.

Increasing the amount of naturally available refuge (m0) produces enough hiding places to protect
against unexpected predators’ attacks, which raise the equilibrium biomass of prey species. As a result, it is
anticipated that the absence of sufficient prey biomass in open habitat will lead to a fall in the equilibrium
biomass of predators. The predator equilibrium biomass, however, remains almost unchanged with the
alteration of m0 (see Fig.8(a)). This occurs as a result of the increase in prey biomass (through reproduction),
which fills the gap left by the lack of prey species (by hiding from predator). We also observe that increasing
of m1 (the coefficient measuring the decline in the natural availability of prey refuge on account of habitat
destruction) from a very low level results in a sustained drop in prey equilibrium biomass. On the other
hand, predator equilibrium biomass increases steadily due to more availability of prey because of the
decrease in the prey refuge. However further increasing of m1 has no significant impact on the population
biomass. Therefore, a rapid steady decline in prey species caused by habitat loss may not be a warning
sign for population extinction in long time run. We have also demonstrated that changing the value of
m0 alone cannot modify a system’s dynamical behaviour for a given fixed γ. Therefore, once a predator
species begins to go extinct for a fixed γ, it cannot be prevented from going extinct by artificially building
or eliminating the natural hiding places of prey species.

In a model without habitat destruction, if the amount of prey refuge is increased to a certain extent, it can
increase both prey and predator equilibrium biomass and lead to a population explosion. However, once
the refuge parameter reaches a certain critical level, the predator biomass steadily declines to the point of
extinction and the prey species approaches its carrying capacity, i.e., one can observe a transition from the
coexistence equilibrium state to a predator-free equilibrium state for some m0 ∈ (0, 1). On the other hand,
our proposed system with habitat destruction does not exhibit any population explosions or the transitions
between equilibrium states for varying m0.
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The consumption of prey is not an instantaneous process; the predator needs some time to digest the
food before continuing to hunt. Therefore, we also recommend another potential modification of our model
for future work, which is based on the gestation delay. The model can be made more realistic by accounting
for the Allee effect in the prey growth rate. It will also be intriguing to investigate the system in stochastic
environment.
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