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Abstract. This work investigates the regularity of solutions to a nonlinear parabolic equation with pertur-
bations and general measure data. Our approach involves a combination of convergence and compactness
techniques in variable exponent Sobolev spaces.

1. Introduction

In this manuscript, we show a certain regularity of solutions for nonlinear p(x)−parabolic problems
including a low order term with natural growth. More precisely, we are interested in the following problem

(P)


∂b(u)
∂t
− div

[
ϕ(t, x,u)(1 + |u|)s(x)

|∇u|p(x)−2
∇u
]
+ ζ(x, t)(1 + |u|)q(x)−1u|∇u|p(x) = µ in QT,

u(t, x) = 0 on (0,T) × ∂Ω,
b(u)(0, x) = b(u0)(x) in Ω,

where Ω is a bounded domain, with a smooth boundary ∂Ω and QT := (0,T) ×Ω, Ω ⊂ RN(N ≥ 2), T > 0.
The vector filed ϕ(t, x,u) verified certain appropriate hypotheses, µ is a bounded Radon measure on QT,
the initial data u0 ∈ L1(Ω) and ζ(x, t) is a measurable positive function.

The notion of existence and regularity results was introduced by Boccardo and al [20] when the right
hand side is in W−1,p′ (Ω). The following quasi-linear elliptic problem{

−div((ϕ(x) + |u|q)∇u) = f − ζ(x)|u|p−1u|∇u|2 in Ω,
u = 0 on ∂Ω,

(1)

with f is non-negative, f ∈ L1(Ω), a ≤ ϕ(x) ≤ b and p, q ≤ 2q, it has been examined in [19] (see also [18]).
Moreover, similar results have also been shown taking into account the parameters p, q and the summability
of the data f . The authors have enriched the work of [1, 19] by establishing the existence of solutions of the
problem (1) by taking p, q as real without any condition.
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The key point of the existence result in [36] is to show that |u|q|∇u| ∈ L1(Ω) for any q > 0. L. Aharouch
and colleagues in [6] established the existence of weak solutions for degenerate parabolic equations when
f ∈ Lp′ (0,T,W−1,p′ (Ω,W∗)) and ϕ(x, t,u,∇u) is strictly monotone. The authors proposed in [3, 4, 48] a novel
method using diffuse measures as data and perturbation terms, which avoids the need to apply the specific
structure of the measure decomposition and makes it more versatile for a wider range of problems. This
theory has applications in various disciplines of PDE analysis, including specialised electro-rheological
fluid models and image processing (see e.g. [11, 30, 50] and reference therein). In addition, the generalised
variational capacity, a Choquet capacity with respect to space, is widely used in nonlinear theory.

The authors of [3, 37] investigated the connection between these chosen capacities and diffuse measures.
Given the use of this capacity in geometric function theory and stochastic processes, such as its behaviour
under various forms of symmetrization and other geometric transformations, Harjulehto et al. [31] created
a relative capacity, studied its properties and compared it with the Sobolev capacity. In the case where
ζ(x) = u, there are several publications dealing with different aspects of this topic, such as (1). In addition,
as far as we know, there are some extended results in the framework of generalised Lebesgue spaces.

This paper improves and generalises previously published results and addresses more challenging
problems, such as nonlinear parabolic problems with variable exponent (P). The method used to prove the
main results is a combination of convergence results in appropriate spaces and compactness estimates via
some approximation problems.

The main contribution of this study is to extend the results for problems with measures to the case
with variable exponent. To obtain global estimates from a priori estimates, additional assumptions on
the exponent s(x) are required. When dealing with a potentially perturbed term with natural growth,
more general strategies such as those described in [2, 43] are applied. To achieve strong convergence
of approximate solutions, which is essential for generalised estimates of ”near/far”, certain types of test
functions are used instead of modifying the unknown variable, similar to the strategies used in [39, 41]
without a low-order term and [38] with an absorption term.

The structure of this paper is as follows. In Section 2, we provide some preliminary remarks, including
important properties and results on Lebesgue-Sobolev spaces with variable exponents, the generalised
parabolic capacity p(·)−, and measure decompositions that will be used throughout the proof. These results
and decompositions will be discussed in more detail later. In addition, the basic assumptions that must be
made about ϕ, µ, c, u0 are presented. To provide our general definition when the operator is modified, a
new primary result is proved in Section 3.

2. Preliminary results and notations

In our analysis of the problem (P) we will use definitions and fundamental properties of generalised
Lebesgue-Sobolev spaces Lp(x)(Ω), W1,p(x)

0 (Ω), as well as the theory of parabolic capacities. We will only
give brief summaries of the necessary results here, and refer the reader to the references [27, 28] for more
information.

2.1. Sobolev spaces with variable exponents
We define a real-valued continuous function p to be log-Hölder continuous in a bounded open subset

Ω of RN (with N ≥ 2) if

|p(x) − p(y)| ≤
C

| log |x − y||
for all x, y ∈ Ω such that |x − y| <

1
2
,

where C is a constant. We designate by

C+(Ω) =
{

log-Hölder continuous function p : Ω→ R with 1 < p− ≤ p(x) ≤ p+ < N
}
,

where
p− = min

{
p(x) : x ∈ Ω

}
and p+ = max

{
p(x) : x ∈ Ω

}
.
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Therefore, the variable exponent Lebesgue space Lp(x)(QT) is introduced as follows

Lp(x)(Ω) =
{
u : Ω→ R is measurable such that

∫
Ω

|u(x)|p(x)dx < +∞
}
,

the norm for Lp(x)(QT) is defined below:

∥u∥p(·) = inf
{
τ > 0;

∫
Ω

|
u(x)
τ
|
p(x)dx ≤ 1

}
.

Note that the inequality below will be used later

min
{
∥u∥p

−

p(·) ; ∥u∥p
+

p(·)

}
≤

∫
Ω

|u(x)|p(x)dx ≤ max
{
∥u∥p

−

p(·) ; ∥u∥p
+

p(·)

}
.

It should be noted that if 1 < p− < ∞, then Lp(·)(Ω) is reflexive and its dual is Lp′(·)(Ω), where
1

p(·)
+

1
p′(·)

= 1,

and then for any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) the inequality of type Hölder is given by∫
Ω

|uv|dx ≤
( 1
p(·)
+

1
p′(·)

)
∥u∥p(·)∥v∥p′(·).

Then, if p(·), p′(·) ∈ C+(Ω), the Young’s inequality is established by the following formula:

ab ≤
ap(x)

p(x)
+

bp′(x)

p′(x)
,

such that
1

p(·)
+

1
p′(·)

= 1 and for each a, b > 0. By extending a variable exponent p: Ω → [1,+∞) to

QT = Ω× [0,T] by defining p(x) := p(t, x) for each (x, t) ∈ QT, we can also consider the generalized Lebesgue
space

Lp(·)(QT) =
{
u : QT → R; measurable such that

∫
QT

∣∣∣∣u(x, t)
∣∣∣∣p(x)

dxdt < ∞
}
,

under the norm

∥u∥Lp(·)(QT) = inf
{
τ > 0;

∫
QT

∣∣∣∣u(x, t)
τ

∣∣∣∣p(x)
dxdt < 1

}
,

retains the same properties as Lp(·)(Ω). Furthermore, the variable exponent Sobolev space given by

W1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) ; |∇u| ∈ Lp(·)(Ω)

}
,

is a Banach space with the following norm

∥u∥1,p(·) = ∥u∥p(·) + ∥∇u∥p(·),

such that

∥u∥1,p(·) = inf
{
τ > 0;

∫
Ω

(∣∣∣∣∇u(x)
τ

∣∣∣∣p(x)
+
∣∣∣∣u(x)
τ

∣∣∣∣p(x))
dx ≤ 1

}
. (2)

We define the functional space W1,p(·)
0 (Ω) as the closure of C∞c (Ω) in W1,p(·)(Ω) with respect to the norm (2).

Note that W1,p(·)
0 (Ω) and W1,p(·)(Ω) are separable and reflexive Banach spaces if 1 ≤ p− < ∞ and 1 < p− < ∞

respectively. At last, we shall employ the standard notation for Bochner spaces, i.e., Lq(0,T; X) is the space
of strongly measurable function u : (0,T) → X for which t 7→ ∥u(t)∥X ∈ Lq(0,T). In addition, C([0,T]; X)
represents the space of continuous function u: [0,T]→ X according to the norm ∥u∥C([0,T];X) = max

t∈[0,T]
∥u(t)∥X,

where X is a Banach space and q ≥ 1.

Lp− (0, T; W1,p(x)
0 (Ω)) =

{
u : (0,T)→ W1,p(x)

0 (Ω) measurable with
( ∫ T

0
∥u(t)∥p

−

W1,p(x)
0 (Ω)

) 1
p− dt < +∞

}
.
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2.2. Measures and Parabolic capacity

Let QT = Ω×(0,T) for each fixed T > 0, and recall that V =W1,p(·)
0 (Ω)∩L2(Ω) has the norm ∥.∥W1,p(·)

0
+∥.∥L2(Ω).

The space Wp(·)(0,T) is defined as

Wp(·)(0,T) =
{
u ∈ Lp− (0,T,V); ∇u ∈ (Lp(·)(QT))N and ut ∈ L(p−)′ (0,T,V′)

}
with the following standard

∥u∥Wp(·)(0,T) = ∥u∥L(0,T,V) + ∥∇u∥ + ∥ut∥L(0,T,V′).

Note that Wp(·)(0,T) ↪→ C([0,T],L2(Ω)) continuously. Let O ⊆ QT be an open set, we define the (generalized)
parabolic capacity of O as

capp(·)(O) = inf
{
∥u∥Wp(·)(0,T) : O ∈Wp(·)(0,T), s ≥ χOa.e. in QT

}
,

where as usual we set inf{∅} = +∞, then for any Borel set B ⊆ QT, the definition of (generalized) parabolic
capacity can be extended by setting

capp(·)(B) = inf
{
capp(·)(O) : O open subset of QT,B ⊆ O

}
.

Since we are interested by using some regular properties, we need to define the following space

V =
{
u ∈ Lp− (0,T,W1,p(·)

0 (Ω)) : ∇u ∈ (Lp(·)(QT))Nand ut ∈ L(p−)′ (0,T,W1,p′(·)(Ω)) + L1(QT)
}
,

endowed with its natural norm

∥u∥V = ∥u∥Lp− (0,T,W1,p(·)
0 (Ω)) + ∥∇u∥(Lp(·)(QT))N + ∥ut∥L(0,T,W1,p′ (·)(Ω))+L1(QT).

In the following,Mb(QT) denotes the set of all Radon measures with bounded variation on QT, andM0(QT)
designates

M0(QT) =
{
µ ∈ Mb(QT) : µ(E) = 0 for every E ⊂ QT such that capp(·)(E) = 0

}
.

To better specify the nature of a measure inM0(QT), we need then to detail the structure of the dual space
(Wp(·)(0,T))′

Lemma 2.1. [37, lemma 4.2] Let1 ∈ (Wp(·)(0,T))′ then there exists11 ∈ L(p−)′ (0,T; W−1,p′(.)(Ω)), 12 ∈ Lp− (0,T; V), H ∈
(Lp′(.)(QT))N and 13 ∈ L(p−)′ (0,T; L2(Ω)) such that

≪ 1,u≫=
∫ T

0
⟨11,u⟩dt +

∫ T

0
⟨ut, 12⟩dt +

∫
QT

H.∇u dxdt +
∫

QT

13u dxdt,

for every u ∈Wp(·)(0,T). Moreover, we can choose (11, 12,H, 13) such that

∥11∥L(p−)′ (0,T;W−1,p′ (.)(Ω)) + ∥12∥Lp− (0,T;V) + ∥|H|∥(Lp′ (.)(QT))N

+∥13∥L(0,T;L2(Ω)) ≤ C∥1∥(Wp(·)(0,T))′ ,

with C not depending on 1.

One of the decomposition results of elements ofM0(QT) is the following
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Theorem 2.2. [37, Theorem 4.4] Let µ ∈ M0(QT), then there exists h ∈ L1(QT) and 1 ∈ (Wp(·)(0,T))′ such that
h + 1 = µ in the sense that ∫

QT

hφ dxdt+≪ 1, φ≫=
∫

QT

φ dµ, ∀φ ∈ C∞c ([0,T] ×Ω).

We obtain the following decomposition theorem as a result of Lemma 2.1 and Theorem 2.2.

Theorem 2.3. [37, Theorem 4.5] Letµ ∈ M0(QT) , then there exists ( f ,H, 11, 12) such that , 11 ∈ L(p−)′ (0,T; W−1,p′(.)(Ω)),
12 ∈ Lp− (0,T; V), H ∈ (Lp′(.)(QT))N; f ∈ L1(QT), in the sense that∫

QT

fφdxdt +
∫

QT

H.∇udxdt +
∫ T

0
⟨11, φ⟩dt −

∫ T

0
⟨φt, 12⟩dt =

∫
QT

φdµ,

for any φ ∈ C∞c ([0,T] ×Ω).

Remark 2.4. Note that, according to Theorem 2.3, for any µ ∈ Mb(QT). Then, there is ( f , h) such that f ∈ L1(QT),
H ∈ (Lp′(·)(QT))N, in the sense that∫

QT

φdµ =
∫

QT

fφdxdt +
∫

QT

H.∇udxdt +
∫

QT

φdµc.

for each φ ∈ C∞c ([0,T] ×Ω).

Note that the decomposition of µ ∈ M0(QT) in the previous theorem is not unique. A well-known decom-
position result can be found in [37, Lemma 4.6] and [29, Lemma 2.1]. Every µ inMb(QT) can be expressed
as a unique sum of its absolutely continuous part µ0 with respect to p(·)-capacity and its singular part µc
focused on a set E with zero p-capacity. Therefore, if µ ∈ Mb(QT), thanks to theorem 2.3, we have

µ = f − div(H) + 1t + µ
+
c − µ

−

c ,

In the distributional sense, where H ∈ (Lp′(·)(QT))N, f ∈ L1(QT), 1 ∈ Lp− (0,T; V) and (µ−c , µ+c ) are the positive
and negative parts of µc. To investigate the existence of a solution and to verify the density results, we need
to consider the following preliminary result, which involves some relevant data approximation.

Proposition 2.5. [24, Proposition 2.31] Let µ ∈ M0(QT) , then there exists a decomposition ( f , div(H), 1) of µ in the
sense of Theorem 2.3 and an approximation µm of µ satisfying

∥µm∥L1(QT) ≤ C, µm ∈ C∞c (QT)

and ∫
QT

µmφ dµ =
∫

QT

fmφ dx dt +
∫ T

0
⟨div(Hm), φ⟩dxdt −

∫ T

0
⟨φt, 1m⟩ dt,

with 
fm ∈ C∞c (QT) : fm → f in L1(QT) ,

Hm ∈ C∞c (QT) : Hm → H in Lp′(·)(QT)N

1m ∈ C∞c (QT) : 1m → 1 in Lp− (0,T,V) .

as m tends to 0, for very φ ∈ C∞c ([0,T] ×Ω).
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Remark 2.6. Let us recall the following function of ωn(r) = reΛr2 which had this useful property:

aω′n(r) − b|ωn(r)| ≥ 1, ∀r ∈ R, ∀a, b > 0, ∀Λ >
b2

8a2 . (3)

The truncation function and the following functions will be used in the following:

Tk(r) = max{−k,min(k, r)}, Θk(r) = T1(r − Tk(r)).

We will be interested in a specific type of positive bump functions C∞c known as ”cut-off” functions during
the proof of our principal result ωn : RN+1

→ R satisfy
φγ(r) ≡ 1 i f r ∈ Kγ,

φγ(r) = 0 i f r ∈ QT\Kγ,

0 ≤ φγ ≤ 1, ∀r ∈ QT.

let us define, for every 0 < q(x) < ∞, the Marcinkiewicz spaceMq(x)(QT) as the space of every measurable
function 1where

∃C > 0 with meas
{
(t, x) ∈ QT |1(t, x)| ≥ h

}
≤

C
hq− .

for every positive k, endowed with the semi-norm

∥1∥Mq(x)(Q) = inf
{
C > 0 : meas

{
(t, x) : |1(t, x)| ≥ h

}
≤

(C
k

)q(x)}
.

Note that, if q(x) ≥ q− > 1, then we obtain the following continuous embedding

Lq(x)(QT) ↪→Mq(x)(QT) ↪→ Lq(x)−ε(QT), ∀ϵ ∈ (0, q(x) − 1].

3. Assumptions and Technical Lemmas

The following assumptions are assumed throughout the work. We take a look at a Leray-Lions operator
defined by the formula:

Au = −div[ϕ(x, t,u,∇u)],

where ϕ : Ω × [0,T] × R × RN
→ R is a Carathéodory function, satisfying the following condition, there

exist k ∈ Lp(.)(QT) and α > 0, β > 0 such that, for each (t, x) ∈ QT all (u, ξ) ∈ R ×RN.

ϕ(t, x,u, ξ) · ζ ≥ L(|u|)|ξ|p(x), (4)

|ϕ(t, x,u, ξ)| ≤ β[k(t, x) + L(|u|)|ξ|p(x)−1], (5)

[ϕ(x, t,u, ξ) − ϕ(x, t,u, η)](ξ − η) > 0 ∀ ξ , η. (6)

Moreover, the function L satisfies

L(|u|) ≥ α, ∀u ∈ R. (7)

where α, λ, Λ are fxed real numbers. Here

b : R→ R is a strictly increasing C1-function with b(0) = 0, (8)
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and there exist b0 > 0 and b1 > 0 such that

b0 ≤ b′(s) ≤ b1, f or every s ∈ R. (9)

and

µ ∈ Mb(QT). (10)

This part introduces several fundamental technical concepts and results that will be used throughout this
article. For some details concerning their related contents, the reader can consult (see[37]).

Lemma 3.1. Let 0 ≤ Λ ∈ Mb(QT) be concentrated on a set E such that capp(x)(E) = 0. Then, for each 0, there exist
φγ ∈ C∞c (QT) and Kγ ⊂ E a compact subset such that

0 ≤ φγ ≤ 1, φ ≡ 0 in Kγ, Λ(E\Kγ) < γ,

lim
γ→0
||φγ||V = 0,

∫
QT

(1 − φγ)dΛ = ϖ(γ),
(11)

and, in particular, a decomposition [(φγ)1
t , (φγ)2

t ] such that
φγ → 0 *-weakly in L∞(QT), a.e.in QT and in L1(QT)

∥ (φγ)1
t ∥Lp′− (0,T,W−1,p′ (x)(Ω))≤

γ

3
, ∥ (φγ)2

t ∥L1(Qt))≤
γ

3

(12)

Remark 3.2. Let µ = f − div(H) + 1t + µ+c − µ
−
c concentrated on two disjoint sets E± by applying two compact sets

K±γ ⊆ E± such thatµ−c (E−\K−γ ) ≤ γ, µ+c (E+\K+γ ) ≤ γ and four cut-off functions where φ±η and φ±γ are in C1
c (QT) such

that 
φ±γ ≡ 1 on K±γ , 0 ≤ φ±γ ≤ 1,Supp(φ+γ ) ∩ Supp(φ−γ ≡ ∅)

∥φ±γ∥V ≤ γ,
(13)

and, 
(φ±γ )t such that ∥(φ±γ )1

r ∥Lp′− (0,T;W−1,p(x)(Ω)) ≤
γ

3

∥(φ±γ )2
t ∥L1(QT) ≤

γ

3
,

(14)

additionally , if µ⊕⊖c,m are as in (21) we obtain



∫
QT

φ±γdµ⊕⊖c,m = ϖ(m, γ),
∫

QT

φ±γdµ±c ≤ γ,

∫
QT

(1 − φ±γφ
±

η )dµ⊕⊖c,m = ϖ(m, γ, η) and
∫

QT

(1 − φ±γφ
±

η )dµ±c ≤ γ + η.

(15)

Moreover, if φ±γ , φ±η in W2,∞(QT) we have
0 ≤
∫

QT

φ+ηdµ−c ≤ η and 0 ≤
∫

QT

φ−ηdµ+c ≤ η,

0 ≤ φ+γ ≤ 1, 0 ≤ φ−η ≤ 1.

(16)
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Lemma 3.3. [13] Suppose that(4) - (10) are satisfied and let (um) be a sequence in Lp− (0,T; Lp(x)(Ω)) such that
um → u weakly in Lp− (0,T,Lp(x)(Ω)) and∫

QT

(ϕ(x, t,um),∇um) − ϕ(x, t,um,∇u))∇(um − u)dx→ 0.

Then, um → u strongly in Lp− (0,T; Lp(.)(Ω)).

Lemma 3.4. Let h′ is zero away from a compact set of R and h : R→ R be a continuous piecewise C1- function where

h(0) = 0, It should be noted that H(r) =
∫ r

0
h(σ)dσ. If u ∈ Lp− (0,T; W1,p(x)

0 (Ω)), um ∈ Lp′− (0,T; W−1,p(x)(Ω))+L1(QT)

and φ ∈ C∞(QT), we have then∫ T

0
⟨um, h(u)φ⟩dt =

∫
Ω

H(u(T))φ(T)dx −
∫
Ω

H(u(0))φ(0)dx −
∫

QT

φtH(u)dxdt. (17)

In general, we will work with measurable functions and truncations in the energy space Lp− (0,T; W1,p(x)
0 (Ω)).

For this, we consider the notion of ”generalized gradient”, whose fundamental result is contained in the
following lemma.

Lemma 3.5. [13] For every u ∈ T 1,p(x)
0 (QT), there exists a unique measurable function v : QT 7→ RN such that,

∇Tk(u) = vχ{|u|≤k}, a.e. in QT for each k > 0, where E is the characteristic function of the measurable set E.
Moreover, if∫

QT

|∇Tk(u)|p(x)dxdt ≤ C(k + 1), (18)

then, v coincides with the classical gradient of u and is denoted by ∇u = v. with u is capp(x)- a.e. finite, i.e.
capp(x){(t, x) ∈ QT : |u(t, x)| = +∞} = 0, and there exists a capp(x) − q.c.r. of u, namely a function ũ such that ũ = u
a.e. in QT and ũ is capp(x)-quasi continuous.

4. Existence results

In this section we shall present the notion of a weak solution to problem (P) and we shall give the
existence result for such solution.

Definition 4.1. Let Ω be a bounded open subset of RN,N ≥ 2. For each µ ∈ Mb(QT), we define a ”weak”
solution to the problem (P) as a measurable function s ∈ C([0,T]; L1(Ω)) such that ϕ(t, x,u,∇u) ∈ L1(QT)N,Tk(u) ∈
Lp− (0,T; W1,p(x)

0 (Ω)), and it verifies∫ T

0

〈(
b(um)

)
t
, φ
〉
dt

+

∫
QT

ϕ(t, x,um)(1 + |um|)s(x)
|∇um|

p(x)−2
∇um∇φdxdt +

∫
QT

ζ(x, t)(1 + |um|)s(x)
|∇umdxdt

=

∫
QT

fmφdxdt +
∫

QT

Hm∇φdxdt +
∫

QT

φdµm,c, ∀φ ∈ C∞c (QT).

Theorem 4.2. Let q(x) < s(x) − 1, s(x) ≥ 0, and µ ∈ Mb(QT) suppose that ϕ(t, x,u) is a Carathéodory function
verifying the following hypothesis

0 < α ≤ ϕ(t, x, ξ) ≤ β and 0 < λ ≤ ζ(t, x) ≤ Λ a.e. (t, x) ∈ QT, f or all ξ ∈ R. (19)

where α, β, λ, Λ are fixed real numbers.
Then, the problem (P) has a positive weak solution u such that.
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• if u(x) > 1, then u ∈W0 ∩ Lη(x)(QT) for every η(x) < (p(x)(N+1)−N)(s(x)+1)
N+1 ,

• if 0 ≤ u(x) ≤ 1, then s ∈ L(r−)(0,T; W1,r(x)
0 (Ω)) for every r(x) < N(p(x)−1+s(x))

N−(1−s(x)) .

Proof. The proof of Theorem 4.2 will be completed in 5 steps.
Step1: Approximate problem. We begin by proving the existence of a weak solution in the presence of
regular data, i.e., assuming that µ is a limit of bounded sequences µm in L∞(QT). We present the following
approximate problem

(Pm)



(
b(um)

)
t
− div[ϕ(t, x,um)(1 + |um|)s(x)

|∇um|
p(x)−2

∇um] + ζ(x, t)(1 + |um|)q(x)−1um|∇um|
p(x) = µm

in QT = (0,T) ×Ω,

b(um)(0, x) = b(um
0 )(x) in Ω, um(t, x) = 0 on (0,T) ×Ω,

(20)

where µm = µm,d + µm,c = fm − div(Hm) + 1m,t + µm,c. Accoring to [37], we suppose that
Hm ∈ C∞c (QT) : Hm → H in (Lp′(x)(QT))N,

0 ≤ µm,c ∈ C∞c (QT) : µm,c → µc inMb(QT),

fm ∈ C∞c (QT) : fm → f weakly in Ll(QT)

(21)

Furthermore, it follows that ∥µm∥L1(QT) ≤ C. On the other hand, as ϕ verifying the conditions ( 19)with
1 < p(x) < N, then (Pm) admits a weak solution b(um) ∈ Lp− (0,T; W1,p(x)

0 (Ω)) ∩ L∞(Q) with (b(um))t ∈

Lp− (0,T; W−1,p(x)(Ω)) by using Schauder fix point.
Step.2: This step is dedicated to check the a priori estimates.
Considering φ1,k(um) = T1(um − Tk(u)) as test function in the weak formulation of (Pm), we get by the

integration by parts formula and a virtue of Young’s inequality that∫
Ω

Θ1,k(um)(T)dx + α
∫
{k≤um<k+1}

(1 + um)s(x)
|∇um|

p(x)dxdt

≤ ∥ fm∥L1(QT) +C
∫

QT

|Hm|
p′(x)dxdt+

1
2

∫
{k≤um<k+1}

ζ(x, t)|∇um|
p(x)dxdt+ ∥µc,m∥L1(QT) +

∫
Ω

Θ1,k(um)(0, x)dx,

where Θ1,k(s) =
∫ s

0
φ(σ)b′(σ)dσ. Remarking that Θ1,k(u) is nonnegative and that Θ1,k(um)(0, x) ≤ |b(um

0 )(x)|,

as Hm is bounded in Lp′(x)(QT), fm, µc,m and b(um
0 ) are, respectively, bounded in L1(QT) and in L1(Ω),we get∫

Ω

Θ1,k(um)(T) dx ≤ C f or each t ∈ [0,T], (22)

and ∫
{k≤um<k+1}

ζ(x, t)(|1 + um|
q(x)−1)um|∇um|

p(x)dxdt ≤ C f or each k > 0, (23)

which gives the estimate of um in L∞(0,T; L1(Ω)), and the estimate if (s(x) > 1).∫
{k≤um<k+1}

|∇um|
p(x)dxdt ≤

C(k + 1)
(1 + k)s− f or each k > 0, (24)
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which involves that um is bounded in Lp− (0,T; W1,p(x)
0 (Ω)) .

Let us note that, according to Theorem 4.2 and if 0 ≤ s− ≤ s(x) ≤ s+ ≤ 1, that um is bounded in
Lq− (0,T; W1,q(x)

0 (Ω)) for each q(x) < Ns(x)+N
N−1+s(x) . Furthermore, we infer that (1 + um)s(x)

|∇um| is bounded in

Lr(x)(QT) for every r(x) < p(x) −
N

N + 1
.

As a result, in the corresponding space, there exists a function um converges to u and a.e. in QT and weakly
in the related spaces. Additionally, we may derive from (22)-(24) that Tk(u) is a Cauchy sequence in Lp(x)(QT)
for all k > 0, from the fact that Tk(un) is a Cauchy sequence in Lp(x)(QT) for all k > 0, we can deduce that it is a
Cauchy sequence in measure for each k > 0. This means that for any k > 0 and for any ε > 0, there exists an
N such that for all m,n ≥ N, the measure of the set x ∈ QT : |Tk(um)(x) − Tk(un)(x)|Lp(x)(QT) > ε is smaller than
ε. Hence, by means of the related Marcinkiewicz estimates on um, we get that um is a Cauchy sequence in
measure. Indeed, we first notice that for any k, σ > 0 and for each s, t ∈N, for each s, t ∈N,{

|us − ut| > σ} ⊆ {|us| ≥ k} ∪ {|ut| ≥ k} ∪ {|Tk(us) − Tk(ut)| > σ
}
. (25)

At present, if ε > 0 is fixed, Marcinkiewicz’s estimates lead to the existence of k such that

meas({|us| > k}) <
ε
3
, meas({|ut| > k}) <

ε
3
, f or each s, t ∈N, f or each k > k′,

since, Tk(u) for every fixed s > 0 is a Cauchy sequence in measure, We establish that there exists a value
of ηε > 0 such that

maes({|Tk(us) − Tk(ut) > σ}| <
ε
3

f or each s, t > ηϵ, f or each σ > 0.

Also, if k > k′, from (25) we conclude that

{|us − ut| > σ} < ε, f or each s, t ≥ ηε, f or each σ > 0,

As a result, us is a Cauchy sequence in measure. In this situation, there is a measurable function u : QT → R,
such that us converges a.e. in QT, resulting in a finite limit function u. As a consequence, for all k > 0, we
obtain

Tk(um)→ Tk(u) weakly in Lp− (0,T; W1,p(x)
0 (Ω)) and a.e. in QT. (26)

At last, by the weak lower semi continuity and from (24) and (22), we find

∫
Ω

Θ1,k(u)(t)dx ≤ C and
∫
{k≤um<k}

|∇u|p(x)dxdt ≤ C(k + 1), f or each k > 0. (27)

and ∫
{k≤um<k+1}

(|1 + um|
q(x)−1)um|∇um|

p(x)dxdt ≤
C
An

f or each k > 0, (28)

We may deduce that the function u is capp(x)-a. e. finite and capp(x)-quasi-continuous based on what has
been mentioned and the lemma 3.5. The above results ensure only weak convergence of Tk(um) to Tk(u) in
Lp− (0,T; W1,p(x)

0 (Ω)).
Step.3: We will also show the strong convergence of the truncation in Lp− (0,T; W1,p

0 (Ω)).
In this part, which will ensure the convergence of ∇um to ∇u in QT. Using the same procedure of [41] to
prove that

lim
n→∞

∫
QT

|∇Tk(um) − ∇Tk(u)|p(x)dxdt = 0, (29)



A. Sabiry et al. / Filomat 37:22 (2023), 7559–7579 7569

and thus use [21] to complete the result.
(i) : Near E. If µm = fm − div(H)+µc,m then, in the weak formulation of um by choosing ωn((k−um)+)φγ, with
ωn defined in (3) and k > 0, as the test function, we obtain

∫ T

0
⟨(b(um))t,ωn((k − um)+)φγ⟩dt

+

∫
QT

ϕ(t, x,um)(1 + |um|)s(x)
|∇um|

p(x)−2
∇um · ∇(ωn((k − um)+)φγ)dxdt

+

∫
QT

ζ(x, t)(1 + um)q(x)−1um|∇um|
p(x)ωn((k − um)+)φγdxdt =

∫
QT

fmωn((k − um)+)φγdxdt

+

∫
QT

Hm · ∇(ωn((k − um)+)φγ)dxdt +
∫

QT

ωn((k − um)+)φγdµc,m.

Thus, by means (19) and the fact that ωn((k − um)+) ) = 0 if um > k, we obtain

∫ T

0

〈
b
(
(um

)
)t,ωn((k − um)+))φγ

〉
dt + α

∫
QT

ω′n((k − um)+)|∇Tk(um)|p(x)φγdxdt

−max{1, (1 + k)q(x)
}

∫
QT

ωn((k − um)+)dxdt +
∫

QT

ωn((k − um)+)φγdµc,mdxdt

≤ −

∫
QT

fmωn((k − um)+)φγdxdt −
∫

QT

Hm · ∇(ωn((k − um)+)φγ)dxdt

+

∫
QT

ϕ(t, x,um)(1 + Tk(um))s(x)
|∇Tk(um)|p(x)−2

∇Tk(um) · ∇φγωn((k − um)+)dxdt,

Now, since n, which depends on k, verifies (3), we have that∫
Ω

Φk,n(um(0, x))φγ(0, x)dx +
α
2

∫
QT

|∇Tk(um)|p(x)φγdxdt +
∫

QT

ωn((k − um)+)φγdµc,m

≤

∫
Ω

Φk,n(um(T, x))φγ(T, x)dx −
∫

QT

Φk,n(um(t, x))(φγ)tdxdt

−

∫
QT

fmωn((k − um)+)φγdxdt −
∫

QT

Hm · ∇(ωn((k − um)+)φγ)dxdt (30)

+

∫
QT

ωn((k − um)+)ϕ(t, x,um)(1 + Tk(um))s(x)
|∇Tk(um)|p(x)−2

∇Tk(um)∇φγdxdt,

where Φk,n(ℓ) =
∫ ℓ

0
ωn((k − y)+)b′(y)dy is a primitive of ωn((k − l)+)b′(l).

Remark that, as Tk(u) converges weakly in Lp− (0,T; Wℓ,p(x)
0 (Ω) andΦ′k,Λ(ℓ) = ωn((k−ℓ)+)b′(ℓ), which means

that Φk,n(ℓ) is a bounded function with compact support and Φk,Λ(ℓ) ≥ 0 if ℓ ≥ 0, we get that

Φ′k,n(um)→ Φ′k,n(u) weakly in Lp− (0,T; W1,p(x)
0 (Ω)),weakly∗ in L∞(QT) and a.e.in QT.

So, let’s look at each term individually, according to Lemma 3.1 and Steps.1-2 we treat the second integral
on the right side of (30) as well as the fourth by applying (26), and as ∇(ωn((k − um)+)φγ converges to
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∇(ωn((k − u)+b′(um)) weakly in Lp(x)(QT)N and ωn((k − um)+)b′(um) ≤ b1ωn(k) we then have

lim
n→

sup
∞

α
2

∫
QT

|∇Tk(um)|p(x)φγdxdt + b1

∫
QT

ωn(k − um)+)φγdµ⊕c,m

≤

∫
Ω

Φk,ρ(u(T, x))φγ(T, x)dx − b0

∫
QT

Φk,ρ(u(t, x))(φγ)tdxdt (31)

−

∫
QT

fωn((k − u)+)φγdxdt −
∫

QT

H · ∇(ωn((k − u)+)φγ)dxdt

+

∫
QT

ϕ(t, x,u)(1 + Tk(u))s(x)
|∇Tk(um)|p(x)−2

∇Tk(u) · ∇φγωn((k − u)+)dxdt.

However, as Φk,ρ(u) ∈ Lp− (0,T; W1,p(x)
0 (Ω)), and taking into account the convergence properties of φγ in the

lemma 3.1, we get

−

∫
QT

fωn((k − u)+)φγdxdt −
∫

QT

H · ∇(ωn((k − u)+)φγ)dxdt

+

∫
QT

ϕ(t, x,u)(1 + |Tk(u)|)s(x)
|∇Tk(um)|p(x)−2

∇Tk(u)∇φγωn((k − u)+)dxdt

≤ C(k)[
∫

QT

(| f | + |∇Tk(u)||H|)φγdxdt +
∫

QT

(|H| + |∇Tk(u)|)|∇φγ|dxdt],

Hence, thanks to Lebesgue’s theorem and the Lemma 3.1 and (29), we easily obtain
∫

QT

|∇Tk(um)|p(x)φγdxdt = ϖ(m, γ),∫
QT

|ωn((k − um)+|φγdµc,m = ϖ(m, γ).
(32)

(ii) : Far from E(1). We note the Landes time regularization of the truncation function Tk(u) by the symbol
Tk(u)θ. Let xθ be a sequence of functions such that

xθ ∈W1,p(x)
0 (Ω) ∩ L∞(Ω), ||xθ||L∞(Ω) ≤ k,

xθ → Tk(u0) a.e.in Ω as θ tends to infinity ,

1
θ ||xθ||

p(x)

W1,p(x)
0 (Ω)

→ 0 as θ tends to infinity.

Next, for θ > 0 and k > 0 fixed, we designate by Tk(u)θ the unique solution of the problem
∂Tk(u)θ
∂t

= v(Tk(u) − ∂Tk(u)θ) in the sense o f distributions,

Tk(u)θ(0) = xθ in Ω.

So, Tk(u)θ belon1s to Lp− (0,T; W1,p(x)
0 (Ω))∩ L∞(QT) and

∂Tk(u)
∂t

belongs to Lp− (0,T; W1,p(x)
0 (Ω)). As a result, we

can demonstrate that when θ diverges then, there existe a subsequences (as in [34]).
∥Tk(u)θ∥L∞(QT) ≤ k, f or each k > 0,

Tk(u)θ → Tk(u) strongly in Lp− (0,T; W1,p(x)
0 (Ω)) and a.e. in QT.

Let us start by proving a result that is crucial for dealing with the second term of the right-hand side (iv).
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Lemma 4.3. Let k, h > 0, φγ and um are defined as previously, hence∫
{h≤|um |<k+h}

|∇um|
p(x)(1 − φγ)dxdt = ϖ(m, h, γ). (33)

Proof. Let us choose φ(um)(ℓ − φγ) as test function in weak formulation of um, where φ(ℓ) = T2k(ℓ − Th(ℓ)).

Integrating, if Θk,h(ℓ) =
∫ ℓ

0
φ(ξ)b′(ξ)dξ, we obtain

∫
QT

Θk,h(um)t(1 − φγ)dxdt

+

∫
QT

ϕ(t, x,um)(1 + um)s(x)
|∇um|

p(x)−2
∇um∇T2k(um − Th(um))(1 − φγ)dxdt

−

∫
QT

ϕ(t, x,um)(1 + um)s(x)
|∇um|

p(x)−2
∇um · ∇φγT2k(um − Th(um))dxdt (34)

=

∫
QT

fmT2k(um − Th(um))(1 − φγ)dxdt +
∫

QT

Hm · ∇(T2k(um − Th(um))(1 − φγ)dxdt

+

∫
QT

T2k(um − Th(um))(1 − φγ)dµm
c .

To arrive at the result, we use the property of equi-integrability and Young’s inequality.∣∣∣∣ ∫
QT

Hm · ∇T2k(um − Th(um))(1 − φγ)dxdt
∣∣∣∣ ≤ C1

∫
{h≤|um |<k+h}

|∇um|
p(x)(1 − φγ)dxdt

+ C2

∫
{h≤| um |<k+h}

|∇um|
p(x)(1 − φγ)dxdt ≤ ϖ(m, h) + C2

∫
{h≤um<2k+h}

|∇um|
p(x)dxdt

and ∫
QT

fm(1 − φγ)T2k(um − Th(um))dxdt = ϖ(m, h) ,

where, apply Young’s inequality, one can take C2 as small as one chooses (e.g. C2 <
α
2

); thus, by the
hypothesis (19) on “ϕ” in the second term of (32), we get∫

QT

ϕ(t, x,um)(1 + um)s(x)
|∇um|

p(x)−2
∇um · ∇T2k(um − Th(um))(1 − φγ)dxdt

=

∫
{h≤|um |<h+2k}

ϕ(t, x,um)(1 + um)s(x)
|∇um|

p(x)−2
∇um · ∇um(1 − φγ)dxdt

≥ α

∫
{h≤um<h+2k}

|∇um|
p(x)(1 − φγ)dxdt,

Remark that Θk,h(u) is non-negative for all s ∈ R thus, integration by parts, we have∫
QT

Θk,h(um)t(1 − φγ)dxdt =
∫

QT

Θk,h(um)
∂φγ
∂t

dxdt −
∫
Ω

Θk,h(um
0 )dx,

which gives, by Vitali’s theorem and the definition of Θk,h(ℓ) and the strong compactness in L1(QT) of b(um)
and b(um

0 ), that ∫
QT

Θk,h(um)t(ℓ − φγ)dxdt = ϖ(m, h),
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Finally, from the lemma (3.1) and the tight convergence of µc,m, we have∣∣∣∣ ∫
QT

(1 − φγ)T2k(um − Th(um))dxdt
∣∣∣∣ ≤ 2k

∣∣∣∣ ∫
QT

(1 − φγ)dµc,m

∣∣∣∣ = ϖ(m, γ),

and the third term of (32) can be computed, for any r(x) < p(x) − N
N+1 , as the following∫

QT

ϕ(t, x,um)(1 + um)s(x)
|∇um|

p(x)−2
∇um · ∇φγT2k(um − Th(u))dxdt

≤ 2kβC(γ)
( ∫

QT

(1 + |um|)s(x)
∇um|

r(x)dxdt
)( q

r )−(
meas{(t, x) : um(t, x) ≥ h}

)1− 1
(r−)
+ ϖ(m, h, γ).

≤ ϖ(m, h, γ) +
C(k, γ)

h1− 1
s−
.

Putting all these points to gather, we get (33).

In the following, we apply a method presented in the parabolic case in [42], we can chosen 2k < h

zm = T2k(um − Th(um) + Tk(um) − Tk(u)θ);

We remark that ∇zm = 0 if |um| > h + 4k, so the estimate on Tk(u) of step.2 means that zm is bounded in
Lp− (0,T; W1,p(x)

0 (Ω)); thus, it is obvious to get

zm → T2k(u − Th(u) + Tk(u) − Tk(u)θ) weakly in Lp− (0,T; W1,p(x)
0 (Ω)) and a.e. in QT.

Therefore, before integrating by parts we multiply by zm(1 − φγ) the equation solved by um to obtain

A +B ≤ C +D + E + F , (35)

where

A =

∫ T

0

〈(
b(um)

)
t
, zm(1 − φγ)

〉
dt

B =

∫
QT

ϕ(t, x,um)(1 + TM(um))s(x)
|∇TM(um)|p(x)−2

∇TM(um) · ∇zm(1 − φγ)dxdt

C =

∫
QT

fmzm(1 − φγ)dxdt

D =

∫
QT

H · ∇(zm(1 − φγ)) + 2k E dµc,m

E =

∫
QT

(1 − φγ)

F =

∫
QT

ϕ(t, x,um)(1 + um)s(x)
|∇um|

p(x)−2
∇um · ∇φγzmdxdt

Now consider the member B, if we choose M := h + 4k, we get∫
QT

ϕ(t, x,um)(1 + um)s(x)
|∇um|

p(x)−2
|∇um|

p(x)−2
∇um · ∇zm(1 − φγ)dxdt

=

∫
QT

ϕ(t, x,um)(1 + umχ{|um |≤M} )s(x)
|∇umχ{|um |≤M}|

p(x)−2
∇umχ{|um |≤M} · ∇zm(1 − φγ)dxdt.
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Next, if Em = {|um − Th(um) + Tk(um) − Tk(u)θ| ≤ 2k} and h ≥ 2k it can be divided as follows∫
QT

ϕ(t, x,um)(1 + umχ{|um |≤M})s(x)
|∇umχ{|um |≤M}|

p(x)−2
∇umχ{|um |≤M} · ∇zm(1 − φγ)dxdt

=

∫
QT

ϕ(t, x,um)(1 + umχ{|um |≤M})s(x)
|∇umχ{|um |≤M}|

p(x)−2
∇umχ{|um |≤M}∇(um − Th(u)θ)(1 − φγ)dxdt

+

∫
{|um |>k}

ϕ(t, x,um)(1 + umχ{|um |≤M})s(x)
|∇umχ{|um |≤M}|

p(x)−2
∇um∇(um − Th(um))(1 − φγ)χEdxdt (36)

−

∫
{|um |>k}

ϕ(t, x,um)(1 + umχ{|um |≤M})s(x)
|∇umχ{|um |≤M}|

p(x)−2
∇umχ{|um |≤M}∇Tk(u)θ(1 − φγ)χEm dxdt.

Consider the second member of (36), as um − Th(um) = 0 if |um| ≤ h, we find∣∣∣∣ ∫
{|um |>k}

ϕ(t, x,um)(1 + umχ{|um |≤M})s(x)
|∇umχ{|um |≤M}|

p(x)−2
∇umχ{|um |≤M}∇(um − Th(um))(1 − φγ)χEdxdt

∣∣∣∣
≤

∫
{h≤|um |≤h+4k}

|ϕ(t, x,um)(1 + umχ{|um |≤M})s(x)
|∇umχ{|um |≤M}|

p(x)−2
||∇um|dxdt,

while, applying Lemma (3.1) and the hypotheses (19), we have immediately∫
{h≤|um |<h+4k}

|ϕ(t, x,um)(1 + um)s(x)
|∇um|

p(x)−2
|∇um(1 − φγ)dxdt|

≤ β

∫
{h≤|um |<h+4k}

(1 + um)s(x)
|∇um|

p(x)(1 − φγ)dxdt

≤ C(h, k)β
∫
{h≤|um |<h+4k}

|∇um|
p(x)(1 − φγ)dxdt

≤ ϖ(m, h, γ).

Thus, by applying Lemma (3.1)and the iqui-integrity, we get∫
{|um |>k}

ϕ(t, x,um)(1 + umχ{|um |≤M})s(x)
|∇um|

p(x)−2
∇um∇(um − Th(um))(1 − φγ)χEm dxdt = ϖ(m, h, γ). (37)

Now consider the third member of the right-hand side of (3.39); so, thanks to Step.1, we get∫
{|um |>k}

ϕ(t, x,um)(1 + umχ{|um |≤M})s(x)
|∇umχ{|um |≤M}|

p(x)−2
∇umχ{|um |≤M}∇Tk(u)(1 − φγ)χEm dxdt = ϖ(m),

hence∫
{|um |>k}

ϕ(t, x,um)(1 + (umχ{|um |≤M})s(x)
|∇umχ{|um |≤M}|

p(x)−2
∇umχ{|um |≤M}∇Tk(u)θ(1 − φγ)χEm dxdt (38)

=

∫
{|um |>k}

ϕ(t, x,um)(1 + umχ{|um |≤M})s(x)
|∇umχ{|um |≤M}|

p(x)−2
∇umχ{|um |≤M}

× ∇(Tk(u)θ − Tk(u))(1 − φγ)χEm dxdt + ϖ(m) ,

Thus, since Tk(u)θ converges strongly to Tk(u) in Lp− (0,T,W1,p(x)
0 (Ω)) and using again Step.1, we can easily

obtain∫
{|um |>k}

ϕ(t, x,um)(1 + umχ{|um |≤M})s(x)
|∇umχ{|um |≤M}|

p(x)−2
∇umχ{|um |≤M}

× ∇(Tk(u)θ − Tk(u))(1 − φγ)χEm dxdt = ϖ(m, v),
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from, and(38), we have∫
{|um |>k}

ϕ(t, x,um)(1 + |um|χ{|um |≤M})s(x)
|∇umχ{|um |≤M}|

p(x)−2
∇umχ{|um| ≤M}∇Tk(u)θ(1−φγ)χEm dxdt = ϖ(m, θ).

According to the last result, (38) and (37), we get

B =

∫
QT

ϕ(t, x,um)(1 + Tk(um)s(x))|∇Tk(um)|p(x)−2
∇Tk(um)∇(um − Tk(u)θ)(1 − φγ)dxdt = ϖ(m, θ, h, γ).

Let us first examine the term F when m tends to infinity: we obtain for 1 < r(x) < p(x)− N
N+1 and according

the convergence results from step.1 that

F ≤ β

∫
QT

(1 + Th(um))s(x)
|∇Th(um)||∇φγ|(Tk(um) − Tk(u))+dxdt

+ 2kβ
∫
{ltm>h}

(1 + um)s(x)
|∇Th(um)|p(x)−2

|∇um||∇φγ|dxdt

≤ β

∫
QT

(1 + Th(um))s(x)
|∇Th(um)||∇φγ|(Tk(um) − Tk(u))+dxdt

+ 2C(γ)kβ∥(1 + um)s(x)
∥∥∇um∥L1(QT)meas{(t, x) : um(t, x) > h}1−

1
r−

≤ ϖ(m, h, γ) +
C(k, γ)

h1− 1
r−
.

According to the properties of zm and Lebesgue’s theorem, we get that F = ϖ(m, θ, h); on the other hand,
we get

D =

∫
{h≤um<h+2k}

H · ∇u(1 − φγ)dxdt + ϖ(m, θ, h) ,

then, by applying Lemma 3.1 and Young’s inequality, we have∣∣∣∣ ∫
QT

H · ∇u(1 − φγ)
∣∣∣∣dxdt = ϖ(h, γ).

Here, we proceed in the same way as in the proof of Lemma 4.3, from Lemma 3.1 and applying the fact
that |zm| ≤ 2k we can easily see that E = ϖ(m, γ) ; then from step.1 and the definition of zm we get that
F = ϖ(m, θ, h) , and recalling that, by a similar reasoning of the proof of [39, Inequality (7.35)] we have
A ≥ ϖ(m, θ, h), then combining all these facts, we arrive at the conclusion that

lim
n,θ,γ

sup
∫

QT

|∇(Tk(um) − Tk(u)θ)+|p(x)(1 − φγ)dxdt ≤ 0.

(iii): Far from E(2) Next, consider the time regularization Tk(u)θ chosen in (ii), which converges strongly
to Tk(u) in Lp− (0,T; W1,p(x)

0 (Ω)), let us take in the weak formulation of the problem 20 the test function
ωn((um − Tk(u))−)θ(1 − φγ) (noting that φΛ ≥ 0, since φΛ(0) = 0, Tk(u)θ ≤ k, and φΛ(l)χ{l>k} = 0), so that
ωn((um − Tk(u)θ)−) = ωn((Tk(um) − Tk(u)θ)−), and all integrals intervening in the weak formulation are taken
only on the subset {(t, x) : um ≤ k},we obtain

I1 + I2 + I3 + I4 = I5 + I6 + I7, (39)

where

I1 =

∫ T

0

〈(
b(um)

)
t
, ωn((um − Tk(u)θ)−)(1 − φγ)

〉
dt

I2 =

∫
QT

ϕ(t, x,um)(1 + um)s(x)
|∇um|

p(x)−2
∇um · ∇(ωn((um − Tk(u)θ)−)(1 − φγ)dxdt
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I3 = −

∫
QT

ϕ(t, x,um)(1 + Tk(um))s(x)
|∇Tk(um)|p(x)−2

∇Tk(um) · ∇φγωn((um − Tk(u)θ)−)dxdt

I4 =

∫
QT

ζ(x, t)(1 + Tk(um))q(x)−1Tk(um)|∇um|
p(x)ωn((um − Tk(u)θ)−)(1 − φγ)dxdt

I5 =

∫
QT

fmωn((um − Tk(u)θ)−)(1 − φγ)dxdt

I6 =

∫
QT

H · ∇(ωn((um − Tk(u)θ)−)(1 − φγ))dxdt

I7 =

∫
QT

ωn((um − Tk(u)θ)−)(1 − φγ)dµc,m.

First, we analyze the behavior of the derived term in time. By the definition of Tk(u)θ, we obtain∫ T

0

〈∂b(um)
∂t
, ωn((um − Tk(u)θ)−)(1 − φγ)

〉
dt

=

∫ T

0

〈∂(um − Tk(u)θ)
∂t

, ωn((um − Tk(u)θ)−)(1 − φγ)
〉
dt

+ θ

∫
QT

(Tk(u) − Tk(u)θ)ωn((um − Tk(u)θ)−)(1 − φγ)dxdt.

We put ω−n (u) =
∫ u

0
ωn((ξ−Tk(ξ)−)b′(ξ)dξ; so, since ω−n (u) ≤ 0 and 0 ≤ φγ ≤ 1, using the integration by part,

we get∫ T

0

〈∂b(um)
∂t
, ωn((um − Tk(u)θ)−)(1 − φγ)

〉
dt ≤ −

∫
Ω

ω−n (um
0 − xθ)(1 − φγ)dx

+ θ

∫
QT

(Tk(u) − Tk(u)θ)ωn((um − Tk(u)θ)−)(1 − φγ)dxdt

+

∫
QT

∂φγ
∂t
ω−n (um − Tk(u)θ)dxdt.

Next, passing to the limit when m tends to zero by the Lebesgue’s theorem, by the fact that um
0 converges to

u0 in L1(Ω) and that ω−n (um
0 − xθ) is uniformly bounded in m. Then, as ωn(s−)u ≤ 0, we obtain

lim
n→∞

sup
∫ T

0

〈∂b(um)
∂t
, ωn((um − Tk(u)θ)−)(1 − φγ)

〉
dt

≤ −

∫
Ω

ω−n (u0 − xθ)(1 − φγ)dx +
∫

QT

∂φγ
∂t
ω−n (u − Tk(u)θ)

which implies, by tending θ towards infinity and d by to the definition of xθ, we have

lim sup
θ→∞

lim sup
n→∞

∫ T

0

〈∂b(um)
∂t
, ωn((um − Tk(u)θ)−)(1 − φγ)

〉
dt

≤ −

∫
Ω

ω−n (u0 − Tk(u0))(1 − φγ)dx +
∫

QT

∂φγ
∂t
ω−n (u − Tk(u))dxdt.

As ω−n (u − Tk(u)) = 0 for any l, we have

lim sup
θu→∞

lim sup
n→∞

(I1) ≤ 0.
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Dealing with I2, we have

I2 = −

∫
QT

ϕ(t, x,um)(1 + um)s(x)
|∇(um − Tk(u))−|p(x)ω′n((um − Tk(u)θ)−)(1 − φγ)dxdt

+

∫
QT

ϕ(t, x,um)(1 + Tk(um))s(x)
∇Tk(u)∇(ωn((um − Tk(u)θ)−)(1 − φγ)dxdt,

since (um − Tk(u)θ)− converges weakly to (u − Tk(u)θ)− in Lp− (0,T; W1,p(x)
0 (Ω)) and um converges to u a.e. in

QT, which is equal to zero, so

I2 = ϖ(m) −
∫

QT

ϕ(t, x,um)(1 + um)s(x)
|∇(um − Tk(u))−|p(x)ω′n((um − Tk(u)θ)−)(1 − φγ)dxdt

≤ ϖ(m) − α
∫

QT

|∇(um − Tk(u))−|p(x)ω′n((um − Tk(u)θ)−)(1 − φγ)dxdt.

Furthermore, according to step.1 and as ωn((u − Tk(u))−) = ωn(0) = 0,we obtain

I3 = ϖ(m, θ),

whenθ tends to infinity then,ωn((u−Tk(u)θ)−) converges a.e. ( while weakly-* in L∞(QT)) toωn((u−Tk(u))−) ≡
0 and ωn((u − Tk(u))−) = ωn(0) = 0, next, by reminding us that ωn((um − Tk(u))−) is bounded by ωn(k) , we
have

I4 ≤ ΛC(k)
∫

QT

|∇um|
p(x)ωn((um − Tk(u)θ)−)(1 − φγ)dxdt

≤ 2ΛC(k)
∫

QT

|∇(u − Tk(u))−|p(x)ωn((um − Tk(u)θ)−)(1 − φγ)dxdt

+ 2ΛC(k)
∫

QT

|∇Tk(u)|p(x)ωn((um − Tk(u)θ)−)(1 − φγ)dxdt

≤ ϖ(m, γ) + 2ΛC(k)ωn(k)
∫

QT

|∇(um − Tk(u)θ)−|p(x)(1 − φγ)dxdt.

Thus to finish, as µn,c is positive and∇(ωn((um−Tk(u)θ)−)(1−φγ))→ 0 in Lp′(·)(QT), from Properties of fm, Hm
and according to Lebesgue’s theorem, we obtain

I5 = ϖ(m, θ, γ), I6 = ϖ(m, θ, γ) and I7 = ϖ(m, θ, γ).

Hence, we can readily infer, by first tending m to infinity, θ to infinity and then γ to zero in (39), by means
the fact that ω′n((um − Tk(u)θ)−) is bounded by ω′n(k) and by taking an appropriate choice of Λ satisfying (3),
we get ∫

QT

|∇(um − Tk(u)θ)−|p(x)(1 − φγ)dxdt = ϖ(m, θ, γ).

(iv): Near and far-from E
Here, we serve to demonstrate the strong convergence of truncations in Lp− (0,T; W1,p(x)

0 (Ω)); to do this, we
can describe

lim sup
n→∞

∫
QT

|∇Tk(um) − ∇Tk(u)|p(x)dxdt ≤ lim sup
n→∞

∫
QT

|∇(Tk(um) − Tk(u))+|p(x)(1 − φγ)dxdt

≤ lim sup
n→∞

∫
QT

|∇(Tk(um) − Tk(u)θ)+|p(x)(1 − φγ)dxdt +
∫

QT

|∇(Tk(u)θ − Tk(u))+|p(x)dxdt

≤ ϖ(γ, θ) + lim sup
n→∞

2
∫

QT

|∇Tk(um)|p(x)φγdxdt + 2
∫

QT

|∇Tk(u)|p(x)φγdxdt.
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Thus, using the properties of φγ, and the lemma (3.1), we arrive at the following∫
QT

|∇Tk(um) − ∇Tk(u)|p(x)dxdt = ϖ(m) , (40)

so, we deduce that

Tk(um)→ Tk(u) strongly in Lp− (0,T; W1,p(x)
0 (Ω)), (41)

which also implies, by similar steps of [4, 18], that

∇um → ∇u a.e. in QT. (42)

Step.4: Equi-integrability of the lower order term in L1(QT).
To show that

ζ(x, t)(1 + um)q(x)−1um|∇um|
p(x)
−→ ζ(x, t)(1 + u)q(x)−1u|∇u|p(x) strongly in L1(QT),

we must ensure that the sequence {(1 + um)q(x)−1um|∇um|
p(x) in L1(QT)} is equi-integrable(as we easily know,

from (42), the convergence a.e.the lower order term). In this case, let us put n(x) > 0 with n(x) < s(x)−q(x)−1
2

and let be a measurable subset of QT, we get∫
B
ζ(x, t)(1 + um)q(x)−1um|∇um|

p(x)dxdt

≤ max{Λ, (1 + k)q−
}

∫
B
|∇umχ{um≤k}|

p(x)dxdt +
∫
{um>k}

(1 + um)q−−1um|∇um|
p(x)dxdt

≤ max{Λ, (1 + k)q−
}

∫
B
|∇Tk(um)|p(x)dxdt +

Λ

kn−

∫
QT

(1 + um)q−−1u1+n(x)
m |∇um|

p(x)dxdt

≤ max{Λ, (1 + k)q−
}

∫
B
|∇Tk(um)|p(x)dxdt +

Λ

kn−

+∞∑
k=0

∫
{k≤um<k+1}

(1 + um)q−+n−
|∇um|

p(x)dxdt

≤ max{Λ, (1 + k)q−)
}

∫
B
|∇Tk(um)|p(x)dxdt +

C
kn−

+∞∑
k=0

1
(1 + k)1+n−

≤ C(k)
∫

B
|∇Tk(um)|p(x)dxdt +

C
kn− . (43)

Next, taking k0 such that
c

kn−
0

≤ ε (where ε > 0 is yielded), hence, according to (41), there is η > 0 such that

for any measurable subset B ⊂ QT < ηwe obtain∫
QT

|∇Tl0 (um)|p(x)dxdt ≤
ε

C(k0)
, ∀ m ∈N.

Therefore, from (43), it follows that ζ(x, t)(1 + um)q(x)−1
|um|

p(x) is equi-integrable in QT, which yields under
the Vitali theorem that

ζ(x, t)(1 + um)q(x)−1um|∇um|
p(x) strongly converges to ζ(x, t)(1 + u)q(x)−1u|∇u|p(x) in L1(QT).

Step.5: Passage to the limit
Let us now take the weak formulation of the approximate problem (20) and consider the limit, when m tends
to∞, as (1 + um)s(x)

∇um is bounded in Lq(x)(QT)N for all q(x) < p(x) − N
N+1 , converges strongly to (1 + u)s(x)

∇u
in L1(QT)N, ∇um converges to ∇u a. e. in QT.
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On the other hand, since for s(x) > 1, the sequence {um} converges to u in Lp− (0,T; W1,p(x)
0 (Ω)); thus, choosing

Γk(um) = um − Tk(u) for each i > 0 and k > 0, we obtain∫
QT

|∇Γi(um)|p(x)dxdt =
+∞∑
k=i

∫
{k≤um<k+1}

|∇um|
p(x)dxdt ≤

+∞∑
k=i

C
(1 + k)s− .

Therefore, we can take i, ε strictly positive such that
( ∫

QT

|∇Γi(um)|p(x)dxdt
) 1

p−
≤
ε
3

for each m ∈ N, which

gives, from the strong convergences of the truncations and the weak lower semi-continuity (41) that there
exists θε > 0 verifying, for each m ≥ θε, such that

∥um − u∥Lp− (0,T;W1,p(x)
0 (Ω)) ≤ ∥Ti(um) − Ti(u)∥Lp− (0,T;W1,p(x)

0 (Ω))

+∥Γi(um)∥Lp− (0,T;W1,p(x)
0 (Ω)) + ∥Γi(u)∥Lp− (0,T;W1,p(x)

0 (Ω))

≤ ε,

as a result,
um → u stron1ly in Lp− (0,T; W1,p(x)

0 (Ω)).

Therefore, the problem (P) admits u as a weak solution (see the definition 4.1).
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