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Approximation of functions by wavelet expansions with dilation matrix
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Abstract. In this paper, we obtain the degree of approximation of a function f in LF(1 < p < o) norm
under general conditions of the pointwise and uniform convergence of wavelet expansions associated with
the multiresolution analysis with dilation matrix. Our results show that the degree has the exponential
decay (faster than any polynomial) for the function f in L?(R) on a finite interval (g, b).

1. Introduction

Wavelets with local support in the time and frequency domains were defined by Grossman and Morlet
[1]. Mallat [8] and Meyer [10] evolved the framework of multiresolution analysis in order to recognize the
underlying structure and to generate examples of orthogonal bases for L?(R).
Meyer [10] was among the first to study convergence results for wavelet expansions. Mayer [10] was
followed by Walter [3, 4] who obtained results on pointwise and uniform convergence of wavelet expansions
in the L! N L2 norm. Kostadinova and Vindas [7] extend and improve the result of Walter [4] and study the
pointwise behaviour of Schwartz distributions in several variables via multiresolution expansions. Zhao et
al. [6] studied convergence of wavelet expansions of the function in L?(R) to the mean value of its both sides
limits at a generalized continuous point. Junjian [11] studied the convergence of wavelet expansion with
divergent free properties in vector-valued Besov spaces function using biorthogonal B-spline wavelets.
Xiehua [9] obtained results on pointwise and uniform convergence of wavelet expansions in L? norm.
Mallat [8] and Meyer [10] have also shown that the Sobolev class of a function is determined by the L? norm
of its wavelet expansion. One can also see [5] for more details in the direction of present work.
Since above studies clearly suggest that nothing seems to have been done so far to obtain the degree of
approximation of the function f in L*(R) spaces by wavelet expansions associated with multiresolution
analysis with dilation matrix; therefore, in this article, we obtain quite new results on the degree of
approximation of functions by wavelet and multiresolution-type expansions with dilation matrix. In fact,
we will obtain the degree of approximation of the function f in L7(1 < p < co) norm under general conditions
of pointwise and uniform convergence of wavelet expansions associated with the multiresolution analysis
with dilation matrix. Our estimates show that for the function f € LP(R) on a finite interval (g, b), the degree
has the exponential decay.
Remaining part of this paper is organized as follows: In section 2, we give definitions and some examples
related to the presented work. In section 3, we state and prove our main results.
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2. Definitions and Preliminaries

In this section, we give important definitions related to the present work.

2.1. Multiresolution Analysis (MRA)

Let A be any real nn X n matrix. A wavelet set associated with a dilation matrix A, called dilation matrix,
is a finite set of functions 1" (x) € L*(R), r =1,2,3,.....s such that the system

|detAV?Y" (Alx—y);j€Z, y € Z 1)

forms an orthogonal basis in L%(R).
We define a function F(¢, 1, etc..) on R denoted by F, as

Fj,(x) = |detAJ?F(Aix - y); j€ Z, y € Z. )

and omit r.
A multiresolution is a sequence {V}jez of closed subspaces of L*(R) associated with dilation matrix A if the
followings are satisfied:
(@) Vijc Vi foralljeZ;
(ii) U Vjis dense in L*(R);
jeZ
(i) () Vj = {0}
ez
(iv) f € V;if and only if f(Ax) € V1 forall j € Z;
(v) feVpifand only if f(x —y) € Vpforall y € Z;
(vi) there exists a scaling function ¢ € V such that {¢(t — )}z is an orthogonal basis in V.

2.1.1. Examples
(1) Wavelets arise from MRA generated by the scaling functions (see [2]):

(i) The Haar wavelet is constructed from MRA generated by the scaling function
P(x) = X1-1,0 (%)

associated with MRA {V]- tje Z}, where V; be the space of all functions in L?(R) which are constant
on intervals of the form [27/y,27/(y + 1)], y € Z. Since

1 /1 1 1 1
§¢ (Ex) = EX[—z,O](x) = Eﬁi’(x) + §¢>(X +1),
then we can have

P(x) = p2x + 1) — p(2x) = X[-1,-1) ~ X[-10) 3)

2/

and the low-pass filter for the Haar wavelet is

(&) = 51 +¢9)

Since,
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(ii) The Shannon wavelet is constructed from MRA generated by the scaling function

sin 7tx

Px) =

X

associated with MRA {Vj j€ Z}, where V; be the closed span of {qb]-,y =212¢p(21 - —y),y € Z}, for all
j € Z. The Shannon wavelet is

3 sin(2mx) + cos(mx)

Y = n(2x +1) ’ @)

and the low-pass filter for the Shannon wavelet is

ko(é):{l if-I<E<t,

0 if-n<&<-Jorf<éi<m
Since,

BE) = Xrm(E),
then we can have
(&) = e’%)a(é), where [ = [-27t, 1) U (71, 271].

(2) Wavelet which does not arise from MRA (see [8]):
The wavelet consisting of a function 1) which satisfies

(&) = xp(&),

where
D =[-(32/7)n,—4m) U [-7t, —(4/7)10) U ((4/7)7, ] U (47, (32/7)7t].

2.2. Wavelet Expansion Associated with Multiresolution Analysis with Dilation Matrix

Associated with the V; spaces, we additionally define W; to be the orthogonal complement of V; in
Vi1, so that Vi1 = V; @ W;. Thus, L’(R) =Y ®W;. We define P; and Q; = Pj;1 — P; respectively, to be the
orthogonal projections onto the spaces V;j and W, with kernels P;(x, y) and Q;(x, y).

For f € LP(R)(1 £ p £ o), we define the following related expansions of f:
(i) a sequence of projections {P;f(x)}; is called the multiresolution expansions of f;
(ii) the scaling expansion of f is defined as

f Y b ldetAVRg(Alx = y) + ) ag, ldetAfp(Ahx - ), (5)
4 k=jy

where the coefficients a;, and b;, are L*(R) expansion coefficients of f.
(iii) the wavelet expansion of f associated with dilation matrix A is given by

f~ Z a;,Fjy(x)dx, (6)
iy

where the coefficients a;, are the L?(R) expansion coefficients of f.
Remark 1.
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(i) In the above definition 2.2 (i), it can be shown that the projection {P;f(x)} extend to bounded operators

onLy,1<p<oo.

(ii) In the above definition 2.2 (ii) and 2.2 (iii), the L, expansion coefficients are defined and uniformly

bounded for any f € L’(1 < p < ).

Considering the convergence in the sense of L*(R), one can write
FO =YY ajFi )
iy

and

FO) =) bjyldet Aot = y)+ Y Y ag, Fiy ()
Y

k=j v
= fil®) + fu(®),

The function f, is the projection f onto V,, can be defined as
A = [ aunsod,
R
where g,(x, t) is called the reproducing kernel of V,,, given by

Gn(x, t) = |detA["?q(A"x, A™t)

and
ax, b= ) o=t -7),y €Z.
Y

The scaling function ¢(x) is r-regular ([10]) i. e. ¢ € C'(R) and

Cyp
(L +1t)P

o7 ()] < ;y=0,1...75 p=0,1,2...

2.3. Pointwise Modulus of Continuity
The pointwise modulus of continuity of the function f(x) at the point x is given by

wx(f,£) = sup |f(u) — f()I.

|u—x|<t

3. Main Results
Theorem 3.1. If ¢(x) satisfies

1
¢(X) = O{m}, N>1.

and function f is continuous at x, then

& ba

where A is a dilation matrix.

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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Proof. From (15), we have

C
lg(x, )] < A=y 17)

where C is a positive constant. Form [4, 10], we have

flq,,(x, Hldt = 1. (18)
Thus,

o) = Fx) = f Gul DUFH) — FOONdE

x+1 00
~ [ ot - sonde+ [ gt - fena

w—1
v f 9ulr, DLF(E) — FOOME
=h+Lh+]s (19)

First, we consider |,

x+1

e f e IO - oot (20)

x+1 An
<C —_ Lt — dt
< fx_l A+ A==

o[l

an (1 + uN

A (L’X<fr%)
=2Cj(; Ty du

(21)
Now, we consider J5,

Il < f 190, DA — FOONE

x+1

< [ 1fOllgaCx Bldt + 1fCOI | 1ga(x, £)ldt
I !

n

r A r A"
x+1

x+1
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Using Holder’s inequality in first term of (22), we get

00 ;l, 00 Anq % 00 An
p - -
Il c (fl Ao dt) (fl A+ ATk =)™ dt) T ) T Ao

00 Anq % r An
< C||f||Lp(R) (ﬁ —(1 +A”u)Nﬂdu) + C|f(x)| f —(1 +A"u)Ndu
1

1
o)

E (o]
AM A"
fA—anqudu] +C|f(x)|fA—nNuNdu
1

1

1 fller ) lf ()l
S C(An(Nl) + (N - 1)An(N1))

< Clifllr @

|f (0l 1
= C(Ilf”U(R) + (N——l)) AT

Now, we consider 3,

x—1
sl < f a0 DILFH) — FOOME

x—1 x—1
< f a5 DILFOIE + £ ) f 19, Bt

x—1 An x—1 A"
=C Lo O e =g @+ ) Lo T+ A=

Using Holder’s inequality in first term of (24), we have

x—1 % x-1 % x-1
AmM A"
IIslsC{ | If(t)l”df] [ | mdf] 0 [ e

\— 00

(o) Anq
< Clfllrw) fmdu
1

|f ()l 1
= C(Hf”LP(R) + m) D)

Combining (19) to (25), we get

A" b
[ful@) = ()1 = O(1) {(nfnm + (1'59‘)1)) Analv_l) + ; ol ;/‘")}.

1
q

+C|f(X)|fmdu
1

4
O
Theorem 3.2. If ¢(x) satisfies (15) and f € LF(R) is continuous on (a, b), then

fu®) = f@)| < Bla(f, (b - A~ + AEND)

7594

(23)

(24)

(25)

(26)

forx € [a+26,b—26],6 < §(b—a), where w(f,.) is the modulus of continuity of f(x) on [a +06,b— 0], A is a dilation

matrix; and B depends on C,N, 0, (b — a), ||f|| and M, where
M =sup{|f(x)| : x € [a +26,b - 20]}.

(27)
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Proof. We have

i) - F@) f gul DUFH) — FOONdE

b-o6 0
f 3u DILFCE) — FOONE + f 19 DILFO) — FE
b—6

a+o
a+o

. f 19, DI — FOOME

=K; + K; + K.

First, we consider Kj,

b—6
Kl < [ g0l -

+0

b—5 An
< C£+b m(d(f, |X - t|)dx by (14)

An(b—tlf&))

w(f,uA™)
<2C ——d
- fo (1 +u)N "
A 5 (b-a-30) _ A5 (b=a-30) B
w(f, uA™) w(f,uA™)
<2 = du+ Ly
= Cfo a+unN fo a+unN
A%(b—a—%) An(b-a-30)

du

G
where 0 < {4 < AZ(b—a—38)and AZ(b—a—30) < {, < A"(b—a — 30).
A% (b-a-35) A"(b—-a-30)

G G
wo(f,(b—a)A~?) 2M A~i(N-D)
N-1 +(N—1)(b—a)N—1)'

< ZC(
Now, we consider Kj,

IKzISfb6|f(f)llqn(x,t)ldt+If(x)lfbblqn(x,f)ldt

< t)|———— dt —t.
‘Cfb_é O e e+ VO G ae

<aclatfo-a-aoat [ M ovago-a-a [ TR,
G

IK1| < 2C|w(f,(b—a—36)A"2 f Z—Z]+a)(f,b—a—36) f i—x

7595

(28)

(29)

(30)
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Using Holder’s inequality in first term of (30), we have

o] % 00 Anq q * An
|K2|SC[J / (x)lpdtJ U mdt] e | G
-5 —0 b=o

C ) —nq d % CM ) —n d
< 1
h ”fHU ® fl:—é—x (1 + 4 lnu)Nq "o b-6—x (]- + Vzu)N !

o Ang g < Andy
< Cllfllo ( f —du) +CM Adun
b

—o-x (AM)NT p-o-x (A"WN
< C( L ller ) N M ]
ArN-D(p — 5 — N1 (N=1)(b =6 —x)N-TAN-D
<C ( 'ZTVL_” “;) e ]1\315(1\1—1)) An(}v_l) . (31)
Similarly,
IKs| < C ( ”;((E]L_"f;) - ﬁsw—n) An(}v_l), (32)
Combining (28) to (32), we get
fulx) = F@) < Bw(f, (b—a)A~% + ATEND}
O
Theorem 3.3. If ¢(x) satisfies
P(x) = O{;}, N>1, (33)
1+ ()N
where 1) is a positive monotonic increasing function of x and if the function f is continuous at x, then
o A 5
1)~ 0l = O) {(u Al + ) + Af e Y, bt 34
where A is a dilation matrix.
Proof. From (33), we have
lg(x, ) < c N>1, (35)

L+ (n(lx — N’

where C is a positive constant. From Walter [4] and Meyer[10], we have

flqn(x, Hldt = 1. (36)
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Thus,
£ - f() = f auCe D) — FNt

x+1

f 3o DUFO) — FQOME + f 19u DUFCE) — FCON

x-1 x+1

x—1
. f 19u( DUFE) — FQONdE

=1+ L, + Ls.
First, we consider L,
x+1
i< [ e IA) - feout
x—1
< Cfx+1 A" (f, It — x])dt
< w(f, |t —x
w1 1+ (A" — )N
A" Jul
< Cf L’M)Ndu
—an 1+ (n(ful)

M el
‘cho 1+<n<u>>Nd”
Wl d)
CZ[ T+ (N ™

Z x(f An )
L+ (mOON
Now, we Con51der Lo,

|La| < an(x I (£) = f(x)ldt

X

< fm Lf()Ign(x, B)ldE + | f ()] fm g (6, D

00 An

¢ fm A waory Ty AU W wovy T

Using Holder’s inequality in the first term of (41), we get

1
e}

o ;17 A q
'LZ'SCU s (")'pdt] U T+ (A"~ ) t] ~ U | g
1

x+1

) AM ;
< C”f”LP(R) (j; Wdu) + CU“(-'?C)l‘f1 W&iu

00 An
sC(||f||LP(R)+|f(x)|)f1 Wdu

© 1
< C(Iflloa +1£)) Ln T+ (™

7597

(37)

(38)

(39)

(40)
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Now, we consider Ls,

x—1
ILa] < f 19, DILFCE) — FldE

x-1 x-1
< f FOllgaC, DldE + 1) f 1, Dl

x—1 AN x—1 AN
<c [ 1ot e [ gt @
Using Holder’s inequality in the first term of (41), we get
x—1 ;lﬂ x=1 % x—1
|L3] < C flf(x)p”dt f AT dt +C|f(x)|f A" dt
T J T+ (AT~ H)N J T+ (A~ )N
) A % 00 A"
<[ i) Ve[|
(o] An
< C(Hf”LP(R) + |f(x)|)f1 H(T](—A"“))Ndu
o 1
< C(1fla +179) [ g @2)
Combining (37) to (42), we get
) { du & wf, F)
19 = £091 = O (Il + £ ) + Af G L TG
|
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