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Abstract. The article considers the control linear differential equation with Hukuhara derivative and the
problem of moving a set-valued object to a target set, that is, when at some point in time the cross section
of a set-valued solution of the system is contained in the target set. The solvability conditions for this
problem are obtained, as well as the time and controls that guarantee the fulfillment of the termination
process condition. It is shown that in some cases the given time and controls will be optimal. The results
of the article are illustrated by model examples.

1. Introduction

Starting from the 70s of the XXth century, a new approach to the problems of dynamic systems control
was formed, based on the analysis of the bunch’s trajectory, and not of the individual trajectories - the
control problems in the conditions of uncertainty are considered. The cross section of this beam at any
moment of time is a certain set and it is necessary to describe the evolution of this set, as well as to determine
what moment and why we will consider to be optimal.

The main directions for describing the behavior of such objects are the following:

1) control systems with an inaccurate initial condition:
a) the behavior of the object is described by a ordinary controlled system (controlled differential

equation, controlled integral equation, controlled discrete system, etc.), the initial state belongs
to a certain set (see for example [2, 5–7, 21, 22, 29, 30] and the references therein);

b) the behavior of the system is described by a set-valued controlled system (controlled set-valued
differential equations, controlled set-valued integral equations, controlled set-valued discrete
systems, etc.) (see for example [1, 11, 14, 19, 33–36, 43, 44] and the references therein);

2) control systems with interference on the right-hand side and with an inaccurate initial condition. In
this case, the behavior of the system is described by the ordinary controlled differential (integral,
integro-differential, etc.) inclusion, in which the initial state belongs to a certain set (see for example
[5, 8, 9, 31, 37, 39, 41, 43] and the references therein);

3) general systems. Such systems are described by controlled quasidifferential equations [38, 43].
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Subsequently, all these approaches began to be applied to fuzzy controlled systems (see for example
[13, 17, 26–28, 33, 42, 45, 46] and the references therein).

This article studies one control problem when the behavior of an object is described by a set-valued
control system. This system refers to systems of type 1b). When describing the behavior of such systems,
differential equations with the Hukuhara derivative are most often used. Such equations were first consid-
ered in the work [3]. Further, many authors studied the properties of solutions of set-valued differential,
integral and integro-differential equations, set-valued impulse and discrete systems, as well as set-valued
differential inclusions (see for example [15, 16, 23, 25, 32, 40, 42, 43] and the references therein). Subse-
quently, the obtained results and research methods were widely used in the theory of fuzzy systems (see
for example [18, 24, 42] and the references therein).

The article considers the problem of moving an object into a target set when the behavior of the object
is described by a linear controllable differential equation with the Hukuhara derivative. The conditions for
the existence of a solution of such problem, as well as time and control, that guarantee the completion of
the process, are obtained. The results are illustrated with model examples.

2. Preliminaries

In this section we recall some results from the literature that are of interest for our work.
LetR be the set of real numbers andRn be the n-dimensional Euclidean space (n ≥ 2).Denote by conv(Rn)

the set of nonempty compact and convex subsets of Rn with the Hausdorff metric h(X,Y) = min{r ≥ 0 :
X ⊂ Y + Br(0), Y ⊂ X + Br(0)}, where X,Y ∈ conv(Rn), Br(c) = {x ∈ Rn : ∥x − c∥ ≤ r} is the closed ball with
radius r > 0 centered at the point c (∥ · ∥ denotes the Euclidean norm).

In addition to the usual set-theoretic operations, we introduce two operations in the space conv(Rn): the
sum of the sets and the product of the scalar by the set

X + Y = {x + y : x ∈ X, y ∈ Y} and λX = {λx : x ∈ X, λ ∈ R}.

And also we will add the operation of the product of the matrix on the set:

AX = {Ax : x ∈ X, A ∈ Rn×n
}.

Further we give the following theorem necessary below.

Theorem 2.1. [10] For any real (n × n)-matrix A there are two orthogonal (n × n)-matrix B and C such that
BTAC =M, where M is the diagonal matrix. We can also choose matrices B and C such that the diagonal elements of
the matrix M have the form

σ1 ≥ σ2 ≥ ... ≥ σr > σr+1 = ... = σn = 0,

where r is the rank of the matrix A. That is, if A is a nondegenerate matrix, then

σ1 ≥ σ2 ≥ ... ≥ σn > 0.

Columns b1, ..., bn of matrix B are called the left singular vectors, columns c1, ..., cn of matrix C are
called the right singular vectors, and the numbers σ1, σ2, ..., σn are called the singular numbers of the
matrix A. Therefore, this matrix A can be represented as A = BMCT. This decomposition is called singular
decomposition.

By [10], the set Y = {Ax : x ∈ B1(0),A ∈ Rn×n
} is r-dimensional ellipsoid, in which the semi-axis lengths

are equal to the corresponding singular numbers of the matrix A, where r = rank(A).
Hence the following statement is true, if rank(A) = n, then

Bσn (0) ⊂ Y ⊂ Bσ1 (0), (1)

where Bσn (0) is the inscribed ball in set Y, Bσ1 (0) is the smallest circumscribed ball of the set Y.
The following basic properties are valid [23, 32, 42, 43]:
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1. (conv(Rn), h) is a complete metric space,
2. h(X + Z,Y + Z) = h(X,Y),
3. h(λX, λY) = |λ|h(X,Y) for all X,Y,Z ∈ conv(Rn) and λ ∈ R.
However, conv(Rn) is not a linear space since it does not contain inverse elements for the addition,

and therefore difference is not well defined, i.e. if X ∈ conv(Rn) and X , {x}, then X + (−1)X , {0}. As a
consequence, alternative formulations for difference have been suggested. One of these alternatives is the
Hukuhara difference [12].

Let X,Y ∈ conv(Rn). A set Z ∈ conv(Rn) such that X = Y + Z is called a Hukuhara difference (H-
difference) of the sets X and Y and is denoted by X H Y In this case X H X = {0} and also (X + Y) H Y = X for
any X,Y ∈ conv(Rn).

Simultaneously, M. Hukuhara introduced the concept of Hukuhara differentiability for set-valued map-
pings by using the Hukuhara difference.

Definition 2.2. [12] Let X(·) : [0,T]→ conv(Rn) is set-valued mapping. We say that X(·) has a Hukuhara derivative
DHX(t) ∈ conv(Rn) at t ∈ (0,T), if for all ∆ > 0 that are sufficiently closed to 0, the Hukuhara differences and the
limits exist

lim
∆→0+

∆−1(X(t + ∆) H X(t)) = lim
∆→0+

∆−1(X(t) H X(t − ∆)) = DHX(t).

Theorem 2.3. [12] If the mapping X : [0,T] → conv(Rn) is Hukuhara differentiable on [0,T], then X(t) = X(0) +
t∫

0
DHX(s)ds, where the integral is understood in the sense of M. Hukuhara[12].

Corollary 2.4. If the set-valued mapping X(·) is Hukuhara differentiable on [0,T], then diam(X(·)) is a non-decreasing
function on [0,T].

Corollary 2.5. If the function diam(X(·)) is a decreasing function on [0,T], then the set-valued mapping X(·) is not
Hukuhara differentiable on [0,T].

The properties of the Hukuhara derivative are discussed in detail in [12, 18, 23, 32, 42, 43].

3. Linear set-valued differential equations

Now, consider the controlled set-valued system

DHX1(t) = v(t)AX1(t), X1(0) = Br(0),
ẋ2(t) = v(t)∥A∥x2(t) + u(t), x2(0) = 0,
X(t, v,u) = X1(t) + x2(t),

(2)

where X1 : R+ → conv(Rn) is the set-valued mapping; x2 : R+ → Rn is the vector-valued function; A ∈ Rn×n

is the constant non-degenerate matrix (n × n); ∥A∥ is the spectral norm of matrix A; v(·), u(·) are admissible
controls, that is, functions that are measurable by value such that v(t) ∈ [0, 1] and |ui(t)| ≤ 1, i = 1,n, for all
t ∈ R+.

Suppose that the set XK = BR(c) (the target set).
Consider the following control problem: find time T∗ > 0 and admissible controls v∗(·), u∗(·), such that

set-valued solution of the system (2) satisfies the condition

X(T∗, v∗,u∗) ⊂ XK. (3)

Remark 3.1. Note that in article [14] we considered the case when A = I and X(T∗, v∗,u∗) ≡ XK, where I is the
identity matrix.
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Obviously, the first equation in system (2) determines the shape and size of the set at each moment of
time t, which is a section of the set-valued solution of the system (2), and the second equation in system (2)
determines the coordinates of the center of this set at each moment of time t.

As it is known from [19, 32], for any admissible controls v(·) the solution X1(·) of system (2) exists for all
t ≥ 0 and

X1(t) = exp


t∫

0

v(s)dsA

 B1(0).

Obviously, the matrix A defines the shape of the ellipse (determines the ratio of the lengths of its main
diagonals).

From Theorem 2.1 it follows that the matrix A has singular values σ1 ≥ ... ≥ σn > 0.
If σ1 = ... = σn, then the cross section of the solution X1(t) at each moment of time t will be a n-dimensional

boll at every moment t ≥ 0 and X1(t) = e
σ1

t∫
0

v(s)ds
B1(0) [20].

If the matrix A has at least two different singular values, then the cross section of the solution X1(t) at
each moment of time t will be a n-dimensional ellipsoid rotated by some angle. Moreover, the lengths of
its main diagonals will be proportional to the singular values of the matrix A.

Also the control v(·) determines the growth rate of this ellipsoid and the function diam(X1(t)) is a non-
decreasing function.

Obviously, the solution x2(·) can be written in the following form:

x2(t) = e

t∫
0
∥A∥v(s)ds

t∫
0

e
−

s∫
0
∥A∥v(τ)dτ

u(s)ds.

Hence,

X(t, v,u) = e

t∫
0

v(s)ds A
B1(0) + e

t∫
0
∥A∥v(s)ds

t∫
0

e
−

s∫
0
∥A∥v(τ)dτ

u(s)ds.

Obviously, to construct a solution X(t, v,u) to system (2), it is necessary to know all the singular values of
the matrix A. However, finding all the singular values causes great difficulties. Therefore, simultaneously
with system (2), we consider the following simpler control system:

DHY(t) = v(t)A1Y(t) + u(t), Y(0) = Br(0), (4)

where A1 is a diagonal matrix, that has the following form

A1 =


σ1 . . . 0
...

. . .
...

0 . . . σ1

 ;

σ1 is the first singular number of matrix A.
As it is known from [14, 19, 32], the solution of system (4) can be written in the following form:

Y(t, v,u) = e

t∫
0
σ1v(s)ds

Br(0) + e

t∫
0
σ1v(s)ds

t∫
0

e
−

s∫
0
σ1v(τ)dτ

u(s)ds. (5)

It is clear that formula (5) can be rewritten as the sum of the set-valued mapping F(t, v) and vector-
function 1(t, v,u), i.e.

Y(t, v,u) = F(t, v) + 1(t, v,u),
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where F(t, v) = e

t∫
0
σ1v(s)ds

Br(0), 1(t, v,u) = e

t∫
0
σ1v(s)ds t∫

0
e
−

s∫
0
σ1v(τ)dτ

u(s)ds.

Therefore, the initial set Br(0) determines the ”shape” of the section of the set-valued solution Y(t, v,u)
at time t, and admissible control v(·) defines the change in size. We note that the set-valued mapping F(t, v)
has the following properties:

1) F(0, v) = Br(0);

2) for any t > 0 the set F(t, v) will be homothetic to the initial set Br(0) with constant k(t) = e

t∫
0
σ1v(s)ds

≥ 1,
i.e., will be shaped like a ball.

3) if v(t) ≡ 0 for all t ≥ 0, then F(t, v) = Br(0).
It is also obvious that the vector function 1(t, v,u), that depends on the admissible controls v(·) and u(·),

specifying additional shifts of the section of the set-valued mapping Y(t, v,u) at time t > 0 relative to the
initial set Br(0).

Remark 3.2. Because ∥A∥ = σ1, e

t∫
0

v(s)ds A
B1(0) ⊆ e

σ1

t∫
0

v(s)ds
B1(0) and

e

t∫
0
∥A∥v(s)ds

t∫
0

e
−

s∫
0
∥A∥v(τ)dτ

u(s)ds = e
σ1

t∫
0

v(s)ds
t∫

0

e
−σ1

s∫
0

v(τ)dτ
u(s)ds

then we have: for all t ≥ 0 and any admissible controls v(·), u(·) condition X(t, v,u) ⊆ Y(t, v,u) is hold. Also the
section of the set Y(t, v,u) will be the sphere described around the ellipsoid X(t, v,u) for all t > 0.

Example 3.3. Let the behavior of the system be described by system (2), where n = 2, r = 1, v ≡ 1, u = ( 1
3 , 1)T,

A =
(

6
5

2
3

1
2

6
7

)
. The singular numbers of the matrix A are σ1 = 1.63, σ2 = 0.42 and the solution X1(t) =

{
(x1, x2)T

∈ R2 :
(x1 cos(ψ) + x2 sin(ψ))2

e2σ1t +
(−x1 sin(ψ) + x2 cos(ψ))2

e2σ2t ≤ 1
}
,

whereψ is angle of rotation of the ellipse (see Figure 1). That is, the matrix A1 will have the form A1 =

(
1.63 0

0 1.63

)
.

Then the solutions X(t, v,u) and Y(t, v,u) will have the following form (see Figure 2).
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Figure 1. The solution X1(t), t ∈ [0, 1].

4
2

x1

0
0

-2

-2

-1

0

0.2

1

2

x
2

0.4

3

4

t

5

0.6

6

0.8 1

Figure 2. The solution X(t, v,u) - red, the solution
Y(t, v,u) - green, t ∈ [0, 1].
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It is obvious that the sets X0 ≡ Br(0) and XK ≡ BR(c) are homothetic, i.e. XK = aX0 + c, where a = R/r.

Remark 3.4. If 0 < a < 1, then diam(X0) > diam(XK) and this control problem does not make sense.

Remark 3.5. If a ≥ 1, ∥c∥ ≤ R − r, then X0 ⊆ XK. Hence, the initial set X0 a subset of the target set XK, i.e. this
control problem does not make sense.

Next, we consider two possible cases.:
1. a = 1, c , 0;
2. a > 1, ∥c∥ > R − r.
Case 1. a = 1, c , 0, i.e. XK = Br(c).
Hence, XK = X0 + c = Br(0) + c. Taking into account property 3) of the solution of the system (4), we get

v∗(t) ≡ 0. Then systems (2) and (4) have the same form:

DHX1(t) = {0}, X1(0) = Br(0),
ẋ2(t) = u(t), x2(0) = 0,
X(t, 0,u) = X1(t) + x2(t),

and the solution can be written in the following form: X(t, 0,u) = Br(0) +
t∫

0
u(s)ds.

Therefore, it is easy to find some minimum T∗ and admissible control u∗(·) such that

X(T∗, 0,u∗) = Br(0) +

T∗∫
0

u∗(s)ds = Br(0) + c,

i.e.

T∗∫
0

u∗i (s)ds = ci, i = 1,n. (6)

Hence T∗ =max
i=1,n
|ci|. Also optimal control u∗(·) = (u∗1(·), ...,u∗n(·))T such that |u∗i (t)| ≤ 1, i = 1,n, and there

exists at least one j ∈ {1, ...,n}, that |c j| = max
i=1,n
|ci| and u∗j(t) ≡

{
1, c j > 0
−1, c j < 0 for all t ∈ [0,T∗] and the

condition (6) is hold.
Obviously, in the class of constant functions, such an optimal control is u∗(·) = (u∗1, ...,u

∗
n)T, such that

u∗i ≡
ci

cmax
, i = 1,n, where cmax = max

i=1,n
|ci|.

Example 3.6. Consider the system from Example 3.3 and XK=B1(c), c = (−1.2, 0.9)T.
It is obvious that the set XK is homothetic to the initial set X0, i.e. XK = aX0 + c and a = 1, c = (−1.2, 0.9)T.

Then T∗ = max{1.2, 0.9} = 1.2, v∗ ≡ 0, u∗ = (−1, 0.75)T and the solution has the form (see Figure 3).
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Figure 3. The solution X(t, v∗,u∗), t ∈ [0, 1.2].

Case 2. a > 1, ∥c∥ > R − r. Then XK = Bar(c), i.e. XK = aX0 + c.
We take v(t) ≡ 1, since in this case this control will increase the diameter of the solution section of the

system (2) as quickly as possible and shift the center of this section as quickly as possible in the space Rn.
Then systems (2) and (4) have the following form

DHX1(t) = AX1(t), X1(0) = Br(0),
ẋ2(t) = ∥A∥x2(t) + u(t), x2(t) = 0,
X(t, 1,u) = X1(t) + x2(t),

(7)

DHY(t) = A1Y(t) + u(t), Y(0) = Br(0), (8)

and the solution of system (8) can be written in the following form

Y(t, 1,u) = eσ1tBr(0) + eσ1t

t∫
0

e−σ1su(s)ds (9)

or

Y(t, 1,u) = Breσ1 t (0) + eσ1t

t∫
0

e−σ1su(s)ds. (10)

Obviously, at time T1 =
ln(a)
σ1

the diameter of the section of the solution Y(T1, 1,u) will be equal to the
length of the diameter of the target set XK.

Also, by (10) we have, that the solution center of system (8) will move in the space Rn by trajectory

y(t, 1,u) = eσ1t

t∫
0

e−σ1su(s)ds. (11)

Then when choosing the optimal control u∗(·) at some point in time T2 the condition

eσ1T2

T2∫
0

e−σ1su∗(s)ds = c (12)
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will be satisfied.
Therefore, there are three possible cases:

a) T1 = T2; b) T1 > T2; c) T1 < T2.
Next, we look at all of these cases sequentially.
a) T1 = T2 = T∗ = ln(a)

σ1
. By (9) and (12) we have

reσ1T2 = reσ1T1 = reσ1T∗ = ar, a

T∗∫
0

e−σ1su∗(s)ds = c,

i.e. there is control u∗(·) = (u∗1(·), ...,u∗n(·))T such that
T∗∫
0

e−σ1su∗i (s)ds = ci
a , |u

∗

i (t)| ≤ 1, for all t ∈ [0,T∗] and

i = 1,n.
Since u∗(·) is optimal control, then there is at least one j ∈ {1, ...,n} such that |u∗j(t)| ≡ 1 and |c j| = max

i=1,n
|ci|.

Therefore, a
T∗∫
0

e−σ1sds = |c j|, i.e. a−1
σ1
= |c j| = max

i=1,n
|ci|.

Also note that the optimal control u∗(·) = (u∗1(·), ...,u∗n(·))T from the class of constant functions will be
u∗i (t) =

ci
cmax

for all t ∈ [0,T∗] and i = 1,n.

Example 3.7. Consider the system of Example 3.3 and XK=BR(c), R = 2.96, c = (−1.2, 0.9)T.
It is obvious that the set XK homothetic to the initial set X0, i.e. XK = aX0 + c and a = 2.96, c = (−1.2, 0.9)T.

Then a−1
σ1
= (2.96 − 1)/1.63 = 1.2 and max

i=1,2
|ci| = 1.2, i.e. a−1

σ1
= max

i=1,2
|ci|. Here, T∗ = 0.665, v∗ ≡ 1, u∗ = (−1, 0.75)T.

Then the solution will be as follows (see Figure 4).
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0.4 0.6 -50.8

Figure 4. The solution X(t, v∗,u∗) - red, the solution Y(t, v∗,u∗) - green, t ∈ [0, 0.665].

b) T1 > T2. By (9) and (12) we have ceσ1T2 < ceσ1T1 = ar = R, eσ1T2

T2∫
0

e−σ1su∗(s)ds = c, i.e. a−1
σ1
> max

i=1,n
|ci|.

Therefore, when we choose the optimal control u∗(·), then the center of the initial set X0 is transferred,
according to the equation (11), to the center of the target set XK in the time T2 < T1. Thus, the section of the
solution Y(t, v,u∗) of the system (8) at time T2 will have a radius less than the radius of the target set XK, i.e.
Y(T2, v,u∗) ⊂ XK.
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So in this case we take the time T∗ = T2 =
ln(σ1 max

i=1,n
|ci |+1)

σ1
and controls v∗(t) ≡ 1 and u∗(·) = (u∗1(·), ...,u∗n(·))T

such that |u∗i (t)| ≤ 1 and eσ1T∗
T∗∫
0

e−σ1su∗i (s)ds = ci for all t ∈ [0,T∗] and i = 1,n.

For example, such control in the class of constant functions will be u∗(·) = (u∗1, ...,u
∗
n)T such that u∗i =

ci
max
i=1,n
|ci |
,

i = 1,n.

Example 3.8. Consider the system of Example 3.3 and X0 = Br(0), XK=BR(c), r = 1
3 , R = 2

3 , c = (0.5,−0.2)T.
It is obvious that the set XK is homothetic to the initial set X0, i.e. XK = aX0 + c and a = 2, c = (0.5,−0.2)T.

Then a−1
σ1
= (2 − 1)/1.63 = 0.61 and max

i=1,2
|ci| = 0.5, i.e. a−1

σ1
> max

i=1,2
|ci|. So, T∗ = 0.365, v∗ ≡ 1, u∗ = (1,−0.4)T. Then

the solutions will be as follows (see Figure 5).

2
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x1

x
2

0

0.1

0.5

00.2

t
0.3

-10.4

Figure 5. The solution X(t, v∗,u∗) - red, the solution Y(t, v∗,u∗) - green, t ∈ [0, 0.365].

c) T1 < T2. By (9) and (12) we have reσ1T2 > reσ1T1 = ar = R, and eσ1T2

T2∫
0

e−σ1su∗(s)ds = c, i.e. a−1
σ1
< max

i=1,n
|ci|.

Therefore, when we choose the optimal control u∗(·), then the center of the initial set X0 is transferred,
according to the equation (11), to the center of the target set XK in the time T2 > T1. Thus, the section of the
solution Y(t, v∗,u∗) of system (8) at time T2 will have a radius greater than the radius of the target set, i.e.
XK ⊂ Y(T2, v∗,u∗).

Therefore, in this case we cannot select v∗(t) ≡ 1 for all t ∈ [0,T2]. Therefore, we must choose v∗(·) such
that 0 ≤ v∗(t) ≤ 1 for all t ≥ 0 and v∗(t) . 1. We also note that in this case the time T of transfer of the center
of the section of the solution of system (10) to the center of the target set XK will be more than T2.

We will write the following system
e

T∫
0
σ1v∗(s)ds

= a,

re

T∫
0
σ1v∗(s)ds

+ e

T∫
0
σ1v∗(s)ds T∫

0
e
−

t∫
0
σ1v∗(s)ds

u∗(t)dt = c.

Hence we have

e

T∫
0
σ1v∗(s)ds

= a,

T∫
0

e
−

t∫
0
σ1v∗(s)ds

u∗(t)dt =
c
a
.
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Considering that for some j ∈ {1, ...,n}we have |u∗j(t)| ≡ 1 and |c j| = max
i=1,n
|ci|, then

e

T∗∫
0
σ1v∗(s)ds

= a,

T∗∫
0

e
−

t∫
0
σ1v∗(s)ds

dt =

max
i=1,n
|ci|

a
.

If v∗(t) = v∗ = const, then eT∗σ1v∗ = a,
T∗∫
0

e−tσ1v∗dt =
max
i=1,n
|ci |

a .

As a result

T∗ =

ln(a) max
i=1,n
|ci|

a − 1
and v∗ =

a − 1
σ1 max

i=1,n
|ci|
. (13)

Then the optimal control u∗(·) = (u∗1(·), ...,u∗n(·))T must satisfy the condition

|u∗i (t)| ≤ 1,

T∗∫
0

e−tσ1v∗u∗i (t)dt =
ci

a
, i = 1,n. (14)

For example, such control in the class of constant functions will be u∗(·) = (u∗1, ...,u
∗
n)T, such that u∗i =

ci
cmax
, i = 1,n.

Example 3.9. Consider the system of Example 3.3 and XK=BR(c), R = 2, c = (−1.2, 0.9)T.
It is obvious that the set XK is homothetic to the initial set X0, i.e. XK = aX0 + c and a = 2, c = (−1.2, 0.9)T.

Then a−1
σ1
= (2 − 1)/1.63 = 0.61 and max

i=1,2
|ci| = 1.2, i.e. a−1

σ1
< max

i=1,2
|ci|. So, T∗ = ln(a)cmax

a−1 =
1.2 ln(2)

2−1 = 0.83,

v∗ = a−1
σ1cmax

= 2−1
1.63·1.2 = 0.51, u∗ = (−1, 0.75)T (see Figure 8). Its also easy to get that T1 =

ln(a)
σ1
= 0.43 and

T2 =
ln(σ1cmax+1)

σ1
= 0.665, i.e. T1 < T2 < T∗. We also note that the section of the solution Y(t, 1,u∗) of system (8) at

time T1 is equal in size to the target set SK, but their centers do not coincide. The center of the initial set X0 did not
manage to move to the center of the target set XK (see Figure 6). We also note that at time T2, the center of the initial
set X0 has moved to the center of the target set XK, but the section of the solution Y(t, 1,u∗) to system (8) at moment
T2 is larger than the target set XK, i.e. XK ⊂ Y(T2, 1,u∗) (see Figure 7).
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Figure 6. X(t, 1,u∗) - red, Y(t, 1,u∗) -
green, t ∈ [0, 0.43].
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Figure 7. X(t, 1,u∗) - red, Y(t, 1,u∗) -
green, t ∈ [0, 0.665].
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Figure 8. The solution X(t, v∗,u∗) - red, the solution Y(t, v∗,u∗) - green, t ∈ [0, 0.83]

Taking into account all the previous arguments, we state the following theorem.

Theorem 3.10. If the sets X0 = Br(0) and XK = BR(c) satisfy the condition ∥c∥ ≥ R − r, then the control problem
(2),(3) has a solution, and time T∗ and controls v∗, u∗ = (u∗1, ...,u

∗
n)T from the class of constant functions will be

T∗ =


cmax, a = 1,
ln(a)
σ1
, a > 1 and a−1

σ1
= cmax,

ln(σ1cmax+1)
σ1

, a > 1 and a−1
σ1
> cmax,

ln(a)cmax
a−1 , a > 1 and a−1

σ1
< cmax,

v∗ =


0, a = 1,
1, a > 1 and a−1

σ1
≥ cmax,

a−1
σ1cmax

, a > 1 and a−1
σ1
< cmax,

u∗i =
ci

cmax
, i = 1,n, where a = R

r , cmax = max
i=1,n
|ci|.

Remark 3.11. Since in cases 1), 2a) and 2c) the intersection of the solution of system (4) coincides with the target set
XK, and the problem is solved as a time-optimal problem for system (4), then for the control problem for system (2) in
cases 1), 2a) and 2c) the time will be minimal, and controls will be optimal. In case 2b), the time may not be optimal
for system (2).

Example 3.12. Let the behavior of the system be described by equation (2), where X0 = B 1
3
(0), XK = B 2

3
(c), c =

(−0.5, 0.2)T, A =
(

1 1
6

1
2

8
7

)
.

It is easy to verify that this is case 2b), i.e. a−1
σ1
= 2−1

1.43 = 0.699 > cmax = 0.5. Then v∗ ≡ 1, u∗ = (−1, 0.4)T. But at

the moment T∗ = ln(σ1cmax+1)
σ1

=
ln(1.43×0.5+1)

1.43 = 0.275 there will be the touch of the boundary of the solution section of
system (4) with the boundary of the target set XK, but not of the ellipsoid, that is the section of the solution of system
(2) (see Figure 9). The touch of the ellipsoid, that is the section of the solution of system (2) with the boundary of the
target set XK, will occur earlier at time T = 0.248 (see Figure 10).

Remark 3.13. If the initial set X0 is an arbitrary nonempty convex compact set, then we can describe a ball around
it Br(0) and for system (4) obtain a solution (T∗, v∗,u∗), if the conditions of Theorem 2 are satisfied. However, the
obtained value T∗ will only guarantee the fulfillment of the condition (3), since it may not be minimal.
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Figure 9. X(t, v∗,u∗) - red, Y(t, v∗,u∗) -
green, t ∈ [0, 0.275]
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Figure 10. X(t, v∗,u∗) - red, Y(t, v∗,u∗) -
green, t ∈ [0, 0.248]

Example 3.14. Let the object’s behavior be described by the system

DHX1(t) = v(t)AX1(t), X1(0) = X0,
ẋ2(t) = v(t)∥A∥x2(t) + u(t), x2(0) = 0,
X(t, v,u) = X1(t) + x2(t),

X(T) ⊆ XK, (15)

where A =
(

6
5

2
3

1
2

4
7

)
, X0 =

{
x ∈ R2 :

16x2
1

9 + x2
2 ≤ 1

}
, XK = BR(c), R = 5

4 , c = ( 4
3 ,

2
3 )T.

Consider the auxiliary system

DHY1(t) = v(t)AY1(t), Y1(0) = Y0,
ẋ2(t) = v(t)∥A∥x2(t) + u(t), x2(0) = 0,
Y(t, v,u) = Y1(t) + x2(t),

Y(T) ⊆ XK, (16)

where Y0 =
{
x ∈ R2 : x2

1 + x2
2 ≤ 1

}
is a ball described around the set X0.

Since XK is homothetically Y0 with parameters a = 5
4 , c = ( 4

3 ,
2
3 )T and σ1 = 1.55 is the maximum singular

number of the matrix A, then a−1
σ1
= 0.215 < 4

3 = max{|c1|, |c2|}. Then T∗ = 1.19, v∗ = 0.12, u∗ = (1, 0.5)T (see Figure
11).

We also consider system (15) with the initial set X0 =
{
x ∈ R2 : x2

1 +
16x2

2
9 ≤ 1

}
. Obviously, the initial system in

this case will be system (16), so too T∗ = 1.19, v∗ = 0.12, u∗ = (1, 0.5)T (see Figure 12).
Obviously, in the first case (Figure 10) the time T∗ = 1.19 is minimal (because the set X(T∗, v∗,u∗) touch the set

XK). In the second case (Figure 11) the time T∗ = 1.19 is not minimal (the set X(T∗, v∗,u∗) is strictly inside the set
XK).
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Figure 11. X0 - blue, XK - black, X(t, v∗,u∗) - red,
Y(t, v∗,u∗) - green, t ∈ [0, 1.19]
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Figure 12. X0 - blue, XK - black, X(t, v∗,u∗) - red,
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