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Abstract.

In this article, we establish a generalized version of Darbo’s fixed point theorem via some newly defined
condensing operators and we define a new fractional integral using (P, Q)-calculus and study its properties.
Finally, we apply this generalized Darbo’s fixed point theorem to check the existence of a solution of (P, Q)-

functional integral equations of fractional order in a Banach space. We explain the results with the help of
simple examples.

1. Introduction

The measure of non-compactness which was first introduced by Kuratowski [14] plays a very important
role in many branches of mathematics. There are several types of non-compactness measures in metric
and topological spaces. For more information on the subject of measure of non-compactness, see [7].
Non-compactness measures are used in various types of integral and differential equations, see [7]. Arab
et al. [6] proved the existence of solutions for infinite systems of integral equations that generate via two
variables. In [10], the existence of solutions for singular integral equations was discussed using a measure
of non-compactness.

The idea of Q-calculus was introduced by Jackson [11, 12]. Fractional g-difference concept was intro-

duced by Agarwal [2] and Al-Salam [4]. In [13], the existence of solution of Q-integral equations of fractional
order have been discussed.
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In this article, we apply a generalized version of Darbo’s theorem to study the solvability of the equation:

X(0) = n| 0, x(a(oy, ZEXEO X(b(e))) f (PO — 00155 161, X(0)dpo0r |, M

where0el1=[0,1], 0<Q<P<1, F,U: IXR->R, a,b:1->1, n:IXRXR—->Randa > 1.

2. Preliminaries

At first, we recall some facts about Q-calculus. For more details, we refer to [2, 5, 17]. Let Q € [1, o). For
arbitrary L. € IR, the Q-real number [L]g is defined by

1-Qt
1-Q°
The Q-shifted factorial of real number L’ is defined by

[Elo =

(-1

®,Qu=1 &, Q. =[](1-vQ), =12 .,

i=0
For (L, 1) € R?, the Q-analog of (L. — £)" is defined by

(-1

E-1)2=1, ®-1)0= H (E-vQ), =12,

i=0

For arbitrary € R, (£, 1) e R>and £ > 0,

(=)

For}/ =0, we have L) = 1 5.
The Q-gamma function is given by

(1-Q
o) =——""-—, L -1,-2,..}.
Q( ) (1 _ Q)L_l 7 e {0/ 7 7 }
The (P, Q)-bracket or twin-basic number is defined by Sadjang [16] as follows. For arbitrary L. € IR, we have
PL _ QL
[L]P,Q - P _ Q .

For arbitrary £, 1’ € R, we define the (P, Q)-analog of (£ — £/) as follows:
(E-L)pp =1,

-1

no i 10 —
(£ -1)0) = H(LP’ -1Q),6=1,23,...
i=0
and for arbitrary § € R and for arbitrary L. > 0,

N 0 Lpz _ L/Qi
t-t )P,Q =t l 0| (Lpi _ LIQ/S+[ :
i=l

Fort’ =0, we have (L — 1/ E,ﬁ; =1A.
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Lemma2.1. If § > 0and A < B < T then (T - A)) > (T - B)%),
Proof. We have to know that
TP — AQ' = ( TP — BQ
T H (Tpl AQQﬁ“) - H (sz BQ%”)
For each i € Ny, we show that
(TP - AQY)(TP' - BQP*) 2 (TP - BQ) (TP' - AQ)
& BP'QP + AP'Q' > AP'QP + BP'(QY

& A+BQPf > B+ AQF
© B-A<QB-A).

For A=B,wehave B—A =Qf(B—-A)and for A # B,wehave O’ <1. O

We define the (P, Q)-analogue of the Gamma function as follows:

(P- Qg

W, b ¢ {0,—1, —2, } .

Ipo(t) =

For P = 1, we can see that I'p reduces to I'g. Clearly, we can see that
FRQ(L + 1) * [L]p,Qrp,Q(L).
Only for P = 1 the equality holds.

Let f : [0,4] — R be a function where @ is a nonnegative real number. Sadjang [16], defined the
(P, Q)-integral of the function f as follows:

0

[ ot = - Q)GZ S Lo

0

where ' | > 1and 6 € [0,4], provided that the sum converges absolutely. For P = 1, we get f f(L)dpoL =

0
[f(B)dot.
0

Lemma 2.2. Let f: [0,1] — R be a continuous function. Then

0
< f I£(D)| dpok
0

6

f f(L)dp oL

0

for all 6 € [0, 1].
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Proof. We have

0

f (E)dpok| =

0

(P Q)GZ pf+1 p€+1

Q[’
p€+1 9)|

<(P- Q)@Z P

0

- f I£(E)| dngk.

0
0

Remark 2.3. If f(£) = 1forallL € I = [0, 1], then for any O € I, we have

0

0
f f(E)dpok. = f dpok
0 0
--Qo). o

g
(%) z(%)

We introduce the fractional (P, Q)-integral of order a > 0 of the function f which is given by
Ing(e) = f(0)

and
I2,£(0) = f (PO - Q615" £(01)dn 06,
where 0 € [0,1] and a > 1. For P = 1, we get I f(@) =] f(Q)

Definition 2.4. [8] A strongly continuous semigroup on E is a mapping S : [0, 00) — L(E) so that:

(1) S(0) = I; and S(t + s) = S(t)S(s) for all t,s > 0 where I; is the identity mapping.

(2) S(x) is continuous on [0, oo) for all x € E where E is a complex Banach space and L(E) is the Banach algebra of all
continuous linear mappings defined on 1B.

Let f1, f € C[0,1] and k1, k; € R. Therefore
o [k1f1(0) + k2 2(6)]

rPQ( ) f (PO — Q015" [ki fi(61) + ko f2(61)] dpg 04

= klngfl 6) + kng,sz(@)
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Hence, the operator I  is linear.
Again for f1(0), f2(0) = 0 we observe that

o [A(O) + £(0)] = I [A(O)] + Ipg [f2(0)] # I [A(O)] L5 [f2(0)]

and I“Q [0]=0# 1.
Hence, we conclude that the operator I}, , is not an strongly continuous semigroup on C([0, 1]).

Suppose that E be a real Banach space. Let B(yo, d) be the closed ball in E with center yo and radius
d. By L. and ConvL we denote the closure and the convex closure of L. Moreover, let NBg be the family
of all nonempty and bounded subsets of E and RCg be its subfamily consisting of all relatively compact sets.

The following definition of a measure of noncompactness has been presented in [7].

Definition 2.5. ;1 : NBg — [0, 0) is called a measure of noncompactness if:

(i) u(L) = 0implies that L is precompact for all L. € NBg,
(ii) the family ker u = {£ € NBg : u (L) = 0} is nonempty and ker u C RC,
(i tct = pd)<u),

)
@v) u(E)=p®),
(v) p(Convk) = u (L),
vi) yAL+ A -ANL) <ApE®R)+ (A -A)uE’) forall A €[0,1],
(vii) ﬂnzl tn # 0 whenever b, € NBg, £y = £, £nyg CEpforalln=1,2,3,...and lim u(£,) =0

The family ker u is said to be the kernel of measure pi.

A measure y is called sublinear if:

(1) p(AL) =|Alu (L) forall A € R,
Q@ pE+L)<p®)+u®).

A sublinear measure of noncompactness u so that
u(LUL) = max(u (L), p (E)

and ker y = RCg is said to be regular.
For a bounded subset Q of a metric space L,

a(Q):inf{6>0:Q=UQi, diam (Q;) <6 for1 SiSnSoo},
i=1

is the Kuratowski measure of noncompactness of Q where diam(@;) denotes the diameter of the set @;, that
is,

diam (@) = sup{d(x,y) : x,y € Qi},
and
x(Q) =inf{e > 0: Qhas a finite ¢ —netin L.},

is the Hausdorff measure of noncompactness for Q.
Recall the following fixed point theorems:

Theorem 2.6. [1, Schauder fixed-point theorem] Let [E be a Banach space and R(# 0) C [E be closed and convex.
Then any A - 8 — N which is continuous and compact, admits at least one fixed point.



A. Das et al. / Filomat 37:23 (2023), 7849-7865 7854

Theorem 2.7. [9, Darbo fixed-point theorem] Let IE be a Banach space and 8 C IE be nonempty, bounded, closed and
convex (NBCC) and u is a measure of noncompactness defined in E. Also, let A : 8 — N be continuous and there
exists a constant 0 < T < 1 with

w(AIl) < - u(Il), ITCN.
Then A has a fixed point.

In this section, we establish a generalization of Darbo’s fixed point theorem with the help of following
concepts:

Definition 2.8. [15] Let functions g1, 9> : Ry — R be given. The pair (91, 92) is called a pair of shifting distance
functions(SDF) if:

(1) p1(l) < pa(m), then I < m, forall [, m € R,

(2) for all Iy, my € R, with 1}1_{2 I, = 1}1_{{)10 my = w, if P1(lk) < 2(my) for all k, then w = 0.

Following examples of ¢ represents a pair (91, ¢2) of a SDF.
(1) 91(8) = In(12) and p2(8) = In(1£).
(2) p1(&) = Eand p2(&) = AE, A €]0,1).
Definition 2.9. Let IF be the family of all continuous and nondecreasing maps F : ]R?r — R, with:

(1) max{a,b,c} <F(a,b,c)foralla,b,c >0,
(2) F(a,0,0) =aforalla>0.

For example, F : ]R§r — R, defined by F(a,b,c) = a + b + c is an element of IF.

3. New results

From now on, let ¢ : R; — R, be nondecreasing and continuous with ¢(t) = 0 iff t = 0 and ¢(t) < t for
allt > 0.

Theorem 3.1. Let E be a Banach space, C C E be a NBCC and T : C — C be a continuous function with

o1 [F (u(TE), 71 (W(TE)), y2 (WTE))] < 93 [ ¢ {F (u(), 71 (1)), y2 (®)}], @)

forallL(# 0) CC; FeFF; 91,92 € pand y1,y2 : Ry — R, are continuous nondecreasing functions where i is an
arbitrary MNC. Then T admits a fixed point in C.

Proof. Define a sequence (C;), where C; = C and Cs1 = Conv(TC), for all s > 1. Also, TC; = TC € C =
Cy, €y = Conv(TCy) € C = C;. Similarly, C; 2C, 2C32...2C2C,1 2.
If sp € N with u(Cs,) = 0, then Cs, is compact. So, applying Theorem 2.6 we observed that T admits a fixed
point.
Let u(C;) > 0 for all s > 0. By (2) we have

91 [F (1(Cs41), 71 (1(Cs41)) , 72 (1(Cs41)))]

= o1 [F(u(Cono(TC,)), y1 (1(Conv(TC.))) , y2 ((Cono(TC,))) )]

= 91 [F(U(TCs), 71 (UTCs)), y2 (WTC)))]

< 92 [ {F (1(C.), 71 ((ECS), 72 (T,
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which gives

F(p(Cs+1), 71 (1(Cs11)) , 72 (W(Cs41)))
= qb {F (H(Cs)/ 71 (M(Cs)) /Y2 (M(Cs)))}
<F (F(Cs)r V1 (‘U(Cs)) /Y2 (H(CS))) .

Clearly, the sequence {F (u(TCs), y1 (1(TCs)), y2 (1(TCs)))}o-; is positive and decreasing. So, we can find
ad > 0 such that

lim F (u(TCy), y1 (u(C5)) , y2 (W(TC))) = d.

If d = 0, then the result is obvious.
If possible, assume that d > 0.

As s — oo, then we get d < ¢(d) which is a contradiction. Hence, lim F (u(Cs), y1 (4(GCs)), v2 (1(Cs))) =0,
i.e.,, d = 0 which gives

F (tim (€, lim 74 (u(€), lim 7 (4(€2)) = 0.
By using the property of F we get lim u (C;) = 0.
We know that Cs 2 Cs41 and by Definition 2.5 we get Co, = (o2; Cs € C is nonempty, closed and convex.
Also, Cy is invariant under F. Thus, Theorem 2.6 implies that F has a fixed pointin Co, CC. [J
Theorem 3.2. Let [E be a Banach space, C C E be a NBCC and T : C — C be a continuous function such that

o1 [W(TE) + 1 (u(TE)) + 2 (W(TE)] < 92 [ {u(E®) + 1 (u®) + 2 (u®)}], ®)

forallL(# 0) C C; 91, 92 € p whereyy, Y2 : Ry — R, are continuous nondecreasing functions and i is an arbitrary
MNC. Then T admits a fixed point in C.

Proof. The result can be obtained by taking F(a,b,c) =a + b + cin Theorem 3.1. O
Corollary 3.3. Let E be a Banach space, C C E be a NBCC and T : C — C be a continuous function with
o1 [B(TE)] < 02 [ (u®)}], (4)
forall L(# 0) € Cand 91, 9o € p where u is an arbitrary MNC. Then T admits a fixed point in C.
Proof. Let y1(t) = y2(t) = 0 forall t > 0 in Theorem 3.2. [J

Corollary 3.4. Let E be a Banach space, C C E bea NBCC and T : C — C be a continuous function with
wTE) < {ud)), )

for all L(# 0) C C where y is an arbitrary MNC. Then T admits a fixed point in C.

Proof. Let p1(t) = po(t) = tfor all t > 0 in Corollary 3.3. [

Remark 3.5. For ¢(t) = kt where k € [0,1) and t € R, in Corollary 3.4 we obtain the Darbo’s fixed point theorem.
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4. Application

In this section, we establish the existence of solution of the equation (1) in the space E = C(I), where C(I)
is the set of real and continuous functions defined on the compact set I. We also know that E is a Banach
space with respect to the norm

I L |l=max{E(0)|: 0}, L €E.

Let M € NBg. For (L, r) € M X (0, ), we denote by w(L, r) the modulus of continuity of L, i.e.,
w(k, r) =sup {|L(O) —L(61)|: 0,01 € L]0 — 01| <1}.

Further we define
w(M, 1) =sup {w(t, 1) : L € M}.

Define the mapping y : NBg — [0, o) by

uM) = lir(r)& w(M,r),M € NBg.

Then u is a measure of non-compactness in E (see[7]).
Let us define the operator 7 on E by

_ 0
(TL)(Q)ZW[Q,L(M)),%%@)» | #0- Qo wuon oo |,
' 0

whereL e Eand 6 € .
We consider the following assumptions:

(1) The functions ¥, U : IXR — R;a3,b:I — I and n:IXRXR — R are continuous.
(2) There exists a constant 9, > 0 and non-decreasing function ¢,, : [0, c0) — [0, c0) such that

[n(6,£,£) = (6, Z, W)| < gy(I - ZI) + D, I = W

forall@ e Iand forallt, ', Z W e R.
(3) There exists a constant D¢ > 0 such that

[F(6,1) - F(6,1) < Dy [~ 1/|

forall@ e Iand forallt, 1’ € R.
(4) There exists a non-decreasing and continuous function ¢, : [0, 00) — [0, o) such that

UG, L) - UG, L) < Py - L)),

where 0 € Jand L, 1" € R. Also, ¢/(0) < 6,0 > 0and U(0,0) =0forall 0 € I.
(5) There exists ry > 0 such that

D R
1,[),,(r0) + ‘]::DT(Z:O(:;‘)) (1)7:1‘0 + T) + 17 < 19,

where = max {[(6,0,0)| : 0 € I} and # = max {|F(6,0)| : 0 € I}.

(6) The function ¢, : [0,00) — [0, o) is continuous so that 1,(0) < L6 for all © > 0 where L. > 0 is a
constant.
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(7) The function i : I — I satisfies
|a(0) — a(01)] < ¢Ya(10 — 641)
forall 8,60; € I and 15 : [0, 00) — [0, o) is non-decreasing and Qlir{)g Yz(0)=0

(8) The function b : I — I satisfies
[6(6) ~ b(61)] < ¥5(16 - 61)
forall ,60; € I and 3 : [0, 00) — [0, o0) is non-decreasing and lim Y5(0) =0

(9) We suppose that 0 < 1q;(r) < | PQ(a)' and |r ( o (Dfl‘o + T) < 1. Also,

L+L+N<1,

where £ = % nd N = %.
Let the closed ball with center 0 and radius 1y be denoted by B(0,1p) = {E € E:|| £ ||< 1o} .
Theorem 4.1. Under the hypothesis (1)-(9), equation (1) has at least one solution in E = C(I).
Proof. As 61 €[0,1] =1s06; > 1. Alsoa —1 > 0. By applying Lemma 2.1 we have

(PO - Q6 );“Q” < (PO - 0)“‘ D= (PG)(“ b
ie

(PO - QO )(a D < pa-lga-1.

Since P < 1 therefore (P6 — QGl)(“ U< ga-t,
Let £ € B(0, 1p). By using assumptlons (1)-(9), for all 6 € I, we have

(TE))
< n[e,w(e)) 710, LG L(b(g” f (PO - QO ”fu(el,L(el»dmel]—n<9,o,0> +1n(6,0,0)
(6
< ¢, (L@O))) + D n | ac)|)) ) f|(P9 le)(a 1)|I(LI (01, £(01))dpoOr + 1)
PQ

0

. D, — - )
<g (1L 1)+ {|7(6,£50)) - F(0,0)| + 10,0 f 0°1 [ U(01,(01))| dpgbs + 17
o)

0
0

L (Dr LI +F) [0 ol Ing6y + 1

0

= Ebn ( 0) Sl —T
[e(@)
Z)nw‘ll(rO)
[Trg(@)
Drﬂ/}'u(ro)
ICpo(@)]

0
< 1/),7 (ro) + (Dgtro + 7\") f 6“‘15113,@61 +1)
0

= 17b77 (I’o) + (quro + 7}) 0% + 17

<1,
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i.e., (TL)(6) € B(0, 1p). Thus, 7 maps B(0, 1p) into itself.
We have to show that 7 is continuous on B(0, rp). Let us define the operators A1, A, and A3 on E by
(ME)(6) = 0
(A21) (6) = L(a(0))
and
(Ask) (6) = F(0,L(b(0)))

forall 6 € I and L € E. It is obvious that A; is continuous.
ForallL, 1’ € E we have

(A21) (0) — (A2L") (0)] = [L(a(0)) - £/ @(0))l <l| £ - £ ],

for all 0 € I which gives || A,L — A,L" [|<|| £ — 1" || . Therefore, A, is uniformly continuous on E.

Similarly, we can show that || AzL — A3L' [|< D& || L =L’ || for all 1,1’ € E. Therefore, A3 is also uniformly
continuous on E.

To prove that 7 is continuous on B(0, 1y), for this we show that

0

HL0) = [ (PO~ Q01 U0 1O,

0

is continuous on B(0, rg). Lete > 0and }, £’ € B(0, rg) such that || £. — £’ ||< €. For all 6 € I we have

0
(HE)(O) — (HL)(6) = f (P — Q615" {UU(61,£(61)) — U6, £/ (61))} dp b1
0

Let Uy, (e) = sup{U(O,L) —UO, L) : 0 e L, L € BO,1); I E -1’ [I< €e}.
Therefore,

0
(HLYO) - (HL)O) < U e) [ (PO~ Q00" drot
0

0
Sﬂro(G)fGaldp,Qel
0

= 0"U,,(€)
< Uy, (€).

So, we have
| HE — HL |I< Uy, (e).
Using the uniform continuity of U on the compact set I X [ry, 19] we get

li%l+ Uy, (e) = 0.
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Thus, H is continuous. So, we can conclude that 7 is also continuous. Let d > 0 and 61, 6, € I such that
|61 — 6>] < d. We also assume that 6; > 6,. Now

[(T£)(61) — (T1)(62)]

(

\n[ehua(el)),w f (PO — Q055" U(05, £(0)d 001

—n[ez,m(ez)) M f (PO, — Q05 1’%1(93,L<63>>dp@63]

< n[el,m(el» w f (PO — Q055" U(05, £(0)d 001

—n[ez,w(em T(Ql’w(@”” f (P01 — Q05)% 1)W(33/L(93))dP,Q93]
[ ta(ory, G000 f (PO1 ~ Q055 ”wee,,h<63>>dp,Q63]
[Qz,L( (©02), T(eli’“b(@z”) f (PO, Q93>55‘Q”W<93,L<e3>>dpQ63J

=1 + I,

Also,
F (61, £(b(61))) (a=1)
T f (PO ~ Q035" LB, L(O)rgby

61
F (01, L(b(O
W f (P61 — Q055" [14(63, £(05)] g0
PQ J

. |7 (01, £(B(61))) — F(01,0)| + |F (61, 0)|
- ICpo(@)|

f (P: - Q0255 [ wau(0:))r 0

_ (Dr [E@O]+7) paut £ 1)

f‘(P91 Q93) ’dPQes

(FP,Q(a)( .
_(DF I +F )l D,
ICeg(a)| '
_ D+ F)putw) 5
ICpo(@)| '

Set
D(n,d) = sup{|n(6,£, L) - (61,1, 1)

£ 0,0, € L0 - 61 <d, L€ [-10, 10,1 € [—@,@]}.
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Therefore, I; < D(n, d). Again

£(a(61)) — £(a(62))

)

701, 1E@) [ (PO - Q0o Us, LO:)n0:
0

I S%(

ICpo(a)|
0,
(02, L(B(62)) f (PO — Q05)5 UU(0s, £(0))dn 03
0

We have
I£(a(61)) — L(a(62))| < w(L. 0 a,d)

which gives
¥ (I(a(61)) — £(a(02))) < ¢y (w0 4,d)).

Now, we have
‘7—"(91 LB(01)) f (P01 — Q635" U5, £(6))dr0

— T (02, L6(62)) f (P2 — Q02)(%5" U(03, L(0:))dr 003

JLE0)) f PO, — 00955 U(03, £(05))dr005

— (0, LAB(0) f (P61 — Q05" U(Bs, L(05))dn 003

'?‘(ez,ub(ez)» f (PO: — Q05)5 UU(Bs, £(05))dn 003

— F (02, 1(B(62))) f (PO, — Q03)50" U(05,1(65))dp 65

6,

G0) - F (0 LE02) f (P01 - Q0255 124(03, L(6:) 03

7860

+ 02,160 f (P01 = Q025" U(O, 005 — [ (PO = Q00" U(O, 103 g0y

0
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<

F (61, 1(b(61))) ~ 7~(92,L(E(92)))‘¢’u(” L)
62

61
02100 [ (P01 - Q005" U0 L0001 ~ [ (PO - Q08" Ul (O3 g0y
0

0
=13+ I4.

We define
we(rg, d) = sup {|F (01,L) = F(02,L)|: 01,0, € 1,161 — 02| £ d, L € [-19, 10]} .
Then
Is < Pl £ DJF O, EEO) - T (01, L60:)
+ gull £ DT (01, LEO) - T (02, LGO:))

< Yaln) [@;:]L(E(el)) ~LEO)|| + puthor o, @

< Pu(ro) [Dra(E 0 b, ) + wr(ry, )]

We have

|7 (62, £(B(62)))| < |F (62, L(B(62))) — F (62, 0)| + |F (62, 0)]
< Dy [LB(02)| + F
< Dgry + 7?

Also, we have

6,
| (P01 - Qon? U6 103 g0
0

) n Qn+1 (a=T) Qn 6, Qn 6,
= (P - Q)Gl Z Pn+1 (P61 - pn+1 Ql)PQ (L[( Pn+1 ’L( pn+1 ))
n=0 G
and
(a-1) 1\ (a=1)
Qn+1 ) » ( Qn+ )
PO — =——0, =07 |P- .
( pr+l 2O 1 pr+l PO
Therefore,

0,
| #or - @on)se uon L0y
0

“o-om Y (- L) (G0 ()
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and

f (PO, - Q6:)(55" U(63, L(6:))dp0s - f (PO, - Q6:)(53" U(603, L(6:))dr003

n+1\(@=1)
(P - %wrl )
pPQ

op (S () - s (S (G )|

n+1\(@=1)
(P - %rﬁl ) <
pPQ

and since 07 < 1 therefore

(2022220

7))

pr+l 7 7\ prtl pr+
o 2 (2 (2 2%)
ot (S (%) s (21 (22
< oul(S2) -+ £2)) -

< Y (w(k, d)) + Ag,
where

Ag = sup {|05U(0s, 1) - O3U(05,1)| : 01,02, 04,05 € 1,101 — 02| < d, 105 — 0] < d, £ € [-10, 10]} .
Again
01 02

| (#on - @onse ton La0n - [ (PO2 - Q0N U LMy
0 0

< (Y (@, ) + Ag) (P - Q)Z

pn+1
<Yy (wE, d) + Ag.
Therefore
Is < (Dyro + F) Y (0(E, D) + Ag) -

Using the above inequalities we get

I < () (Dro® 0 b,d) + wy(r, d)) + (Drro + F) (Yo (0(E, d)) + Ag)] + P, (@ 0a,d)).

|FRQ(a)|
Now, from assumption (7) we have
w@®04a,d) =sup{[£a(6)) —L@(61)) : 6,6, € 1|6 — 641] < d}
< sup {[E(0) - £(01)] : 6,0 = 01] < Ya(d))
= w(t, Pa(d)).
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Similarly, from assumption (8) we have
w® 0b,d) < w, Pp(d)).
Then

I < {u(ro) (Dro®, Yy(d) + w7 (ro, ) + (Dyro + F) (YPas (0(E, d)) + Ag)} —— N Py (@(E, Pa(d)).

oo

Therefore

w(TE,d) <D, d) + ¢, (wE, Pa(d)))
D,

|FPQ a)

Let M be a non-empty subset of B(0, 1y). Then we have

{Yu(ro) (Dra®, P5(@) + wr(ro, d) + (Drto + F) (Pas ((E, d)) + Aq)}

o(TM, d) < D(1,d) + ¢y (0(M, Pa(d)))

|TpQ(a)| {ll’fu(ro (DFwM, Pp(d)) + wr (1o, d)) + (DTI‘O + 7") Yy (@M, d)) + ﬂd)}

We have

Jim ¢a(0) = lim ¢3(0) = 0
Asd — 0, we get

H(T™M) <0+ ¢y (w(M))

{Yu(ro) (DFuM) +0) + (Dxo + F) (P (w(M)) +0))

|TPQ( )|
= Uy (u(MD) + T T (o (1) Dy (M) + (Do + ) oy (M)}
PQ
< LuM) + LuM) + N u(M)
_ Dy(Dyro+9) _ DyDyipu(x)
where £ = [Tro(@)] dN = [Teo(@)]
Therefore

w(TM) < £ (uM)),

where £(6) = L6 + £6 + N6 for all@ > 0 and it can be observed that £(6) < 0 for all 6 > 0 and £(0) = 0 by
assumption (9).

Therefore, by Corollary 3.4 there exists at least one fixed point of 7~ in B(0, rp), which is a solution for
1. O

5. Illustrative example

Example 5.1. Consider the following (P, Q)-integral equation:

7]

62 0

L) = L(f) +(§+ @) f (PO — Q6; );Q” :( éldpgel (6)
0
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where 0 e =[0,1],a>1and0<Q <P <1.
Here,

a(0) = (o) = 6,

N_O L L,
T](G,L,L ) = % + g +L FRQ((X),

FO,L) =

wlo
o e

+

and

UGO,L) = 302

where 6 € I and L. € C(I).
Assumption (1) is trivial. Forall 6 € land L, L', Z, W € R we have

[n(6,£,1) - (6,2, W)|
_ ‘L -Z

+ (L - W)I'pg(a)

£ —Z]

< +IE = WI[Trg(a)|.

If we choose ,(0) = g where 6 > 0 and D, = (FP,Q(a)', then

[n(6,£, 1) = (6,2, W)| < ¢, (£ - ZI) + D, £ — W].
Thus, assumption (2) is satisfied. Again, forall £, 1" € C(I) we have

—_— L,
3+62 3+02

U0, L)~ UO,L)| = \

<
T 3+ 072

’ 1 ’ ’
£ -L]< s k-1 =gyt -1,

7864

where ¢¢/(0) = g forall 6 > 0. Also, U(6,0) = 0 for all 0 € I and y¢;(0) < O for all 8 > 0. Thus, assumption

(4) is satisfied. For this example we have /) = 5= and F = 1. Now

Dyau(ro)

Palro)+ ICpo(a)]

(@7—'1‘0 + TA') + ﬁ <19

is equivalent to

rp Io (1o 1) 1
20090202y <
3+3(6+3+36_r0'
ie.,

2r2 - 201 + 1 < 0.

5-7v2 54742

The inequality holds for rg € [

assumption (6) is satisfied.
Again since

3(0) — a(61)| = 10 — 611 = ¢ (16 — 64]),

=, 5 ] .Since ¢,)(6) = ¢ < Oforall > 0and 1, is continuous, therefore
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where 1;(0) = 6 which is non-decreasing and Glir(r)h Y7(0) = 0, therefore, assumption (7) is satisfied.
From

[Tro(@)

0 < Py(ro) < Dy D,

wehave 0 < 2 < 6,i.e., 0 <19 <18, where Ds = £.
Again, from

& (@7:1‘0 + (f%) <1

ICpo(a)l
we getrg < 4.
Since
5-7V2 54+7V2
\/—, v2 N (0,4) # 0.
2 2
Also,L=3, L=2+] N={and
2 2 21‘0
L = — —_ 1
+L+N 3+ 5 <

forry = % Therefore, by Theorem 4.1 the equation (6) has at least one solution in C(I).
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