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Abstract. In this article, we first obtain an identity that we will use throughout the article. With the help of
this equality, new inequalities involving a real parameter are established for Riemann-Liouville fractional
integrals. For this purpose, properties of the differentiable convex function, Hélder inequality, and power-
mean inequality are used. In addition, new results are established with special choices of parameters in
all proven inequalities. Our results are supported by examples and graphs. It is shown that some of these
results generalize the trapezoid type and Newton-type inequalities.

1. Introduction

Integral inequalities have provided solutions to many problems in mathematics and related disciplines.
Especially, a lot of research has been devoted to Hermite-Hadamard, Trapezoid, Midpoint, Simpson,
and Newton-type inequalities. These inequalities are applied to pure mathematics and solving real-life
problems. On the other hand, fractional calculus has become an important research area in integral
inequalities by adding fractional derivatives and integrals to the literature.

In [10], Dragomir and Agarwal first introduced trapezoid type inequalities in 1998. The inequality
obtained from the right side of the Hermite-Hadamard inequality, named trapezoid type inequalities, has
directed many studies. Cerone et al. presented a generalization of trapezoid inequality for mappings of
bounded variation in [7]. In [5], the generalization of trapezoid inequality via mappings of two independent
variables with bounded variation and some applications were given by Budak and Sarikaya. Budak
and Noeiaghdam investigated some new perturbed trapezoid type inequalities via mappings whose first
derivatives either are of bounded variation or Lipschitzian in [4]. Apart from these studies, there are many
works on trapezoid type inequalities in the literature. For more information about these type results, one
can refer to [1, 2, 8, 20].

Newton-type inequalities created from the well-known Simpson’s second rule (Simpson’s 3/8 rule) have
been the focus of many researchers. For instance; Gao and Shi obtained some Newton-type inequality
through convex mappings in [15]. In addition, the authors gave some applications for special cases of real
mappings. Erden et al. established some error estimates of Newton-type cubature formula with the aid of
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bounded variation and Lipschitzian functions in [11]. Noor et al. presented some inequalities for Simpson
3/8 rule inequality for harmonic convexity and p-harmonic convexity in [21] and [22], respectively. For
more Newton-type inequalities, we can also refer to [3, 12, 16, 24].

With the help of fractional integrals, the researchers obtained many new trapezoid and Newton-type
integral inequalities. To illustrate it: Sarikaya et al. presented new Hermite-Hadamard type inequalities
and trapezoid type based on Riemann-Liouville fractional integrals in [25]. Dragomir presented some
trapezoid type inequalities with the help of the Riemann-Liouville fractional integrals of mappings of
bounded variation and of Holder continuous functions in [9]. Budak et al. obtained some new generalized
inequalities via differentiable convex functions in the case of the some parameters and generalized fractional
integrals in [6]. The authors demonstrated that these results reduce to several new Simpson, midpoint,
and trapezoid type inequalities. Kunt et al. gave new fractional trapezoid and midpoint type inequalities
for the differentiable convex functions in [19]. Sitthiwirattham et al. investigated Simpson’s second rule
inequalities for differentiable convex functions based on the Riemann-Liouville fractional integrals in [27].
Iftikhar et al. established new Newton-type inequalities for functions whose the local fractional derivatives
in modulus and their some powers are generalized convex functions in [18]. You et al. investigated
some new inequalities of Simpson’s type based on differentiable convex functions in case of the some
parameters and generalized fractional integralsin [28]. In[17], the authors dealt with Simpson’s second-type
inequalities with help of the coordinated convex functions. In addition, the researchers presented Simpson’s
second-type integral inequalities via two-variable functions whose second-order partial derivatives in
modulus are co-ordinated convex.

Inspired by the above literature, we create parameterized inequalities based on Riemann-Liouville
fractional integrals in this study. This article consists of 5 sections. In Section 2, fundamental information
about fractional integrals and related inequalities is given. In Section 3, an identity depending on a real
parameter that we use throughout the article is obtained. In Section 4, a new inequality is discussed by
making use of the convexity of the differentiable convex function. Moreover, two more inequalities are
established by utilizing the Holder and power-mean inequalities. In special cases of these inequalities,
Newton-type and trapezoid type inequalities are obtained. By giving some examples, we make the results
better understood by the reader. We also show the accuracy of the examples with graphs. In the last part,
suggestions for new studies are given to the reader.

2. Fractional Integrals and Related Inequalities

In this section, we recall some basic notations and notions of the fractional integrals. We also recall some
inequalities via different fractional integrals.

Definition 2.1 (see, [13,14]). Let f € L1[a,b]. @ > 0, a > 0 and I is Gamma function. The Riemann-Liouville
integrals Jg, f and J}\_f order o are defined as

1 (" ~
Zlf(x):mju‘ (=) () dt, x>a

and

1 b
a — _ el
Jo_f () = @ fx (t—x)"" f(Hdt, x <b.
In 2013, Sarikaya et al. investigated the following fractional Hermite-Hadamard type inequality for the

first time:

Theorem 2.2 (see, [25]). For a positive convex function f : I C R — R with f € Ly[a,b] and 0 < a < b, the
following inequality holds:

(a+b)< I(a+1)
N2 )= 20=ar

< f(a);'f(b) 1)

|12, F &) + Ji_f @]
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After that Sarikaya and Yildirim presented the following new version of fractional Hermite-Hadamard
inequality:
Theorem 2.3 (see, [26]). For a positive convex function f : | CR — Rwith f € L1[a,0], 0 <a<banda,bel
the following inequality holds:

a+b I'ae+1) [, N
f( 2 )Szl—a(b_a)a [I(¥)+f(b)+](#)_f(a) <

Remark 2.4. If « = 1 in inequalities (1) and (2), then we obtain the classical Hermite-Hadamard inequality (see

f @ erf () )

[23]):

b b
f(”;b)sﬁfﬂf(x)dxsf—(”);f().

3. An Identity

In this section, we present an identity that is used in the next section.

Lemma 3.1. If f : I ¢ R — Ris a differentiable mapping on I° with f € L1 [a,b] and A € R, then we have

3T (a+1) [, (2a+b) a+2b
i e () e () s 0 o

“la-ng@e s () (r(50) (52| - St e,

where
1

f(t“ A)f (ta+(1—t)
0

1
T
0

I 2a + b) it

,(tZa;b (1—t)a+2b)d,

and

Ig—f(t“—(l—A))f(a+2b+(1—t)b)dt.

Proof. By utilizing integration by parts and change of variables, we derive

2a+b) @

L f (% = 1) f(ta+(1—t)

3
" (b-a)

30~ 31 (2a+b\ 3a 2040\ 3\l
- a)f( af( 3 )+b—af( 3 —x) (m) fxdx

2a+b)

(t* —)\)f(ta+ _—
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3T (g 41) . (2a+b\ [3(1-2) 30 [2a+b
o ( 3 )_[ b-a f(a)er—ﬂf( 3 )]

By calculating similar to I;, we get

1
1 2a+Db 2b
L = f(t“—i)f( -0 ) ©)
0
3 (@ + 1)

a a+2b 3 2a+b 3 a+2b
oo e (55) s (5 s (5

and
1
I = f(t“—(l—A))f’ (t” +32b +(1—t)b)dt ©6)
0
30417 (4 1)

. a+2b\ 3(1-A)
T e 0= [ (S5 )+ o)

So, we derive the desired result by adding the equalities (4)—(6) and multiplying the resultant equality
by 2. O

4. Parametrized Fractional Inequalities for Differentiable Convex Functions

In this part, we derive some new parametrized inequalities for differentiable convex mappings involving
Riemann-Liouville fractional integrals. Further we use the following notations:

! L2, -1<A<0
Al (a, 1) = f|t”‘—/\|dt= )
5 2oy L), 0<A<],
T ~1<1<0
Ar(a, 1) = f|t‘*—/\|tdt=
0 a+2/\ o + a+2 /E\’ 0<As<l,
1 a+l
1 20 ()" 1 1
— a_ - — - _Z
As(a) = ft z'dt a+1(2) o i1
0
1 a+2
1 a (Y5 1 1
_ a _ = — — —
As(a) = ft 2'”” a+2(2) a2
0
1 1-1--L, ~1<A<0
As(a, 1) = f|t"‘—(1—/\)|dt:
0 2 (1) e L o141, 0<A<],
! |4 -1<A<0
As(a, 1) = f|t“—(1—/\)|tdt= 2
0 L 1=y L1 0<a<
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convex mapping, then we get the following parametrized inequality:

3T (a+1) 2a+b\ a+2b\
Fmar Pt (5 e s (P50 e 0

B %[(1 ) (f(a)+f(b))+(“ %)(f(za;b)”(ag%))”

= (@)| A1 (@A) + Az (@, 1) + A3 (@) + Ay (@) + Ag (a, 1))

| O] (A1 @A) = Az (@, 1) + 245 (@) — As (@) + 345 (@, 1) - Ag (o, )],

where A; fori = 1,2, ..., 6 are expressed as in (7).

Proof. Taking absolute value of (3), then we get

3T (a+1) 2a+b\ a+2b
(b—ﬂ)a []aJrf( ) 2a+ h+ ( ) 2b+ ]

o ””))H

(2a+b a+2b)

——[(1 NG @+ o)+ (1 ) (725

a+2b

IA

+(1-1) ) -

-f

dlt]
Muf e 5t |
f e 50 \

’|, we posses

31T (a+1) 2a+b\ a+2b\
i G R e REL

Slamme@eren () (35 ()

e\t
0

|

b-
= = (2A1 (a,

1-9

(e

f G

(a+2b (1—t)b)

Ul 1+t 2—¢
: f(—3 A+ b)’dt

tLY _

IA

@]+ 5| o))

1+

t"‘——
3

2 o) a+ f e - (1—A)|( @)

(8)
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+(

+ (3A5 (0(, /\) - A6 (0(, /\))

L (@)] A1 (@A) + Az (@, A) + Az (@) + Ag (@) + Ag (a2, A))

+|f ®)] (A1 (@, 1) = Az (2, A) + 245 (a) = As (@) + 3As (o, A) = Ag (@, 1)].

Thus the proof ends. [

Remark 4.2. If A = 3, then inequality (8) turns into the inequality given by Sitthiwirattham et al. in [27, Theorem
4].

From Theorem 4.1 we immediately get the following result.

Corollary 4.3. If A = —1, then (8) reduces to the inequality

3T (@ + 1) 2a+b) a+2b f(a)+ f ()

W |]a+f( ) 2a3+h+f( 3 )+ n+2h f(b)] T‘ (10)
b—al,, o(5a+3la+38 2a (1\:@D 4 (1\:@*D
fi7[f(”(4m+1xa+z)+a+1(§) a+2(§) )

17 ) 1Ba+22  4a (1)34%1) _a (1)i<“+2)
f 4(a+2) a+1\2 a+2\2 '
Example 4.4. If the function f : [a,b] = [0,1] — R is defined as f(x) = ’;—3, then the left-hand side of the inequality

(10) becomes to

3 (a+1) [, (2a+b) a+2b
T () s (5 0]

= pr@+1) []g+f(%) n ]§+f(%) n I‘;J(l)] _fO ;f(l)‘

r 1 2

fa)+ f(b)
2

3 a-1 .3 p a13
- |31, f(%_t) t—dt+f(——t t—dt+f(1 t)“ltdt——

0 1
L 3

5. 3-a-3 3704 (@ + 4) ((x +5a + 12)
r@+D@+2@+3) a@+D@+2)@+3)

= |3vla

237074 (40% + 3007 + 800 + 81) 1
al@+1)(@+2)(@+3) 6

3a® +23a% + 64a + 72 1
8l(a+1)(a+2)(a+3) 6|

Using the facts that
2 Lia+1) La+2)
5a° + 31a + 38 N 2 (1) a (1) ~0 (1)
d(a+D(a@+2) a+1\2 a+2\2
and
Ha+1) Lia+2)
13a + 22 4 4o (1) _a (1) (12)
4(@+2) a+1\2 a+2\2
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[130( +22 4o (1)111(‘”1) a (1)},(“‘*’2)]
2 7

2a+2) a+1\2 a2

2
we obtain that the right-hand side of (10) can be calculated as
b-a
27

+

2

| 502 +31a+38  2a (1)“’“” a (1)i<“*2)
da+1D)(@+2) a+1 a+?2

2
, 1Ba+22 4o (1)\:@D a (11202
f(b))(4(0¢+2)+a+1( ) _a+2( )

1 13a+22+ 4a (1)i(a+l) o (1);(%2)
- 27| 4(@+2)  a+1\2 a+2\2 :

As a result, we get the following inequality

2

2

2

— < = —
8l(a+1)(a+2)(@+3) 6| 27 4(a+2)+oz+1 a+2\2

303 + 2302 + 64a + 72 1' 1 (13a+22 4o (1)i<a+1) a (1)3-(‘“”]

To illustrate the accuracy of this result, one can refer to Figure 1.

The curve of the left term
The curve of the right term

Figure 1: Graph for the result of Example 4.4 computed and plotted in MATLAB program.

Remark 4.5. If o = 1, then Corollary 4.3 turns into the inequality given by Dragomir and Agarwal in [10].
Corollary 4.6. If A =1, then (8) reduces to the inequality

3 T(a+1) [, (2a+Db) a+2b\ 1(,.(2a+b a+2b
R e R e N U o BN
b—-a
27

+

2

702 +2la+10 2« (1 )i(aﬂ) o (1);(a+2)]
2

f,(a)|(4(a+1)(oz+2)+a+1 2 a+2

2

—2+90+26  4da (1)i<‘*+1> a (1)i<“+2>]]
5 .

f/(b))(4(a+1)(a+2)+a+l 2 T a+2
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Example 4.7. Considering the conditions of Example 4.4, the first term of (13) can be presented as

3T (a+1) 2a+b\ a+2b 2a+b a+2b
ot e Rt e AL e B e R

= e[ s(5)+ 5 5)+ mro] -3 (7(5)+G)

3a® +23a% + 64a + 72 1
8l(@+1)(a+2)(a+3) 18|

On the other hand, the second term of (13) we can express as

b-
27

(b))( —a? +9a +26 N 4o (1)}*(‘“1)_ a (1)}*(‘”2)]]

(15)

)| ( 702 +21a + 10 2u (1 )i(“”) a (1)§(a+2)]
2

ta+D@+2) Tari\2 x+2\2

4(a+1D)(@+2) a+1\2 a+2\2

1(-a?+9a+26  4a (1)i<“+1>_ a (1)$<“+2)
27 4@+ (a+2) a+1\2 a+2\2 )

Finally, substituting (14) and (15) into (13), we obtain

3a® +23a% + 64a + 72 1
8l(a+1)(a+2)(@+3) 18

1 (—a2+9a+26 4o (1)41(‘“1) a (1)(1\(‘“2)]

< — — —
=7 ta+ D@+ Taril2 x+2\2

The left and right sides of this inequality can be seen in Figure 2.

—=— The curve of the left term
— The curve of the right term | |

012t

0.1 ]

12 14 16 18 20

Figure 2: Graph for the result of Example 4.4 computed and plotted in MATLAB program.

Corollary 4.8. If a = 1, then Corollary 4.6 reduces to the inequality

s frons(2)A22)

5(b ( o+ 1 ®).




H. Kara et al. / Filomat 37:23 (2023), 7867-7880 7875

Theorem 4.9. Let all the conditions of Lemma 3.1 are satisfied. If |f’ . q > 1 is convex mapping, then the

parametrized inequality

3 T(a+1) [, (2a+b) a+2b\
e 0 G RO G BTAC) a6

Slamme@e s () (35 ()

£ O (A1 (@A) - A2 @, A))];

£ @[ A1 (2, 1) + Ay (o, A) +
3

IA

b-—a
9

1-1
A7 (@, 1)

£ @)]" (A3 (@) + Ag (@) +

£ O @43 (@, 1) - As (@, 1) ]

1-1
+A; " (@) 3

£ @[ (A6 (a, 1)) +

£ B 3As (@A) - Aq (a, 1) ]3
3

1-1
+A; " (a, M) [

holds.

Proof. With help of the power-mean inequality in (9), we get

3 T (a+1) [, (2a+Db) a+2b\
T e () e () 0

- %[(l D@+ )+ (2 é)(f (za; b)” (HB%))”

1 -5 , i

b—-a N " ,(2+t 1t
- [flt—/\ldt flt /\|f(3a+3b)dt]
0 0

1

o 1

+Ut _z\dt]

0

-5 i
1
+[f|t“—(1—)\)|]

<

1

— ¢\
fta_l ff(ﬂﬁub) it
2
0
0

3 3
q [jlta_(l—A)l f’(ém%b)th]q‘.

0

q, we derive

Utilizing the convexity of

f/
3T (a+1) [, (2a+Db) a+2b\
e 0 Gl RO G RTAC)

-3a-ne@erons(r+3)(r(252) s (ag%))”

1 1—% 1 1 %
< _bgallfuaut] [f’(a)|qf—2;rt|t“—)\|dt+ f’(b)|qf%|t“—i\|dt]
0 0 0
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+[fl g dt] 1[ fl” - b))qfl_t t‘)‘%‘dtf
0 0

1 -5 1 i
[fir-o-n] [ror fye-a-masiror 500 W”

|f @[ @A (@, 1) + A (@, ) +
3

b-a
9

A A)[ F O (A (@) - A (a, A»]

2 (1P @ s (@) + As (@) + | O @43 (@, 1) - As (@, A) )’
+A, " (@) .

A @) [ £ @ (g (@, 1) + | (ng (345 (@, 1)~ As (@, A)>]3 |

So, the proof ends. [

Remark 4.10. IfA = %, then inequality (16) turns into the inequality given by Sitthiwirattham et al. in [27, Theorem
51

Corollary 4.11. If A = —31, then inequality (16) reduces to the inequality

3T (a+1) [, (2a+b N a+2b N f(a)+ f ()
e (B e (S5 ] -

b—a({ 3+a ‘51 2 +3a+6 \\|'
9 2(a+1) 3 4(a+1)(a+2)
a+l 1-3 ! atl a2
L[ 2a (1)T+ 1-«a (1)T+ a (1)T+ -3’ -a+6
a+1\2 2(a+1) a+1 2 a+2\2 4(a+1)(x+2)
o 4o 1)“21_ a (1) 3a2-5a+6 \|"
+f o) [a+l(2 x+2\2) TIia+D@+2
NEZS iy, Ba+2 \ 1 (1562 + 537 +10 i
2(a+1) 3 4(a+2) 4(a+1)(a+2) ’
Corollary 4.12. If a = 1, then Corollary 4.11 reduces to the inequality

b
1 b

< b_al[m‘f,(a))q ’ |q]q+1( , | |4}q
- 9 36 4 2

5 7 4 i

+ % )

IA

)|q 5a2 + 27a + 30
a+1)(a+2)
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Corollary 4.13. If A = 1, then inequality (16) reduces to the inequality
3 T(a+1) [, (2a+Db) a+2b\ 1(, (2a+b a+2b
—a[]a+f( ) 23+h+f( ) ]Zh f( )]_E(f( 3 )+f( 3 ))‘

(b-a)
b—a a \if1y,,, 5a% + 9a Y a? +3a g
_§'ﬂa+1) [5( (2m+1xa+zﬂ+5fw”(2m+1ﬂa+2ﬂﬂ
l-a 2« 1%m“>kl —a+6 2o (1\@D g 1)@
+2a+2+a+16) ua+nm+m a+16) +a+26)
, 3% —5a+6  da (1\:@D g (1\EE2)]
f (b)} [4(a+1)(04+2) a+1(§) _a+2(§) ))]
1 1_% 1 , 1 , q 2a+5 ‘17
+(a+1) [5( (E:E)+f(m|&a+lﬂa+ﬁ»]}'

Corollary 4.14. If a = 1, then Corollary 4.13 reduces to the inequality

ff(x)dx— ( (2a+b) f(a-;Zb))
) b—u{[7 : f’(b)lq]"+1(1f'<a>|q+f’(b)lqr
- 18 9 2 2
+[2' +ﬂﬁwmf}
- .

3T (a+1) 2a+b\ a+2b
- []wf( ) 2;h+f(T) + +2h f(b)] (17)

} %[ﬁ D@+ )+ (2 %)(f (za; b)” (a+32b))”
b

—a 5 ’ + ’ |q 5

9
i 'bq%
+A9(Mp)[f @ +slr ) J }

IA

<

1
q

’ q (b q
(L0l

where g™t + p~! =1 and

1 ’
A7 (a, A p) = flt“—/\lpdtJ ,
0
1
1 P
1P
Ag(a,p) = fta—— di’] y
0
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and

1 ’
Ao (a, A, p) = [ I — (1 - AP dt] .
/

Proof. Using the Holder’s inequality, it follows from (9) that

3 T (a+1) [, (2a+Db) a+2b\
i 0 G ol RN G S R C)

B %[(l N (f@+f <b>)+(“ é)(f (za; b)” (agzb))”

) bg—“l[flltaﬂdf] j‘ 2+t —t )th]z
0 0
+[Of t“—lpdt]p[off'(¥”+?b)thq
+(f1|t“—(1—/\)|pdf]p U f’(é“?%tb)th]q]'
%[]ﬁf(2a+b) %J(sz) oo f(b)]
_ 1[@ “N(F @+ FO)+(1+ %)(f(za;b)”(ag%))”
_ _l |t“ )\|pdt][ f2+t f'(b)|qj%dt]q

+(flta ]1[ @ fl1+t fl t]3
+[f1 —a- /\)pdtJ;[ / flédt+ / fl%dtﬂ
_ 9 b=, )( ’ 6+ ’ |‘l]$
f @\

Yl + 1 )" , , 7
+A8(a,p)[w +A9(a,)\,p)[ g ]

This calculation ends the proof. [

1
q
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Remark 4.16. If A = 3 in the inequality (17), it turns into the inequality obtained by Sitthiwirattham et al. in [27,
Theorem 6].

Corollary 4.17. If A = —3, then inequality (17) reduces to the inequality

3 T (a+1) [, (2a+Db) a+2b
S [ (45) f( )¢ 0)-

e pretet)

f@)+fb)
2

0

+[Oflf“-%pdf]p[MJ;+[Ofl(§-f“)pdt]p[f'(”)|q £l I"]f

Corollary 4.18. If @ = 1, then Corollary 4.17 reduces to the inequality

b
bljfﬂx)dx—f(”);f(b)
b_aliz v (slF @ +|F oY (|F @ +5|F o)
18 (2(p+1)) 6 i 6

L@+ o
+(p+1) [ 2 '

Corollary 4.19. If A = 1, then inequality (17) reduces to the inequality

3T (a+1) 2a+b\ a+2b 2a+b a+2b
T D (B o (52 o r 0] - 3 (22 ))|
1 v N i
= b9;a f(l—t“)”dt] [5 )‘ 6+ ]
0
1 5 1 1
Loy @\ +|f 1 ' " (b)
+[ft_§ t]( 2 ]+ap+1[ 6 ]
0

Corollary 4.20. If @ = 1, then Corollary 4.19 reduces to the inequality

blTafbf(x)dx—%(f(z‘l;b)Jrf(aZZb))
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5. Conclusion

In this article, we obtained parameterized inequalities due to Riemann-Liouville integrals. It has been

shown to generalize Newton’s and Trapezoid type inequalities. New results can be obtained for different
choices of real parameters. Curious readers can consider new inequalities using other fractional integrals. In
addition, new inequalities can be established with the help of different types of convexities in the literature.
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