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Derivation extensions on Leibniz triple systems

Xueru Wu?, Liangyun Chen?, Yao Ma**

?School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, P.R.China

Abstract. In this paper, we first define a concrete representation on an abelian extension of a Leibniz
triple system £ by a Leibniz triple system A. Using this new representation we construct the third-order
cohomology classes by derivations of A and £, which characterize the splitting property of above abelian
extensions. Then we study the obstruction for extensibility of derivation pairs. We prove that the set
of compatible derivation pairs can define a Lie algebra, whose representation can also characterize the
extensibility of the compatible derivation pairs.

1. Introduction

The Kolesnikov-Pozhideav algorithm ([9]) is used to convert identities for algebras into identities for
dialgebras. For example, associative dialgebras can be obtained from associative algebras and Leibniz
algebras can be obtained from Lie algebras by this algorithm. In [3] Bremner and Sanchez-Ortega introduced
Leibniz triple systems by applying Kolesnikov-Pozhideav algorithm on Lie triple systems. Leibniz triple
systems are the natural analogues of Lie triple systems in the context of dialgebras. Therefore, one may
consider generalizing some properties of Lie triple systems to Leibniz triple systems. At present, the root
system theories for Leibniz triple systems were introduced in [1, 4]. The representation theory and Levi’s
theorem for Leibniz triple systems were determined in [11]. In [14], we considered the cohomology theory
of Leibniz triple systems.

Derivations are very important subjects in the research of algebras. For instance, the authors constructed
a homotopy Lie algebra out of a graded Lie algebra with a special derivation, see [13]. One could construct
deformation formula on associative algebras by noncommuting derivations [5]. Since derivations can
be considered as infinitesimals of automorphisms and in [2], the authors studied extension of a pair of
automorphisms of Lie algebras, they considered the extension of a pair of automorphisms. Naturally, one
can consider the extension of a pair of derivations. The authors studied algebras with derivations from
operadic point of view, see [8, 10]. In [12], the authors investigated Lie algebras with derivations from
cohomologies point of view and extensions, deformation problems were considered. Extension of a pair
of derivations on 3-Lie algebras, Leibniz algebras, associative algebras and Lie triple systems have been
studied, refer to [6, 7, 15, 16]. We attempt to consider Leibniz triple systems with derivations. Inspired by
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[16], we use a pair of derivation (D,, D;) to construct 3-cocycles on Leibniz triple systems. This construction
leads to a Lie algebra G4, where A is an £-module for the Leibniz triple system £, and the space of first-order
cohomology classes admits a certain representation of the Lie algebra G4, then the certain representation
can be used to characterize the extensibility of the compatible derivation pairs.

This paper is organized as follows. In Section 2, we recall some basic definitions and properties of Leibniz
triple systems, and for an abelian extension we use the third-order cohomology group to characterize the
splitting property. In Section 3, first, we characterize the extensibility of a pair (D,, D;) € Der(A) x Der(£)
by a necessary condition. Then we define compatible derivation pairs, which are denoted by G,. Later, we
study the obstruction for extensibility of (D,, D;) € Ga. Finally, we prove that G4 is a Lie algebra, whose
representation can also describe the extensibility of (D,, D)) € Ga.

In this paper, all Leibniz triple systems are defined over a fixed but arbitrary field IF.

2. Abelian extension of Leibniz triple systems

In this section, we first recall some basic definitions and properties of Leibniz triple systems, then we
show that the trivial third-order cohomology group is a sufficient condition for an abelian extension to be
split.

Definition 2.1. [3] A Leibniz triple system is a vector space £ endowed with a trilinear operation {, -, -} : LXLXL —
L satisfying

{ﬂ, b/ {C/ d/ E}} = {{ﬂ, b/ C}/ d/ 6} - {{ll, b/ d}/ (& e} - {{ﬂ, b/ e}/ ¢ d} + {{ﬂ, b/ 3}, d/ C}/

{a/ {b/ ¢, d}/ e} = {{al b/ C}/ d/ E} - {{ﬂ, ¢, b}/ d/ E} - {{a/ d/ b}/ ¢, E} + {{a/ d/ C}/ b/ E},

foralla,b,c,d,ec L.

A Leibniz triple system can be given by a Lie triple system with the same ternary product. Also, a Leibniz
algebra L with product [+, -] becomes a Leibniz triple system when {x, y, z} := [[x, y],z], for all x, y, z € L. More
examples refer to [3]. Denote by End(£) the set consisting of all linear maps on a Leibniz triple system £.

Definition 2.2. [3] Let € be a Leibniz triple system. A linear map D : & — £ is called a derivation of £, if for all
a,b,ce g,

D({a, b, c}) = {D(a), b, c} + {a, D(b), c} + {a, b, D(c)}.
Denote by Der (L) the space of derivations of £.

Definition 2.3. [11] Let £ be a Leibniz triple system and V a vector space. V is called an L-module, if 8+V is a
Leibniz triple system such that (1) £ is a subsystem, (2) {a,b,c} € V if any one of a,b,c € V; (3) {a,b,c} = 0 if any
twoofa,b,c € V.

Definition 2.4. [11] Let £ be a Leibniz triple system and V a vector space. Suppose I, m,r : £ X & — End(V) are
bilinear maps such that

la,{b,c,d}) =1({a,b,c},d) — I({a,c,b},d) — 1({a,d, b}, c) + I({a,d, c}, b),
m(a, d)I(b,c) = m({a,b,c},d) — m({a, c,b},d) — r(c,dym(a, b) + r(b,d)m(a, c),
m(a, d)m(b, c) = r(c,d)l(a, b) — r(c,dym(a, b) — m({a, c, b}, d) + r(b,d)l(a, c),
m(a, d)r(b, c) = r(c,d)ym(a, b) — r(c,d)l(a, b) — r(b,d)l(a, c) + m({a, c, b}, d),
r({a, b, c},d) = r(c,d)r(a, b) — r(c,d)r(b,a) — r(b,d)r(c,a) + r(a,d)r(c, b),
I(a,b)l(c,d) = I({a,b,c},d) — I({a, b,d}, c) — r(c, d)l(a, b) + r(d, c)l(a, b),
l(a, bym(c,d) = m({a, b,c},d) — r(c,d)l(a, b) — I({a,b,d},c) + m({a, b,d}, c),
la, b)r(c,d) = r(c,d)l(a,b) — m({a, b,c},d) — m({a, b,d},c) + I({a, b,d}, ¢),
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m(a, {b,c,d}) = r(c,d)ym(a, b) — r(b,dym(a, c) — r(b,cym(a, d) + r(c, bym(a, d),
ra,{b,c,d}) = r(c,d)r(a, b) — r(b,d)r(a,c) — r(b,c)r(a,d) + r(c, b)r(a, d),

foralla,b,c,d € L. Then (r,m,l) is called a representation of L on V.

7907

Remark 2.5. [11] Let & be a Leibniz triple system and V an £-module. Then £+V is a Leibniz triple system, with

x+u,y+ov,z+wheiv = {x,y,zle + (x, y)(W) + 1(y, 2)(u) + m(x, z)(v),

where x,y,z € &, u,v,w € V, and (r,m,l) is a representation of £ on V.

Definition 2.6. [14] Let V be an L-module. A (2n + 1)-linear map f : L®---® & — V is called a (2n + 1)-cochain
| —

(2n+1) times

of Lon 'V, for n > 0. Denote by C***1(&, V) the set of all (2n + 1)-cochains.

Definition 2.7. [14] Let & be a Leibniz triple system and (r,m, I) a representation of £ on V.
A 1-coboundary operator of & on V is defined by

ol CHE, V) = C¥L, V)
fro'f
where
8" f(x1, X2, x3) = 1(x2, X3) f(x1) + m(x1, X3) f (x2) + I(x1, %2) f (x3) — f({x1, %2, X3}).
A 3-coboundary operator of € on 'V consists a pair of maps (53,63),
5:C(L V) > C(L,V)
frof
where
é?f(xl, X2, X3, X4, Xs5)
= f(x1, %2, {x3, x4, x5)) — f({x1, X2, x3), x4, x5) + f({x1, X2, X4}, X3, %5) + f({x1, %2, x5}, X3, x4)

— flx1, x2, x5}, x4, x3) + (21, X2) f (X3, X4, X5) — (x4, X5) f (X1, X2, X3) + (X3, X5) f (X1, X2, X4)
+1(x3, x4) f(x1, X2, X5) — 1(x4, X3) f (X1, X2, X5),

83 f(x1, %2, X3, X4, X5)

= fx1, {x2, x3, x4}, x5) = f({x1, %2, X3}, x4, x5) + f({x1, X3, X2}, X4, X5) + f({x1, X4, X2}, X3, X5)
— f({x1, x4, x3}, X2, X5) + m(x1, x5) f (X2, X3, X4) — r(X4, X5) f (X1, X2, X3) + 1(xX4, X5) f (X1, X3, X2)
+1(x3, x5) f (X1, X4, X2) — 7(x2, X5) f (X1, X4, X3).

Let £ be a Leibniz triple system and V an £-module. The set
Z(e,V)={feCl(g V)5 f=0)
is called the space of 1-cocycles of £ on V. The set
2L, V)={feC(LV)|5f =6f=0)
is called the space of 3-cocycles of £ on V. The set
B¢, V) ={6'f| feC(L,V)}
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is called the space of 3-coboundaries of & on V.
In [14], it is proved that 636! = 0 (i = 1,2), then the 1-cohomology space and 3-cohomology space of £
can be defined as

HYL, V) =7, V).
H3(8, V) :=Z3(8, V)/B3(&, V).

Next, we will use H3(£, V) to characterize the splitting property of abelian extensions.

Definition 2.8. Let € and A be Leibniz triple systems. If

0 A—os @ "5 ¢ 0

is an exact sequence of Leibniz triple systems, and {A, A, &) = {A, &, A) = {2,A,A} =0, then we call & an abelian
extension of & by A. A linear map s : & — L is called a section of m if it satisfies 7t o s = idg. If there exists a section
which is also a homomorphism between Leibniz triple systems, we say that the abelian extension is split.

Let QNbe an abelian extension of £ by A. We construct a representation of £ on A. Fix any section
s: ¥ — Lof mand define r4,my,l4 : £ X £ — End(A) by

TA(X, y)(v) = {U, S(x)/s(y)}ﬁ/ mA(xr }/)(U) = {S(X), o, S(y)}ﬁf ZA(X, y)(v) = {S(X)/S(]/)r v}ﬁr (4)

forall x,y € £, v € A. Itis easy to check that (4, ma,14) is independent of the choice of s. Note that
{s(x),s(v),s(2)}e —s({x, y,z}e) €A, Vx,y,2 € L.

Then one deduces that (r4,m4,14) is a representation of £ on A.
For a fixed section s, consider themap w : £ X £ x & — A,

w(x,y,z) = {s(x),s(y), s(2)}s —s(x, y, z}e), (5)

for all x, y,z € L. It is routine to check that w is a 3-cocycle associated to (v, m4,4). The proof is similar to
that of [14, Theorem 3.3]. One may notice that w does depend on a certain section, however, we will show
that the cohomology class of w does not.

Lemma 2.9. If s; and s, are sections of 1, then w1 — wy = S'A, where A = s1 — sy and w; is defined by Eq. (5)
corresponding to s;, fori=1,2.

Proof. Note that A(x) = s1(x) — sa(x) € kerm = A, for all x € €. Then A € C}(£, A) and

w1(x,y,2) — wax, y,z)

= {s1(x),51(y), 512)}s — s1({x, y, zhe) — {82(x), 52(y), 52(2)} g + s2({x, ¥, 2}e)

= {s2(x) + A(x), s2(y) + Ay), 52(2) + A2 — (s2(fx, y, zhe + A({x, y, 2}e))
= {s2(x), $2(y), $2(2)} g + s2(fx, y, z}e)

= {s2(x), 52(y), 52(2)}g + {52(x), 52(y), A2)}g + {s2(x), A(y), s2(2)}g + {s2(x), A(y), A(2)}e
+{Ax), s2(y), 52(2)}g + {A(x), 52(y), A2} + {A(x), A(y), s2(2)} g + {A(x), A(y), A2)}g
= (s2(fx, y, z}e + A(lx, y, z}e)) = {52(x), 52(y), 52(2)}s + s2({x, Y, 2}e)

= {s2(x), 52(y), A(2)}g + {s2(x), A(y), 52(2)} g + {A(x), 52(y), 52(2)}e — Ax, v, 2} e)

= = Mx, v, zle) + La(x, y)(A(2)) + ma(x, 2)(A(Y)) + ra(y, 2)(Ax))

= (6" )(x,y,2),

which completes the proof. [
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By Lemma 2.9, one has the following proposition.
Proposition 2.10. The cohomology class [w] does not depend on the choice of s.

Proposition 2.11. If (r,m, ) is a representation of & on V and f is a 3-cocycle, then L+V is a Leibniz triple system
with the bracket given by
x+u,y+vz+wleiv =1{x,y,zle + f(x,1,2) + I(x, y) (W) + 1(y, 2)(1) + m(x, z)(v),
where x,y,z € &, u,v,w € V.
Proof. 1t follows by combining Remark 2.5 and 67 f = &5 f = 0 in Egs. (2) and (3). O
By Proposition 2.11, one could check that the canonical projection 7t : £+V — £ is a homomorphism
between Leibniz triple systems. Then we have the following corollary.

Corollary 2.12. Retain all the notions and assumptions in Proposition 2.11. Then there is an abelian extension
L = 84V of the Leibniz triple system £ by V.

Theorem 2.13. Let (r4,ma,la) be a representation of a Leibniz triple system & on a Leibniz triple system A that

satisfies Eq. (4). If H3(L, A) = 0 then the abelian extension of € by A is split.

Proof. It suffices to show that there is a section of = which is also a homomorphism. Let s be any section of
7. Recall that the map w defined by Eq. (5) is a 3-cocycle. Since H3(£, A) = 0, there exists @ € C!(£, A), such
that, for any x, v,z € &,

Cl)(x, y/ Z) = 610((x/ y/ Z) = _a({x/ y/ Z}ﬁ) + lA(x/ y)(“(z)) + T’A(y/ Z)(U((x)) + mA(xr Z)(a(y))
Define a linear map s" : £ — Y by s’ =s — a. Then s’ is also a section of 77, and for any x,y,z € £,

{s'(x), 8" (y),s'(2)}q
= {s(x) — a(x),s(y) — a(y),s(z) — a(2)}z
= {s(x), s(y), s(2)}g — {s(x), s(), a(2)} — {a(x), s(y), s(2)} = {s(x), a(y), s(z)}
= {s(x), s(y), s(2)}e — la(x, Y)(a(2)) — ma(x, 2)((y)) — ra(y, z)(a(x))
=s({x, y, z}e) + w(x, y, 2) — La(x, y)a(z)) — ma(x, z)(a(y)) — ra(y, z)(a(x))
=s(lx, y, zle) — allx, y, zle)
=5"({x, y, z}e).

Hence, s’ is a homomorphism. O

3. Extensibility of derivations

Throughout this section, £ and A denote Leibniz triple systems, and € is an abelian extension of € by
A. Let (ra,ma,l4) denote the representation defined by Eq. (4). First, we give a necessary condition for the
extensibility of a pair (D,, D;) € Der(A) x Der(2) and use it to define compatible derivation pairs, which
are denoted by Ga. Then we study the obstruction for extensibility of derivation pairs belonging to G4,
see Theorem 3.6. Finally, we show that G4 is a Lie algebra, whose representation can also characterize the
extensibility of (D,, Dj).

Definition 3.1. Keep notations as above. A pair (D,, D) € Der(A)XDer() is called extensible if there is a derivation
Dj € Der(¥) such that the diagram

~ e 0
D, (6)

(@]
BN
(il

—
&
L —
S
&

is commutative.
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Proposition 3.2. Keep notations as above. Then (D,, D)) is extensible only if

Dala(x,y) = la(x, y)Da = 1a(Di(x), y) + La(x, Di(y)),
Dama(x, y) — ma(x, y)Da = ma(Di(x), y) + ma(x, Di(y)), @)
Dara(x,y) = ra(x, y)Da = ra(Di(x), y) + ra(x, Di(y)).
Proof. Since (D,, D)) is extensible, there exists a derivation D; € Der(2) such that the diagram (6) commutes.
Then Dj(s(x)) — s(Dy(x)) € A, for x € £. Since Dj|4 = D, and D; € Der(£), we obtain
Da(la(x, ¥)(©) = La(x, y)(Da(v)) = Da({s(x), s(y), v}g) — {s(x), s(y), Da(v)}g
= Di({s(x), s(y), v}e) — {s(x), s(v), Da(0)}
= {Dy(s(x)), s(y), v}g + {s(x), Di(s(v)), v}g
+{s(x), s(y), Di(v)}g — {s(x), s(y), Da(v)}g
= {Dy(s(x)) = s(Di(x)), s(y), v}s + {s(Di(x)), s(y), v}g
+ {s(x), Dy(s(y)) — s(Di(y)), v}g + {s(x), s(Di(y)), v}z
+{s(x), s(y), Da(0)}g — {s(x), s(y), Da(0)}g
= {s(Di(x)), s(y), v}s + {s(x), s(Di(y)), v}z
= 1a(Di(x), y)(©) + La(x, Di(y))(0).
Similarly, we have
Da(ma(x, y)(v)) — ma(x, y)(Da(v)) = ma(Di(x), y)(v) + ma(x, Di(y))(v),
Da(ra(x, y)(©) — ra(x, y)(Da(v)) = ra(Di(x), y)(v) + ralx, Di(y))(v),
which completes the proof. [

Definition 3.3. Keep notations as above. A pair (D,, D;) € Der(A) x Der(R) is called compatible if Eq. (7) holds.
All such pairs are denoted by Ga.

Proposition 3.2 says that an extensible derivation pair (D,, D;) is compatible, i.e., (D,, D;) € G4. Then a
natural question is: when is (D,, D;) € G4 extensible? We need the following preparations.

For any pair (D,, D;) € Der(A) x Der(£) and w defined by Eq. (5), define a 3-cochain Ob;‘mel) € C3(g,A)
as

Ob{}, p,) = Dew — @(D; ®id ® id) - w(id ® D; ® id) - w(id ® id ® Dy), (8)
or equivalently,

Ob{p, b, (X, ¥,2) = Datw(x, ¥, 2) = w(Di(%), y, 2) — w(x, Diy), 2) — w(x, y, Di(2)), )
forallx,y,z € &.

Lemma 3.4. Keep notations as above. Then Ob{y, 1\ does not depend on the choice of sections of 7.

Proof. Fori=1,2,lets; be sections of 7, w; be defined by Eq. (5), and Ob?)Dia,D;) be defined by Eq. (9). Then

Ob;‘ngl)(x, Y,z)— Obz‘ngl)(x, Y,2)

:Da(wl(x/ Y, Z)) - Cl)](Dl(x), Y, Z) - Cl)l(x, Dl(y)/ Z) — w1 (xr Yy, DZ(Z))
— Da(w2(x, y, 2)) + w2(Di(x), y, 2) + wa(x, Di(y), z) + w2 (x, y, Di(2))
=Do(@1(x, ¥,2) = wa(x, ¥,2)) = (@01(Di(x), ¥, 2) — w2(Di(x), ¥, 2)) (10)

L I
— (w1(x, Dy(y), 2) — wa(x, Di(y), 2)) = (01(x, y, Di(2)) — wa(x, y, Di(2))) .

13 14
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Define amap A : £ — A by A(x) = s1(x) — s2(x), for all x € £. By Lemma 2.9, we have

w1(X, Y, 2) = w2(x, y,2) = =A({x, ¥, 2}) + La(x, Y)(A(2)) + ma(x, 2)(AY)) + ra(y, 2)(A(x)),

for any x, y,z € £. Therefore, one obtains

Iy = Da(=A(lx, y, 21) + La(x, )(A(2)) + ma(x, 2)(AY)) + raly, 2)(A())).
Similarly, we have

I = =A({Dy(x), y, 2}) + La(Di(x), y)(A(2)) + ma(Di(x), 2)(A(y)) + ra(y, 2)(MDy(x))),

I3 = =A({x, Di(y), z}) + La(x, Di(y))(A(2)) + ma(x, 2)(MDi())) + ra(Di(y), 2)(A(x)),

and

Ly = =A({x, y, Di(2)}) + La(x, )(A(Di(2))) + ma(x, Di(z))(A(y)) + ra(y, Di(2))(A(x)).
Substituting I, I, I3, 14 into Eq. (10), one has

Ob(p, b,y (% y,2) = Ob5 (¥, y,2)

= (Dala(x, y) = 1a(Di(x), y) = La(x, Diw))JA@) + (Dara(y, 2) = ra(Di(y), 2) = ra(y, Di(2)JA(x))
+ (Dama(x,2) = ma(Di(x), 2) = ma(x, Di2) JAW)) — La(x, y)(ADI()) = malx, 2)ADIY)))
= 7a(y, 2)(AMDi(x))) = Da(A({x, y, 21)) + ADi({x, y, 2))

2 140, YDA(AR) + ma(x, Da(AW)) + 1Ay, IDa(AR)) = 74 Y, DADID)) = La(x, PAD1(2)

= ma(x, 2)(MDi(y)) — Da(A({x, y, 2}) + ADi({x, y, 2}))
=6 (D0 A= AoD)(x,y,z)=0.

The proof is finished. [

By the independencyqof Obyp, p,) on sections, we use the notation Ob(%le) instead of Ob{}, ). In what
follows, we will use Ob(%)“,DI) to obtain a necessary and sufficient condition for (D,, D;) to be extensible.
First, we have

Lemma 3.5. For (D,, D)) € Gg4, Ob(QDﬂ,D,) is a 3-cocycle.

Proof. 1t suffices to show that 6?ObE7:,le) =0 (i = 1,2). Since w is a 3-cocycle, 6?0) =0(i =1,2), here we use
6‘1’@ = 0 to prove 6i’Ob2‘mel) = (0 as an example. By Eq. (2) it follows that, for any x1, x2, x3, x4, x5 € £,

0= 6?&)(3(1, X2,X3,X4, Xs)
= w(x1, x2, {x3, X1, X5}) — w({x1, x2, X3}, X4, X5) + w({x1, X2, X4}, X3, X5) + w({x1, X2, X5}, X3, X4)
— w({x1, x2, x5}, x4, X3) + La(x1, X2)@(x3, X4, X5) — 1A (X4, X5)@(X1, X2, X3) + 1A (X3, X5)@w(X1, X2, X4)
+ 14(x3, x4)w(x1, X2, X5) — 7 A (X4, X3)(X1, X2, X5).

(11)

Then for any x1, x2, X3, X4, X5 € £,

(5:1))Ob(ﬁl’)le))(x1, X2,X3,X4, x5)
= Ob?)Dle)(xlr X2, {xS/ X4, x5}) - Ob(meDl)({xl, X2, X3}, X4, X5) + Ob(wDa,D[)({xl’ X2, _X4}/ X3, x5)

w

+Obp, py({x1, %2, x5}, %3, x4) — Ob{, 1y, ({x1, X2, X5}, x4, X3) + La(x1, X2)Ob(p, (X3, Xa, X5)
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— ra(x4,%5)Ob(p, p, (X1, X2, %3) + 7a(x3, X5)Ob(p, 1) (x1, X2, X4)
+1a(x3,x4)Ob(p, 1, (X1, X2, X5) = 7a(x4, X3)Ob(p, 1) (X1, X2, X5)

= Dg(w(x1,x2,{x3, x4, x5})) —(Di(x1), X2, {x3, X4, X5}) —w(x1, Di(x2), {x3, X4, X5}) —w(x1, x2, {D1(x3), X4, X5})

(a1) (b1) (c1) (d1)
_a)(xl/ X2, {x3/ Dl(x4)r x5}) _a)(xlr X2, {x3/ X4, D[(X5)}) _Dﬂ(a)({xll X2, x3}r X4, X5)) +Cl)({Dl(X1), X2, x3}/ X4, x5)

(e1) (f1) (a2) (b2)
+w({x1, Di(x2), x3}, x4, x5) +w({x1, X2, D1(x3)}, x4, x5) +w({x1, X2, X3}, D1(x4), x5) +w({x1, X2, X3}, X4, D1(x5))

(c2) (da) (e2) (f2)

+Dg(w({x1, x2, x4}, X3, x5)) —w({Dy(x1), X2, X4}, X3, x5) —w({x1, Di(x2), X4}, X3, x5) —w({x1, X2, Di(x4)}, X3, X5)

(a3) (b3) (c3) (e3)
—w({x1, x2, x4}, Di(x3), x5) —w({x1, X2, X4}, X3, Dy(x5)) +Da(w({x1, X2, X5}, X3, X4)) —w({D1(x1), X2, X5}, X3, X4)

(d3) (5 (a1) (b4)

—w({x1, Di(x2), x5}, x3, x4) —w({x1, X2, Di(x5)}, x3, x4) —w({x1, X2, X5}, D1(x3), x4) —w({x1, X2, x5}, X3, D1(x4))

(cs) (fa) (dg) (es)
—Dg(w({x1, x2, x5}, x4, x3)) +@({Dy(x1), X2, X5}, X4, X3) +@({x1, Di(x2), X5}, X4, x3) +w({x1, X2, Di(x5)}, X4, X3)

(as) (bs) (cs) (fs)
+aw({x1, x2, x5}, Di(x4), x3) +@w({x1, X2, X5}, X4, D1(x3)) +1a(x1, X2) Daw(x3, X4, X5) =LA (x1, X2)w(Dy(x3), X4, X5)

(es) (ds) (ds)
= Ia(x1, x2)w(x3, Di(xq), x5) =La(x1, X2)w(x3, X4, Di(x5)) =74 (x4, X5)Dacw(x1, X2, X3)

(es) (fe)
+7a(x4, x5)w(Di(x1), X2, X3) +74 (X4, X5)w(x1, Di(x2), X3) +7 4 (X4, X5)w(X1, X2, Dy(x3))

(b7) (c7) (d7)

+ 7a(x3, X5)Daw(x1, X2, X4) =7 4(x3, X5)w(D1(x1), X2, X4) =7 4(x3, X5)w(x1, Dy(x2), X4)

(bs) (cs)
—1a(x3, X5)w(x1, X2, Di(x4)) +74(x3, X4) Daw(x1, X2, X5) =7 a(x3, X4)w(Di(x1), X2, X5)

(es) (bo)
=ra(x3, x4)w(x1, Di(x2), x5) =1 a(x3, X4)w(x1, X2, Di(x5)) =14 (x4, X3)Dacw(x1, X2, X5)

(co) (fo)
+7a(xg, x3)w(Di(x1), X2, X5) +7a (X4, X3)w(x1, Di(x2), X5) +7 4 (X4, X3)w(X1, X2, Di(x5))

(bro) (c10) (f10)

D 14Dy(x1), x2)w(xs, x4, x5) +1a (61, Dy(x2))w (3, x4, x5) +74(Di(x3), X5)ao(x1, X2, Xs)

(be) (c6) (ds)
+74 (Dl(x?,), X4)(4)(X1, X2, X5) —7’,4(9(4, DZ(X3))CL)(X1, X2, X5) —TA(DI(X4), X5)CL)(X1, X2, X3)

(do) (d10) (e7)
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+ra(x3, Di(xa))w(x1, X2, x5) =1 a(Di(x4), X3)w(x1, X2, X5) =1 a (x4, Di(x5))w(x1, X2, X3)

(e9) (e10) (f7)

+7a(x3, Di(x5))w(x1, X2, X4) =Da(la(x1, X2)w(x3, X4, X5)) +Dga(ra (x4, X5)w(x1, X2, X3))

(fs) (a) (a7)
=Dy (r a(x3, x5)w(x1, X2, X4)) —Da(r a(x3, X4)w(x1, X2, X5)) +Da(ra(x4, x3)0(x1, X2, X5))

(as) (a9) (a10)
+1a(x1, x2)Dacw(x3, X1, X5) — T4 (x4, X5)Da(x1, X2, X3) + 74 (X3, X5) Dacw(x1, X2, X4)
+ 1a(x3, x4) Do (X1, X2, X5) — T4 (X4, X3)Daw(x1, X2, X5)
= (=Dy(la(x1, x2) + La(x1,x2) Dy + 14(Di(x1), x2) + La(x1, Di(x2)))(x3, X4, X5)

= (=Da(ra(xa, x5) + ra(xs, x5)Da + ra(Di(x4), X5) + 7a(xa, Di(x5)))w(x1, X2, X3)
+ (=Da(ra(xs, x5) + ra(xs, x5)Da + ra(Di(x3), X5) + ra(x3, Di(x5)))w(x1, X2, X4)
+ (—=Da(ra(xs, x4) + ra(x3, x4)Dy + 1a(Di(x3), x4) + ra(x3, Di(x4)))w(x1, X2, X5)
— (—=Da(ra(xa, x3) + ra(xs, x3)D, + r4(Di(x4), x3) + ra(xs, Di(x3)))w(x1, X2, X5)

7
2.

Similarly, it is straightforward to check that 6§Obi‘l’)le) =0, as required. [
Theorem 3.6. Suppose (D,, D;) € Ga. Then (D,, D)) is extensible if and only if [Ob(%le)] € H3(L, A) is trivial.

Proof. (=) Fix any section s of 7. Suppose that (D,, D)) is extensible, then there exists a derivation D; € Der(¥)
such that the associated diagram (6) is commutative. Since 7 o D; = D; o 1t, we have Dj(s(x)) — s(D;(x)) € A,
for x € £. Thus there isamap p : £ — A given by

p(x) = Di(s(x)) = s(Di(x)).
It is sufficient to show that
Obgy, b (¥, 1,2) = (O 1), ,2), (12)
for all x, y,z € £, which will be proved by computing both hand sides of the following identity
Di{fs(x1) +v1,5(x2) + 02, 5(x3) + v31g)

= {Dj(s(x1) + 01),5(x2) + V2, 8(x3) + vs}g + {5(x1) + v1, Di(s(x2) + v2), 5(x3) + V3)3 (13)
+ {s(x1) + v1,5(x2) + v2, Di(s(x3) + v3)}3,

for any x1, x2, x3 ENQ’ 1,02, 03 € A. } y y
At first, since £ is an abelian extension of £ by A, we have {4, A, &} ={A, £, A} = {{,A, A} =0and

{s(x1) + v1,8(x2) + 2, 5(x3) + v3}g
= {s(x1),5(x2), s(x3)}¢ + {s(x1),5(x2), v3}g + {s(x1), V2, 5(x3)}q + {v1, 5(x2), 5(x3)} g
= {s(x1),5(x2), 8(x3)}g + La(x1, x2)(v3) + ma(x1, x3)(02) + ralx2, x3)(01),

and by Eq. (5),

LHS of Eq. (13) = D;({s(xl), 5(x2), s(x3)}a + La(x1, x2)(03) + ma(x1, x3)(V2) + ra(x2, xs)(vl)),

= Dz’(s({xl,xz, x3e) + w(x1, X2, x3) + La(x1, X2)(V3) + ma(x1, x3)(v2) + "A(xz,xa)(vl))~
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Since the diagram (6) is commutative, it follows that

LHS of Eq. (13) = s(Di({x1, x2, x3}¢)) + p({x1, x2, x3}¢) + Da(w(x1, x2, X3))
+ Dy(la(x1, x2)(03)) + Da(ra(x2, x3)(v1)) + Da(ma(x1, x3)(02))
= s({Di(x1), x2, x3}e) + s({x1, Di(x2), x3}e) + s({x1, x2, Di(x3)}e) + p{x1, x2, x3}¢)
+ Da(w(x1, X2, %3)) + Da(la(x1, %2)(v3)) + Da(ra(x2, x3)(v1)) + Da(ma(x1, x3)(02)).

(14)

Now we compute the right-hand side of Eq. (13). Note that, since Dj|4 = D,, it holds that

Dj(s(xi) + vi) = Di(s(x:)) + Da(v:)
= Dj(s(xi)) — s(Di(x:)) + s(Dy(xi)) + Da(v;)
= 8(Di(x;)) + u(x;) + Da(v;) € s()+A,

where i = 1,2, 3, which combining with {4, A, ) =1{A, 8 A} ={ A, A} =0show

RHS of Eq. (13) = {s(Dj(x1)) + p(x1) + Da(v1), s(x2) + v2,5(x3) + v3}s

+{s(x1) + 01,5(Di(x2)) + p(x2) + Da(v2), s(x3) + vslg
+ {s(x1) + v1,8(x2) + v2,5(Di(x3)) + p(x3) + Da(v3)}g

= {s(Di(x1)), 5(x2),5(x3)}s + {s(Di(x1)), 8(x2), v3} + {s(Di(x1)), v2, 5(x3)} ¢
+{u(x1), s(x2), s(x3)lg + {s(x1), u(x2), s(x3)}s + {Da(v1), 5(x2), s(x3)}s
+{s(x1), s(Di(x2)), vs}s + {v1,8(Di(x2)), s(x3)}e + {s(x1), Da(02), s(x3)}g
+ {s(x1), s(x2), s(Di(x3))} g + {s(x1), s(x2), p(xa)l + {s(x1), s(x2), Da(v3)}g
+{s(x1), 02, s(Di(x3))}s + {v1,5(x2), s(Di(x3)} e + {s(x1), s(Di(x2)), 5(x3)} -

By Eq. (14) and Eq. (15), one has

(15)

s({Di(x1), x2, x3}e) + s({x1, Di(x2), x3}e) + s({x1, x2, Di(x3)}e) + p({x1, x2, x3}¢)
+ Dy(w(x1, %2, %3)) + Da(la(x1, %2)(03)) + Da(ra(xa, x3)(v1)) + Da(ma(x1, x3)(02))

= {s(Di(x1)), s(x2), s(x3)}g + La(Di(x1), x2)(03) + ma(Dy(x1), x3)(02) + ra(x2, x3)(p(x1))
+14(x2,x3)(Da(v1)) + {s(x1), s(Di(x2)), s(x3)}g + La(x1, Di(x2))(03) + ma(x1, x3)(1(x2))
+ma(x1, x3)(Da(v2)) + ra(Di(x2), x3)(01) + {s(x1), 8(x2), s(Di(x3))} g + La(x1, x2) (1(x3))
+ 1a(x1, %2)(Da(v3)) + ma(x1, Di(x3))(v2) + ra(x2, Dy(x3))(01).

Then
0 = — w(Di(x1), X2, x3) — w(x1, Di(x2), x3) — w(x1, X2, Di(x3)) + Da(w(x1, X2, x3))
= La(1, x2)(u(x3)) — ra(xa, x3)(u(x1)) — ma(xr, x3)(u(x2)) + u(fx1, x2, x3}e)
+ (Dalatxt, x2) = La(x1, x2)Da = La(Di(x1), 2) = La(x1, Di(x2)) )(03)
+ (Dara(x2, x3) = 74(x2, %3)Dy = ra(Di(x2), X3) = ra(x2, Dy(x3)))(01)

+ (Dama(xr, x3) = ma(x1, x3)Dg = ma(Dy(x1), ¥3) = ma(x1, Di(xa)))(02).
Since (D,, D) is compatible and by the proof of Lemma 8,
(DalA(x1/x2) —la(x1,x2)Dg = 14(Dy(x1), x2) — lA(xl,Dl(xz)))(U3) =0,
(DﬂrA(x2rx3) — ra(x2,%3)Da — ra(Di(x2), x3) — ra(x2, Dl(x3)))(vl) =0, (16)

(DamA(xl,xs) —ma(x1,x3)Dy — ma(Dy(x1), x3) — mA(xl,Dl(x3)))(Uz) =0.
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Thus we have
Dy(w(x1, x2,%3)) — @(Dy(x1), X2, x3) — w(x1, Di(x2), X3) — w(x1, X2, Di(x3))

— aCrn, x2) () — A, s) (1)) — maGrn, 3) ) + ({2, s )e) = O, {17)

which is exactly Eq. (12) €lue to Egs. (1) and (9). So [Ob(%)“,D,)] =0, as required. )
(&) Suppose th~at [Ob(L;Dn,D,)] i~s trivie}l. Then there is a map p : £ — A such that Oszsz) = 6'u. For any
element s(x) + v € &, define D;: £ — ¥ by
Dj(s(x) +v) = s(Dy(x)) + pi(x) + Da(0),
then the associated diagram in (6) is commutative: for any x € £, v € 4,
(10 0 Dy)(s(x) + 0) = 11(s(Dy(x)) + p(x) + Da(v)) = Di(x) = (D1 o m)(s(x) + 0);
Djo 1(v) = D(v) = Da(v) = 1 0 D,(0).

Moreover, since (D,, D;) is compatible satisfying Eq. (7), by Eq. (16) and Eq. (17), it follows that Eq. (13)
holds by Eq. (14) and Eq. (15), that is, D; € Der(¥), as required. [J

Hence, for a pair (D,, D;) € Ga, the cohomology class [Ob(QDmDI)] can be regarded as an obstruction to the
extensibility of (D,, D;). We also have the following straightforward corollary.

Corollary 3.7. IfH3(8, A) =0, then (D,, D;) € Ga if and only if (D,, D) is extensible.

Recall that the condition H3(¢,A) = 0 is in general not equivalent to split property of extensions.
However, we still have the following result.

Corollary 3.8. Let € be a split abelian extension of a Leibniz triple system € by A. Then any pair (D,,D;) €
Der(A) x Der(R) is compatible if and only if it is extensible.

Proof. (<) It holds due to Proposition 3.2.

(=) Since the extension is split there exists a section s* which is a homomorphism. Suppose that
(re, my,ly) (resp., wy) is defined by Eq. (4) (resp., Eq. (5)) with respect to s’. Then we get wy = 0. By
the definition of Ob(EDa,D,) (see Eq. (8)), we have Ob,¥ = 0. In view of Lemmas 3.4 and 3.5, one has

- (Da,Dy)
[Oby, byl = [Ob5 1,1 = 0. Then by Theorem 3.6, we deduce that (D,, D;) is extensible as required. []

At the end of this section, we will show that G4 is a Lie algebra and construct a representation of G4 to
characterize the extensibility of (D,, D;).

Proposition 3.9. G4 is a Lie algebra.

Proof. It suffices to prove that G4 is a subalgebra of Der(A) X Der(£). Suppose (D,,, Dy,), (Ds,, D1,) € Ga. Note
that, for all x, y € £, we have

(Dm Duz - Dusz)lA(x/ ]/) —la(x, ]/)(Dm Duz - Dusz)
=Dy, (Da,la(x, ¥)) = Da,(DayLa(x, ¥)) = La(x, ¥)Dy, Da, + 1a(x, y)Da, Dy,

= Dy (Ia(x, Y)Dy, +1a(DL, (%), y) + 1a(x, Dy (1))
L (18)
= Day(1(x, Y)Da, + 14Dy, (%), y) + 1a(x, Dy, (1))

I
- lA(x/ ]/)Dm Daz + lA(x/ y)Dasz .
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By Eq. (7) it follows that

11 = lA(x/ y)D(llDtlz + ZA(Dll(x)l y)Dﬂz + lA(xl Dll (y))D(lz + lA(Dlz(x)/ y)Dﬂl + ZA(DllDlz(x)/ y)

19
+ Lu(D1(x), D1, (1)) + 1a(x, Dio(1))Da, + La(Dy (¥), Dia(y)) + La(x, Dy, Dis(1), 19)

L = 14(x, y)Da, Doy + 1a(D1,(x), Y)Day + 1a(x, D1, (y))Day + 1a(Dyy (%), Y)Da, + 1a(Dy, Dy, (%), y)
+14(Dy, (x), D, (y)) + la(x, Dy, (¥))Da, + 1a(Dy,(x), Dy, (y)) + La(x, D, Dy, ().

Then substituting Eq. (19) and Eq. (20) into Eq. (18) gives that

(20)

[Day, DayJla(x, ¥) = 14, )[Day, Day] = La([Dy,, Dy, 1(x), y) + La(x, [Dy,, D1, 1w)).

Similarly, we have

[Da, Doy Jra(x, y) = r4(, Y[Day, Day] = r4([Dy, DR1(), y) + ra(x, [Dy,, DL1Y)),
and
[Day, Day Jma(x, y) = ma(x, y)[Day, Day] = ma(IDy, Dy 1), y) + ma(x, [Dy, D)),
which implies that [(D,,, Dy,), (Da,, D1,)] = ([D4y, Da,1, [D1,, Dy, ]) is compatible. [
Lemma 3.10. Define a linear map @ : G4 — gl(H>(2, A)) by
O(D,, Dy)([w]) = [Obp,, ), Y @ € Z2(L, A), (21)
where Ob(p, 1, is given by Eq. (8). Then @ is a representation of G4 on H3(g, A).

Proof. Since (D,, D;) is compatible with respect to (ra,ma,la) by Lemma 3.5 it follows that Ob;‘,’Jle) is a

3-cocycle whenever w is a 3-cocycle. Therefore, it suffices to show that if 6'A is a 3-coboundary, then
®(D,, D;)(6'A) = 0, which implies that @ is well-defined. In fact,

(®(Dy, DO V), Y, 2)
= (Da(6'1) = (5'A)(Dy ®id ®id) - (5" A)(id ® D; ® id) - (8" A)(id ® id ® Dy))(x, ¥, 2)
= Dol = A, ¥,2)) + LG, Y)AE)) + malx, 2)AW) + 7aly, 2)(A ()
(= AUDI), ¥, 2) + La(Di), YA(2)) + maDy(x), 2)AW)) + ra(y, 2)ADY(x))))
- ( — A{x, Di(y), z}) + La(x, Di(y))(A(2)) + ma(x, 2)(MDi(y))) + VA(DI(}/),Z)(A(X))))
(= Ax v, D@D + La, YYADYR) + max, Di)AW)) + raly, DiE)A®))))-
Since D; is a derivation on €, we have
A(Di(x), y, 2}) + A{x, Di(y), z}) + A({x, y, Di(2)}) = A(Di({x, y, 2})).
Then

(@(Da, D' )X, , 2)

= Dala(x, y)(A(2)) + Dama(x, 2)(A(y)) + Dara(y, 2)(A(x)) = La(Di(x), y)(A(2)) = ma(Di(x), 2)(A())
= ra(y, 2)(AUDi(x)) = La(x, Di()(A(2)) = ma(x, 2)(ADi(y))) = ra(Di(y), 2)(A(x)) = La(x, y)(A(Di(2)))
= ma(x, Di(2))(A(y)) = ra(y, Di(2))(A(x)) = Da(A({x, y, 2)) + MDi(ix, y, 2}))
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= (Dala(x, ¥) = La(Di(x), y) = La(x, Diy)) J(A @) + (Dama(x, z) — ma(Di(x), 2) — ma(x, Di(2)))(AW))
+ (Dara(y, ) = ra(Di(y), 2) = ra(y, Di) J(AR)) = 74y, DADY())) = La(x, Y)A(Dy(2)))

= ma(x, 2)(M(Di(y))) — Da(A({x, y, 2})) + A(Di({x, y, 2}))
= 1a(x, Y)Da(A(2)) + ma(x, 2)Da(A(y)) + ra(y, 2)Da(A(x)) = ra(y, 2)(A(Di(x)))
= L4, Y)(A(Di(2))) — ma(x, 2)(MDi(y))) — Da(A({x, v, 2})) + M(Di({x, y, z}))
=6 (D0 A - AoD)(x,y,z) =0.

Next, we prove that @ is a Lie homomorphism, for any (D,,, Dy,), (Da,, D1,) € Ga, [w] € H3(g, A), we have
[D(Da,, D1y), ©(Day, D) ([w]) = ©(Da,, Dy, )P(Da,, Dy, ([w]) = P(Da,, D1, )P(Da, , Dy )([w]).
Combining Egs. (8) and (21), we see that
O(Dq,, D1, )P(Da,, Dy, )([w])
= ®(Dyy, D1,)(Day0 — 0(Dy, ®1id ®id) — w(id ® Dy, ®1id) — w(id ® id ® Dy,))
= [Dgl (Deyw - (D), ®id ®id) - w(id ® Dy, ®id) - w(id ® id ® D},))
~ (Do - (D), ®id ®id) - w(id ® Dy, ® id) — w(id ® id ® Dy,))(D), ® id ® id)
~ (Do — (D), ®id ® id) — w(id ® D}, ® id) - w(id ® id ® D},))(id ® Dy, ® id)
~ (Do - @(Dy, ®id ®id) - w(id ® D), ®1id) - w(id ®id ® D},))(id ®id ® D]
= [Da,Dey = Doy(Dy, ® id ® id) — Dy, w(id ® Dy, ®id) — Dy, w(id ® id ® Dy,)
~ (Dw(Dy, ®id ® id) — (D, Dy, ®id ®id) — w(Dy, ® D), ®id) — w(Dy, ®id ® Dy,))
~ (Dpw(id ® Dy, ®id) - w(Dy, ® Dy, ®id) - w(id ® D, D), ®id) - w(id ® D), ® Dy,))
~ (Dya(id ®id® D;,) - 0(D;, ®id ® D;,) - w(id ® D, ® D},) - w(id ®id ® Dllel))].

Then, we deduce that

[CD(DIZU Dll )/ CD(DLZZI Dlz)]([a)])
= (®(Ds,, D1,)(Ds, D1,) = (Day, Dy )P(Dsy, D) )([w])
=[[D,,, Do,]Jw — w([Dy,, D;,] ®id ® id) — w(id ® [Dy,, D, ] ® id) — w(id ® id ® [Dy,, Dy, )]

= [Obp, b,,110,, D, 1]
= ®([D,,, Do, 1, [Dy,, D D([w])
= (D[(Dgl, IDZ1 )/ (Dt‘lzr DZZ)]([O)]),

as desired. [
Theorem 3.11. The pair (D,, D;) € Ga is extensible if and only if ©(D,, D;) = 0.

Proof. (=) For any [¢] € H3(&, A), by Corollary 2.12, there exists an abelian extension

0 A—os @ " 5 ¢ 0

where 7 is the canonical projection and the bracket on € := ¢+A is given by

x+u,y+o,z+wls ={xy zle + px,y,2) + La(x, y)(W) + ra(y, 2)(u) + ma(x, z)(v),
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forany x,y,z € £, u,v,w € A. Choose the section s of © defined by s(x) = x, for any x € £. The associated
representation (ra, 14, 14) is given by Eq. (4). Let H3(€, A) denote the cohomology group with respect to

(ra,ma,la). Since we defined w by Eq. (5) (resp. ¢) is a 3-cocycle in Hi(ﬂ, A) (resp. in H3(¢, A)), we have
[w] = [@]. Then it follows that

(D, D)([¢]) = ©(D,, Dy)([w]) (by Lemma 3.10)
= [Ob(%a,Dl)]
=0. (by Theorem 3.6)

(&) Suppose ®(D,, D;) = 0. For any abelian extension

0 A < e Q 0

there exists a section s of 77 and the associated representation (r4,m4,4), w defined by Eq. (5) is a 3-cocycle
in H3(¢, A). Then we have

[Ob, ] = ®(Ds, D)([w]) = 0.

By Theorem 3.6 again, (D,, D)) is extensible. This complete the proof. [

The following corollary is straightforward.

Corollary 3.12. Any pair (D,, D) € Ga is extensible if and only if © = 0.
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