Filomat 37:23 (2023), 7919-7935

D) Published by Faculty of Sciences and Mathematics,
https://doi.org/10.2298/FIL2323919Y ¥

g University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

‘&,
b, ¢
iy xS

&
Ipapor®

The weak group-star matrix

Jiaxuan Yao?, Hongwei Jin?*, Xiaoji Liu?

#School of Mathematics and physics, Guangxi Minzu University, 530006, Nanning, PR China.

Abstract. In this paper, we introduce one type of matrix, called the weak group-star matrix. We investigate
the characterizations, representations, and properties of the matrix. A variant of the successive matrix
squaring computational iterative scheme is given for calculating the weak group-star matrix. Moreover,
the Cramer’s rule for the solution of a singular equation (A*)'x = b is presented. Then, the perturbation is

also given for the weak group-star matrix. In the final, the weak group-star matrix being used in solving
appropriate systems of linear equations is established.

1. Introduction

Throughout this paper, we denote the set of all m X n complex matrices by C"™". For A € C"™", the
symbols A*, rank(A), N(A), and R(A) stand for the conjugate transpose, the rank, the null space and the
range space of A, respectively. Moreover, I,, will refer to the n X n identity matrix. Let A € C"™", the smallest
positive integer k for which rank(A¥) = rank(A**!) is called the index of A and is denoted by Ind(A). Then
C™" represents all n X n complex matrices sets with index k. Prr represents the projector on the subspace
E along the subspace F. For A € C"™", P4 stands for the orthogonal projection onto R(A). The symbol C{M
represents the subset of all n X n complex matrices sets with index 1.

Next, let’s review the definitions of some generalized inverses. For A € C"™*", the Moore-Penrose inverse
At of A is the unique matrix X € C™™ satisfying the following four Penrose equations [1]:

AXA=A, XAX=X, (AX) =AX, (XA) =XA.

The Moore-Penrose inverse can be used to represent orthogonal projectors P4 := AA' onto R(A) and
Qa = ATA onto R(A”), respectively. A matrix X € C"™" that satisfies the equality AXA = A is called an inner
inverse or {1}-inverse of A, and a matrix X € C"™™ that satisfies the equality XAX = X is called an outer
inverse or {2}-inverse of A.

The Drazin inverse is a kind of outer inverse defined for square matrices. For A € C™" and Ind(A) =k,
the Drazin inverse AP of A is the unique matrix X € C™" satisfying the following three equations [13]:

ARlx = A XAX = X, AX = XA.
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In particular, if Ind(A) = 1, AP = A* is the group inverse of A.
For A € C"™" with Ind(A) = k, the core-EP inverse AD of Ais the unique matrix X € C'*" satisfying the
following conditions [12]:
XAX =X,  R(AF)=R(X)=R(X).

Obviously, the core-EP inverse is an outer inverse of A. Recall that, by [6], the core-EP inverse can be
expressed as AD = ADAk(Akyt,

The weak group inverse is proposed by Wang and Chen [15] for square matrices of an arbitrary index
as an extension of the group inverse. For A € C"™", the weak group inverse A® f A is the uniquely
determined matrix that satisfying:

Ax2=x  Ax=aD4

Notice that, by [15], we haveA® = (A®)2A. Two new generalized inverses have emerged by combining
Moore-Penrose inverse and the weak group inverse, which are the weak core inverse (WCI) A®t and the
dual weak core inverse (d-WCI) AYD, respectively [2]. Precisely, the weak core inverse of A € C"™" presents
a unique solution to the matrix system [2]:

XAX =X AX=CA', XA=APC

where C is the weak core part of A with C = AA®A. Notice that A®* = A®WAA" and AT® = A14A®.
In [2], let AeC™" and Ind(A) = k. The weak core part C of A satisfies the following equations:

CAF = A1 c=a®a2 (I-AAPYC =0, (1)

(- AAD)C=(1-44®)C=0, Cca-Qu=0. )

The DMP-inverse of A € C™", written by AP, was defined in [8] as the unique matrix X € cr
satisfying
XAX =X, XA=APA,  A'X=AFA"

Moreover, it was proved that APt = APAAT. Also, the dual DMP-inverse of A was introduced in [8], namely
APP = ATAAP.

D. Mosi¢ in [9] introduced the Drazin-Star and the Star-Drazin matrices of a square matrix. Let A € C"™"
with Ind(A) = k. The Drazin-Star matrix of A (or Drazin-Star inverse of (A)*) is

AP = APAA
which is the unique solution of the following equations:
XAYYX =X AFX=AFAY,  X(AYY = APA.

Recall that the Star-Drazin matrix of A (or Star-Drazin inverse of (A")*) is also defined in [9] as A*P = A*AAP.
Inspired by this types of matrices, we will introduce the weak group-star matrix in this article.

First of all, let us review the core-EP decomposition. Wang gave the core-EP decomposition in the
document [14]. Let AcC™" with Ind(A) = k, rank(A¥) = p. Then, one has A = A; + A,, A1€CM, where
A’; =0, AjAz = A»A; = 0. Furthermore, there exists an unitary matrix U € C"™" such that

T S

T S\ . , . . {0 o) .
)U,Al—ll(o O)U,AZ—U(O N)u, 3)

Azu(o N

where TeCP** is nonsingular and SeCrxn=p)  NeCrp*r-p jg nilpotent of index k, i.e., Nk =0.

Lemma 1.1. [4, 14, 16] Let A€C}>" as in (3). Then
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T A —T* A SNt

(hp = N'N)S'A N* = (I, — N'N)S° & SN*) U7

(i)A*:U(

-1
(ii) A® = u(TO 8) u,

(i) A® = (A®y24 = u(TO 1 TOZS) u,

) I 0
t p *
(iv) AAT = U(O NN‘L)u’

T"AT T* A S(I - NNY)
(I-NNHS*AT (I-NNHS* AS(I-NN)+NINJ’

where & = [TT* + S(I,—, — NTN)S]L.

(v) ATA = (

Lemma 1.2. [7] Let AeC™" with rank r > 0. Then there exists a unitary matrix UeC™" such that

YK TL\, .
Azu(o O)U, (4)

where ¥ = diag(o1l,1, 021, ..., 01ly) is the diagonal matrix of singular values of A, 61 > 02 > ...,> o0 >
0, 1 +7r2+...+1 =r, and KEC™", LeC™ " satisfy KK* + LL* = I,.

Lemma 1.3. Let AcC™" be a matrix written as in (4). Then,

(1)[3] the core-EP inverse of A is

®_ (D o), .
© a0 O

(i1)[2] the weak group inverse of A is

AW _
u 0

(zk)dyrk ((ZK)®)22L) U -u ((ZK)@ (OOpzL) -
0 0 - 0 '

The main structure of this paper is as follows. In Sect. 2, we introduce the weak group-star matrix.
Then, we give some representations and characterizations of this type of the matrix. In Sect. 3, we develop
the SMS method for finding the weak group-star matrix. In Sect. 4, the Cramer’s rule for the solution of
a singular equation (A)*x = b is presented. In Sect. 5, we study the perturbation of the weak group-star
matrix. In Sect. 6, we give the application of the weak group-star matrix in solving linear equations.
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2. Definition, characterizations and representations of the weak group-star Matrix
Theorem 2.1. Let AcC™™" with Ind(A) = k, C is the weak core part of A. Then, the system of equations

X(ATY'X = X, AX = CA*, X(A") = APC (5)
is consistent and its unique solution is X = APCA*.

Proor. For X = APCA*. In fact, (1) implies AX = AAPCA* = CA*. On the other hand, (2) implies
X(A")" = APCA*(A"y" = APCATA = APC. Finally,

X(ATY'X = APCX = APAA®CA" = APCA* = X,

where the last equality follows by (2). Hence, X = APCA* satisfies the system of (5).
In order to show that system (5) has a unique solution, assume that both two matrices X; and X, satisfy
(5), then
AXy = CA" = AX,, X1(A") = APC = X,(A"y".

Thus, we can obtain
X, = Xp(A1YX, = APCX, = ALAA®AX,
APAA®AX, = APCX; = Xy (AT X = X,
which implies that system (5) has the unique solution. O

Definition 2.2. Let AeC™" with Ind(A) = k, and C be the weak core part of A. The weak group-star matrix of A
(or the weak group-star inverse of (A")*) denoted as A®: s defined to be the solution of the system (5).

Theorem 2.3. Let AcC™" and Ind(A) = k. Then,
A®x = A®p 47,
Proor. Since R(A®) = R(A¥), then A® = A¥Z, for some ZeC™". Thus, we have
A®~ = APCA" = APAABAA" = APAAYZAA" = AFZAA" = ABAA",
O

Remark 2.4. Obviously, the weak group-star matrix is named based on the expressions whom are defined. In general,
the weak group-star matrix are not generalized inverses of a given matrix A, but they are outer inverses of (A1)".

We observe that the weak group-star matrix provide new classes of square matrices by the following
example, because they are different from each of the Moore-Penrose inverse, the weak group inverse, the
weak core inverse and the dual weak core inverse.

Example 2.5. Let

101 -1
011 0
A4=10 0 0 1
000 0
Then,
2/3 -1/3 2/3 0 101 -1
gio|m13 23 15 0 @ [0 11 0]
13 13 1/3 0 000 0
o 0 1 0 000 0
1010 2/3 -1/3 1/3 -2/3 220 0
4@ [0 1 10 e |13 23 13 13| ,@._ 021 0|
000 0 13 1/3 2/3 -1/3 000 0
000 0 0O 0 0 0 000 0
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In the next example, we show that the weak group-star inverse of (A")* is different from each of the
Moore-Penrose inverse, the weak group inverse, the weak core inverse and the dual weak core inverse of
(A%)*. Note that the weak group-star inverse present new classes of generalized inverse.

Example 2.6. Let

A=

O = O
oo~
_ o

0 0 00

It is easy to check that Ind(A) = 2. We can obtain that the Moore-Penrose inverse, the Weak group inverse and the
core EP inverse are

/2 0 0 O 1 010 1 000
; |0 1 -1 0 ®w_|01 10 ®_10 1.0 0
A_1/2000’A OOOO’A_OOOO
0 0 1 0 00 00 0 00O
We also have
1/2 0 1/2 0 1 000
. 0 1 0 O « ._ 101 00
@Y=lo 3 o 1|/ [@T=4=l1 o o of
0o 0 0 0 01 10
2 0 20 2 000
. 0 0 0O . 0 00O
A1®=l5 o o ol 1=y 5 o ol
0 00O 0 00O
2 0 20 1 010 1 -2 20
fa@+ [0 0 0 0 @ _[0 0 0 0 f@s |0 0 0 0
0 00O 00 00 0 0 0O
Theorem 2.7. Let AcC"™" be a matrix written as in (3). Then
% —1 -2 * -1 -2 *
A@ﬁ:u(T +(T 50+T SN)S* (T S+€ SN)N)U*. ©)
Proor. From Lemma 1.1, we can obtain
@ q®ane_ (T T2S\(T S\(T" 0}, .
AY" = AYAA" = U( 0 o lo Nlls n u
T +(T'S+T2SN)S* (T7'S+T2SN)N*\, .,
=U u-.
0 0
O
Corollary 2.8. Let AcC™" be a matrix written as in (3). Then
AA® = u(%l %) ur, )

where Fy = TT* + (S + T"'SN)S*, F, = (S + T"'SN)N". Besides,

@ g _17(F3 Fa)p
A A—U(O 0 u,

where Fy = T'T + (T71S + T2SN)S'T, Fy = T*S + (T-1S + T2SN)S*S + (T~!S + T-2SN)N"N.
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Remark 2.9. Let AcC™" as in (3) and with Ind(A) = k. We can obtain A® = A if and only if A € C{M, ie.,
N =0.

Lemma 2.10. If AeC™" with Ind(A) = k. Then R(A@'*) = R(A").
Proor. In fact, according to Theorem 2.1, we have

R(A®") ¢ R(A®# Aty = R(APC) € R(AP) = R(AF).
On the other hand, R(A%) C R(A@'*). By Theorem 2.1, we can see

R(A%) € R(AP) € R(APC) = R(A®*(A'y) c R(A®").
Hence, R(AF) = R(A@'*). O
Lemma 2.11. [5] Let AeC™". Then, the following statements hold.

(@) AA@ =P R(AK),N((Ax)*A)s

(if) A®A = Pras vy 12
According Theorem 2.1 and Lemma 2.10, we can obtain Lemma 2.12.

Lemma 2.12. [11] Let AeC™" be such that Ind(A) = k. Then

() A®" = A0 o

(if) (A"))A®* is a projector on R(AT))A®) along N((A¥)'A2A*),

(i) A@'*(A+)* is a projector on R(A¥) along N((A¥)*A?).

Corollary 2.13. Let AcC™" with Ind(A) = k. For 1 > k,

A@,,e — AZ(A”Q)’LAZA*, (8)
Proor. According to [10], it follows A® - A(AF%)TA. By the corresponding Theorem 2.3, we get the
equality (8).

Theorem 2.14. Let AeC™" be a matrix written as in (4). Then

@, _ . (CO®z o),
A _u( 0 o] U

Proor. From Lemma 1.3, we can obtain
A® — AW pp = (ADy2424 = 0 0

) . oy
zu((ZK) Z(Ké( +LLHE 8)”

u KOk + (KOs 0) 0

O

Theorem 2.15. Let AcC™" with Ind(A) = k and C is the weak core part of A. Then, the following statements are
equivalent:

(i) XeC™" is the weak group-star matrix of A.
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(i1) X satisfies equations
X(ATY'X = X, AX = CA*, X(A") = APC.

(1if) X satisfies equations
A®AX = X, AX = CA".

(iv) X satisfies equations

AX(AY) = C, ABAXAAT = X, (AT X(AT) = (AT A®A.

(v) X satisfies equations

XAAT = X, X(AtY = A®A, XAy AT = A®F x4 = A®aA A

(vi) X satisfies equations

XA A®AA" = X XA A®AX = X, (A ADAX = Aty A® A"

(vii) X satisfies equations

A ABAX (AT ABA = Aty A®A, XAty A®A = AB4,

Proor. (i) = (ii): By Theorem 2.1, the proof is clear.
(i) = (iii): Using AX = CA*, we can obtain
A®AX = AcA* = X.
(iii) = (i): The hypothesis A®AX = X, AX = CA* imply
X=A®AX = A®cA = A®AA®AA" = A®A4* = X
(1) = (iv): Since X = A®AA* and by (2), it follows that
AX(ATY = AA®AA (AT = CAAT =,
A®AxAAT = (ABAAD A4 AAY) = A®AA" = X,

and
(A X(AYY = Ay ARAA AN = Aty A AUt A) = Ay ADAATA = Aty ADA.

(iv) = (i): By ADAXAAT = X, AX = AADAA" we have
X = AWAXAAT = APAAB a4 a4 = ABAA 44T = A®AA" = X

The rest can be proved similarly according to the above method. O
By Lemma 2.12 and A — 4 AA*, we obtain

Ty\* L % _ k
(A ) A@ - PR((Af)*A@/N((Ak)*AzAf)/ R(A@ ) - R(A@) - R(A )

Then we can get Theorem 2.16.
Theorem 2.16. [11] Let AeC™" with Ind(A) = k. Then, the matrix equation
(AT X = Py

k
A*)*A@),N((Ak)*AZA*)’ R(X) c R(A ) (9)

is consistent and it has the unique solution X = A®~
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Lemma 2.17 can be checked by using the same method of [11]. Therefore, we omit the proof.
Lemma 2.17. [11] Let AcC™" with Ind(A) = k. Then,
() (A AB Aty = (A1) © ATAABA = ATA © AADA = A & AABAAT = AAY,
(i) AXA®» Ak = AF & AFA*AF = AK;
(iii) AA®” = AAD o AW = AW,
(iv) AB*A = AAD & AV = 4B,
) A A = ATA & AB- = At
i) AA®” = AAT & AADA = A;
i) A = A* & AB = gt
Let AcC™" with ind(A) = k, then

A — A®pp0 - u(%l %2) ur,

where Gy = T* + (T~!S + T2SN)S*, G, = (TS + T"2SN)N".

Theorem 2.18. Let AcC™" be a matrix with Ind(A) = k written as in (3). Then
(i) A% A = A*A © A is a symmetrical and EP matrix.
(ii) AA® = AA*® & S+ TSN = (TT* + SS")T~'S, NS* = 0.

Proor.

(i)

A® A 4 A@(GlT G18+G2N) (T*T TS )

0 0 ST S$*'S+N'N
S TT+((T'S+T2SN)S'T =TT,

TS+ (T'S+T2SN)S'S+ (T'S+ T2SN)N'N =TS, ST =0, S'S+ N'N = 0.
©S5=0,N=0.

© A is a symmetrical and EP matrix.

(i)

% * e r—1 *—1
AA@,*:AA,E,@(:)(TS;1 TGZ):(TT +58S* TT*T'S+SS'T!S

0 Ns* NS*T-1S
S TT +(S+TSN)S* =TT +SS*, NS* =0, T(T"'S + T2SN) = TT'T~'S + SS*T!S.
© S+ TSN = (TT* +SS)T7!S, NS* = 0.0
Theorem 2.19. Let AcC™" be a matrix with Ind(A) = k written as in (3). Then
(@) A®  — Ao Aisa symmetrical and EP matrix.
(ii) A®* = A* & A is an EP matrix.
(i) A®” = AAt & TT* +SS =T, N =0.
(iv) A® = 48 & 5=,



J. Yao et al. / Filomat 37:23 (2023), 7919-7935 7927

Proor.

(i)

@,,, _ G1 Gz _ T S
AT =4 e ( 0o 0)7lo N
ST +(T'S+T2SN)S* =T, (T'S+T>SN)N*=Sand N = 0.

©T=T,5=0,N=0.
© A is a symmetrical and EP matrix.

(i)

A@’* Ao (Gl Gz) = (g: 0 )

0 0 N*
ST +(T'S+T2SN)S =T, (T'S+T2SN)N* =0, S =0and N* = 0.
©5=0,N=0.

& A is an EP matrix.
(iii)

A@,*:AA+®(G1 Gz) I 0

0 0/~ (o NN*)
& T+ (T 'S+ T25N)S* =1, (T"'S + T2SN)N* = 0 and NN' = 0.
o TT"+S85 =T, N=0.

(iv)
W _ 2+ W G Gy _ T T'T!S
AT =4 ‘:’(0 0]~ \s s
ST +(T'S+T2SN)S =T, (T'S+T2SN)N*=T*T™'S, $* =0, and ST'S = 0.
< S5§=0.0

Theorem 2.20. Let AcC™" with Ind(A) = 1. Then, the following statements are equivalent:

(i) A is a partial isometry and A is an EP matrix.
(ii) AA®» = AAT,
(iii) A®7A = AAY,
(iv) AA®» = A*A.
) A7 A = ATA.

Proor.

(i) & (i)

A G Y
S TT +(S+T'SN)S* =1, (S+ T 'SN)N* = Sand NN = 0.
e TT"=,N=0, (S+T!SN)N' =S5 =0.
e Tl"=1,5=0, N=0. (10)
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(i) & (iii)

@,,, _ + GiT G1S+GyN _ I 0
A®rA = Ap @( =lo ant

0 0

S TT+(T'S+T2SN)ST=1I, T'S+(T'S + T2SN)S*S + (T™'S + T>SN)N*N = 0 and NN" = 0.
& N=0, (TT* +S5)S = 0and (TT* + SS*)T = T.

o TT"=1,5=0,N=0.

() & (iv)

TG, TGZ) ( T AT T* A S(I - NN*) )
0 0 (I-NNHS* AT (I-NNH)S* AS(I-NN'+NIN)

ST AT=TT +(S+T'SN)S*, T" AS(I-NN") = (S+ T"'SN)N*, S = SNN', N'N = 0.

T AT=TT, S=0, and N = 0.

Tl =1, 5S=0and N =0.

AADY — ATA & (

(i) & ()

0 0 - ((1 ~NN"S*AT (I-NN"S* AS(I—-NN')+ N*N)
ST AT=TT+(T'S+T2SN)S'T, S = SNNt, NIN =0,
T*AS(I-NN')=T'S+(T"'S+T2SN)S*S + (T"'S + T2SN)N*N.

ST AT=TT, N=0andS=SNN'=0.

©TT=I1,S=0and N = 0.

ABi A - ATA o (GlT G15+G2N) 3 T AT T* & S(I - NNY)

Therefore, the above conditions are equivalent. O
Definition 2.21. Let A, BeC™" with Ind(A) = k. We call A is below B under the relation <®- if
AAD: = BA®~ 4y g A®p = 4B,

Naturally, we will consider whether this binary relationship can become a partial order. The answer to
this question is No. A binary relation is called a partial order if it is reflexive, transitive, and anti-symmetric
on a non-empty set. Next, we give a concrete example to prove that this relationship is not satisfied
antisymmetry.

Example 2.22. Consider the matrices

100 1 100 1
000 0 0010
A=10 0 0 ol'B=lo 0 0 o
000 0 000 0
Since
1001 1001
L®_[0 000 ,@_[00 00
00 0 of 00 0 of
000 0 000 0
we can get
2 00 2 2 0 0 2
@, 1000 0| @, 10000
ATA=1g 0 0 oA B=lo 0 0 ol
000 0 000 0
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200 0 200 0
@ 0000 ..@ (0000
AATT =100 0 oA =10 0 0 ol
000 0 0000
200 0 200 0
@ 0000 @ 0000
BBZ =10 0 0 o|"4B~ =0 0 0 ol
0000 000 0
200 2 200 2
@ [0 000 @, [0000
B='B=lg 0 0 o8 4=l0 0 0 o
0000 000 0

Thus,
AA® = pA® 4By = p®:p,

ABY: = pp®- p®-p - p®: 4,
Clearly, A <®+ Band B <®* A hold, but A # B. Hence, the weak group-star relation can not be a partial order.

3. Successive matrix squaring algorithm for the weak group-star matrix

In this section, we give successive matrix squaring algorithms for computing the weak group-star matrix.
The development of the SMS iterations start from the transformations.
Since

(Ak+2)+A(AA@'*) _ (Ak+2)+A2Ak(Ak+2)+A2A*
— (Ak+2)1'Ak+2(Ak+2)‘I'A2A* — (Ak+2)1'A2A*/
we have
A@,* — A@,* _ ﬁ((AkJrZ)‘l'A(AA@,*) _ (Ak+2)+A2A*)
— (I _ ﬁ(Ak+2)+A2)A@,* + ﬁ(AkJrZ)‘l'AZA*‘
Observe the following matrices
P=]- ﬁ(Ak+2)+A2, Q — ﬁ(AkJrZ)‘l'AZA*, ﬁ > 0.

It is obvious that A®~ is the unique solution of X = PX + Q. Then an iterative procedure for computing
the weak group-star matrix A® can be defined as follows

X1 =0Q, Xinr1 = PXy + Q. (11)
This algorithm can be implemented in parallel by considering the block matrix

(P Q w_ (P" IiPQ
T‘(o 1)' g ‘(o 1)

The top right block of T" is X™, the mth approximation to A®: The matrix power T can be computed
by the successive squaring, i.e.
TO = T/ Ti+1 = lel l: 0/1/-"/j/

where the integer j is such that 2/ > m. The following theorem gives the sufficient condition for the

convergence of the iterative process (11).
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Theorem 3.1. Let AcC™" with Ind(A) = k and rank(A¥) = r. Then the approximation
2m_q .
Xom = Z (I _ ﬁ(Ak+2)+A2)lﬁ(Ak+2)‘l'A2A*/
i=0

defined by the iterative process (11) converges to the weak group-star matrix A~ if the spectral radius p(I-X1(AT)*) <
1. Moreover, the following error estimation holds:

||A@’* - sz

< || - XAy

lim sup *\/|[A®7 - Xou || < (1 - X1 (A1),

AB Aty A®s - B X Aty AD = X,

As a result,

Proor. We know that

By the mathematical induction, we can get

I = Xon(AT) = (I = Xa(AT))".

Therefore,
49" — x| = [|A®” - X0 (ATy 4D
= 1 - Xon(a?y)A®-
< A1 - XAty
= [|A®|]ja - xiay)?,
and

A

|(Z = Xy(At))2"||

tim sup A oo < tim sup |2 @

p(Il = X1 (A")).

In the last equality, we use the fact that lim,,—, [|B"|['/" = p(B), for any square matrix B.

If B is a real parameter such that ;mpg |1 - ﬁAi( <1,where A; (i =1,2,...,s) are the nonzero eigenvalues
<i<
of (A¥2)tA2A*, then
p(I = X1(A"Y) = p(I - B(A*2)TA%) < 1.

It completes the proof. O

Example 3.2. Consider the following matrix:

0 4/3 -1/3
A= [—1/3 1 -1/3
—2/3 -2/3 0

,Ind(A) = 2.

Let
P =1-p(AY A%, Q=pAYH A%A",B=0.6.

The eigenvalues A; of QA are included in the set {0,0,0.5}. The nonzero eigenvalues A; satisfy

max|l - Al =1-05=05<1.
1
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Then we obtain the satisfactory approximation for AD: after the 6th iteration of the successive matrix squaring
algorithm.

0982 0.130 -0.037 -0.185 -0.148 0.074

0.130 0.093 0.026 1300 1.037 -0.519

(T2 ~ -0.031 0218 0.938 -0.311 -0.249 0.125

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

The upper right corner of (T?)® is an approximation of the weak group-star matrix, that is
-0.185 -0.148 0.074
A®r =1 1300 1.037 -0519].
-0.311 -0.249 0.125

4. The Cramer’s rule for the solution of a singular equation (A")*x = b

Since R(AY») = églk) C N(V), we obtain VA®" = 0. By R(I - AA®») ¢ R(U) = R(UUY) = N(I - UU),
we can obtain [ — AA uut(I - AA@'*). Then, we get Theorem 4.1.

Theorem 4.1. [11] Let AcC™" with Ind(A) = k. Suppose UeC™" and V*e€C™" having full column rank such that
R(I - AA®A ¢ R(U) € N(A®), and R(A) € N(V).

Then, the bordered matrix

(v o)

is nonsingular and

X1 = U*(Ié?;@ﬂ) _ug(; f?;A er)v*) . (12)

Similarly, we can get the following result.
Theorem 4.2. Let AcC™" with Ind(A) = k. Suppose UeC™" and V*eC™" having full column rank such that
R(A") = N(V), R(U) = N(AFy".
Then the bordered matrix aty u
(V")

is nonsingular and

X7 =g _‘ﬁ')* A8 U ﬁ) A%?))Z%@ A)V+) (13)

Since B € R((A)A®), we have B = (A" A®Z, for some ZeC™". If X = A®*B, we obtain
(AYX = (AT A® B = (A1y A®AA Aty A®Z = Aty A®Z = B.

Then we can get the following theorem.
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Theorem 4.3. [11] Let AeC™" with Ind(A) = k, and B € R((A*)*A@). Then
(ATYX =B (14)
in R(AX) has the unique solution X = A®:p.

Similar to the Theorem 4.3, we can prove the following theorem.

Theorem 4.4. Let AcC™" with Ind(A) = kand B € R(AA@). Then A*B is the unique solution in R(A*(A¥)*A?) of
(AYyX =B.
Using the relationship between the weak group-star inverse of (A")* and a nonsingular bordered matrix,

we give the Cramer’s rule for solving a singular linear equation (A")*x = B. (AT (@j—b ;) denotes the matrix
obtained by replacing ith column of (A")* with bj, where b; is the jth column of B.

Theorem 4.5. Let A, BeC™" with Ind(A) = k. Suppose UeC™" and V*eC™" having full column rank such that
RAY") = R(AK) = N(V), and R(U) = N(AD).
IfR(B) € R((A*)*A@), then the unique solution X = A®:p of the singular linear equation (14) is given by

ot ((A*)*(i — b)) u)

V(i —0) 0] )
xijz ,l=1,2,...7l,]=1,2,...n. (15)
A u
det v 0

Proor. Since X = A®B € R(A¥) = N(V) and B € R((AT)'A®) = AR(A¥), we have
VX =0, (I- AA®D")B = 0. (16)

It follows from (16) that the solution of (A*)*X = B satisfies

(AY u\(X\_(B
(%7 5)l6)- ) o
By Theorem 4.2, the coefficient matrix of (17) is nonsingular. Using (13) and (16), we can obtain
X\ A®- (I- AB AVt B\ _(A®:B
o) T \uta - Ay A®) —utaty - AayA®ayvtlo) T o )

Therefore, x = A® B and (15) follows from the classical Cramer’s rule [13]. O

5. Perturbations of the weak group-star matrix
Using the form of the core-EP decomposition of A®: we can calculate the perturbation of A,
Theorem 5.1. Let AcC™" with Ind(A) =k, B=A+E eC™". If
EAA® = E, AA®E = E, and || A®E |I< 1,

then
B®r _ (I, + A@E)‘lA@(A +E)A+E) = A@(I,1 + EA@)‘l(A +E)A+E)".
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Eq

Proor. Let A have the form of (3),and E = U (E3

Ez) U, where E;€C"™ . Since AADE = E, we get
4

®r _ T S\(T! T72S\(E; E\,..
A4 E‘u(o Nlo o )le E)Y
-Uu E1+T_1SE3 E2+T_1SE4 U
0 0
_[E1 E2\, .
—U(E3 E4)u. (18)

Thus, we can get E3 = 0, E4 = 0. And applying EAA® = E, we have

EA A@:u(a Ez)(T s)(T-l T‘ZS)U*

0o oJlo NJ{lo o0
_ (Bt ET'S\ . (E1 E\,.
S (L TR L S

Hence, E; = E;T7!S.
Owing to p(EA@) = p(A@E) <l A®E ||< 1, we can get ]+ A®E isreversible and T + E; is nonsingular.
Furthermore, notice that

B E\, . . (T+E S+E), .
E—U(O 0)U,B—A+E—U( 0 N )U,
we can get
g® _ y(T+E)™ (T+E)XS+E)) o
0 0 '
Therefore,

5@y ((T +E) 4 41(5 4 Bo) Alozv*) "

where A1 = [(T + E1)™(S + Ep) + (T + E1)"%(S + E»)N]. Thus,
B9 = (1, + ADEY 14O + E)YA + By = A®(1, + EADY YA + EYA+ E). O
Furthermore, we have the following result.
Theorem 5.2. Let AeC™" with Ind(A) =k, B=A + EeC™". If
AA®E = E, and || AQE |I< 1,
then

O = (1, + A®PE)14®2aaD A + B4 + By
(o + A®E)1A® (1, + ADE T AD A + EP(A + EY.

6. Applications

In this section, we will give the application of the weak group-star matrix in solving linear equations.
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Theorem 6.1. Let AcC™" and Ind(A) = k, the equation

(AK2) A2 = (AK2) A2A%D, beC?, (19)
is consistent and its general solution is

x=A® Y 4 (1, - ABA)y, (20)
for arbitrary yeC™.

Proor. Suppose that x has the form (20). Applying A®~ = A¥(AF2)tA24* we have
(Ak+2)*A2A@,* — (Ak+2)*A2Ak(Ak+2)+A2A*
(Ak+2)»Ak+2(Ak+2)1'A2A*
(AF2y A2A",
Therefore (Ak+2)"A2A@'*b = (A¥*2)*A2A*b, which implies that (19) holds for x.
For a solution x to (19), we obtain
A@,*b — Ak(Ak+2)+A2A>fb
— Ak(Ak+2)+((Ak+2)+)*(Ak+2)*A2A*b
— Ak(Ak+2)+((Ak+2)+)*(Ak+2)*A2x
= A4y
Now, we get
x= A 4 x - AB Ay = 4D 4 (1, - A A,
i.e., x possesses the form (20). O
Since ABAX = A®AA®~p = A@’*b, we have AWAX = A®AA® ) — A®+p Then we can obtain
Theorem 6.2.

Theorem 6.2. [11] Let AcC™" with Ind(A) = k, then the equation

A®AX = A®~p 1)
is consistent and its general solution is

x=A® b 4 (1- ABA)y, (22)
for arbitrary yeC™".

Similarly, the following theorem can be proved.
Theorem 6.3. Let AcC™" with Ind(A) = k. Then the equation
(Atyx = AA®p

is consistent and its general solution is
x=A"Ob 1 (1- AtA)y,

for arbitrary yeC™".

Now, we can get the following consequence by the result of Theorem 6.3 in the case that b € R(A¥).
Corollary 6.4. Let AcC™" with Ind(A) = k. Then the equation
(AYx = b,b e R(A")

is consistent and its general solution is
x=Ab+(I-A"A)y,

for arbitrary yeC™".
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7. Conclusion

In this paper, the definition and characterizations of the weak group-star matrix are given. The equiv-
alence between various matrices and the weak group-star matrix are established. For Cramer’s rule and
the perturbation, we also give relevant theorems. Moreover, the weak group-star matrix can be applied to
solving equations.

Moreover, dual weak group-star matrix can be called star-weak group matrix. Let AeC"™" and Ind(A) =
k, C is the weak core part of A. Then

XA X = X, (AT)'X = CAP, XA = A'C,

is consistent and its unique solution is X = A*CAP. The matrix satisfying the above equations is defined as
A8 = A AA® and named the star-weak group matrix.
The star-weak group matrix also possesses similar properties of the weak group-star matrix.
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