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A new approach for Hardy spaces with variable exponents on spaces of
homogeneous type

Jian Tan?

?School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, People’s Republic of China

Abstract. In the paper, we establish and study Hardy spaces with variable exponents on spaces of
homogeneous type (X, d, 1) in the sense of Coifman and Weiss, where d may have no any regularity property
and y fulfills the doubling property only. First we introduce the Hardy spaces with variable exponents
HPO(X) by using the wavelet Littlewood-Paley square functions and give their equivalent characterizations.
Then we establish the atomic characterization theory for H”(X) via the new Calder6n-type reproducing
identity and the Littlewood-Paley-Stein theory. Finally, we give a unified method for defining these variable
Hardy spaces H?"(X) in terms of the same spaces of test functions and distributions. More precisely, we
introduce the variable Carleson measure spaces CMO’ZE)(X) and characterize the variable Hardy spaces via
the distributions of CMOig) (X).

1. Introduction

The pioneer work on the real-variable theory of Hardy space H”(IR") was initiated by Stein and Weiss
[33] and systematically developed by Fefferman and Stein [13]. Especially when p < 1, the spaces H7(IR")
are better suited to a host of questions in various fields of analysis than the Lebesgue spaces LF(IR").
The real-variable characterizations for Hardy space, such as the maximal, wavelet and Littlewood-Paley
characterization, play an important role in Harmonic analysis. The Littlewood-Paley characterization of
HP(IR") was due to Uchiyama [41]. For more details on H’(IR"), see, for example, [19, 23, 27, 32, 38].

On the other hand, due to the fact that the variable exponent space was stimulated by the study of fluid
dynamics, image processing and variational calculus, variable Lebesgue space, which is a generalization
of the classical Lebesgue space, has been studied extensively since the early 1990s. See, for instance,
[6, 8, 11, 12, 25]. The theory of the variable Hardy space was established independently by Nakai and
Sawano [30], Cruz-Uribe and Wang [9]. Since then, the theory of real Hardy-type spaces with variable
exponents has been attracting a lot of attention from many researchers (for instance, see [22, 31, 44, 45]).

More recently, we further studied the variable Hardy and local Hardy spaces and gave some applications
of these spaces in [34, 36, 40].
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To obtain the H?(R")—boundedness of the classical operators in harmonic analysis, one can appeal
to the atomic decomposition theory of HP(IR"), which is very useful in the study of harmonic analysis
and related topics. The atomic characterization of H”(IR") was established by Coifman [3] for n = 1 and
Latter [26] for n > 2. The atomic characterization provides more flexible approach to the study of general
Hardy spaces on spaces of homogeneous type in the sense of Coifman and Weiss [4, 5]. Recently, the
orthonormal wavelet basis with Holder regularity and exponential decay for spaces of homogeneous type
was constructed by Auscher and Hytonen [2]. The orthonormal wavelet basis play an important part in
developing wavelet analysis on spaces of homogeneous type. Later, Han et al. [18] introduced and studied
the theory of Hardy space on spaces of homogeneous type. Meanwhile, in [15] by establishing a new
Calderén identity, the atomic decomposition result of the Hardy spaces on spaces of homogeneous type
was obtained. Furthermore, they established the mapping properties of Calderén—-Zygmund operators on
Carleson measure spaces on spaces of homogeneous type. Also, the complete theories of real Hardy and
local Hardy spaces on spaces of homogeneous type were obtained in [23, 24].

In the present paper, motivated by these studies, we will establish the theory of Hardy space with variable
exponents on (X, d, i), where d may have no any regularity property and u fulfills the doubling property
only. The first goal is to introduce the Hardy spaces with variable exponents H?")(X) via the Littlewood—
Paley square functions. Secondly, we aim to obtaining a new proof of the atomic characterization for
HPO(X). Very recently, as we were completing this paper we learned that the Hardy spaces associated
with ball quasi-Banach function spaces on spaces of homogeneous type had been systematically developed
by Yan et al. [42, 43]. When they are applied to variable Hardy spaces, they also define an atomic
characterization. However, the approaches and results are slightly different from ours. Moreover, the
convergence of the atomic decomposition in our article takes sense in both L7(X) and HP"(X) norms
whenver f € HO(X) N L1(X). Hence, the new atomic decomposition in our paper has many applications.
Finally, we give a unified method for defining these variable Hardy spaces H?")(X) by using the same test
function spaces and the same distribution spaces. The new discrete Calderén-type reproducing formula is
also a key tool through the paper.

The remainder of this paper is organized as follows. In Section 2, we first recall some basic definitions
and necessary results about the wavelet analysis on spaces of homogeneous type and the test functions as
well as the spaces of distributions. Some necessary results on variable Lebesgue spaces were also restated
in this section. Section 3 concerns Hardy spaces defined by the wavelet and continuous Littlewood—Paley
functions. Moreover, we obtain the equivalent Littlewood-Paley characterizations and the Plancherel-Pélya
type inequalities. In Section 4, the main aim is to establish the atomic decomposition theory of HP")(X) via
the discrete Littlewood-Paley theory. Since the wavelets X have no compact supports, we can not obtain
the atomic characterization theory for H?")(X) by using the wavelet reproducing formula. To achieve it, a
new discrete Calderén-type reproducing formula is needed. Meanwhile, the reconstruction theorem for the
atomic decompositions of HPO(X) is also established. To do so, we need the generalized Grafakos—Kalton
lemma, which is very useful in our proofs. Finally, we give a unified method for defining these variable
Hardy spaces HP")(X) in terms of the same test function spaces and the distribution spaces in Section 5.

Throughout the paper, we need the following notations: The symbol A < B denotes that there exists an
absolute constant C such that A < CB and the symbol A ~ B means A < B < A for some absolute constant
which is independent of the main parameters, but may vary from line to line. For any 4, tb € R, denote
a A b := min{a, b} and a A b := max{a, b}. For any set E of X, we use g to denote its characteristic function
and E° the set X \ E.

2. Preliminaries

In this section, we will recall the necessary definitions and results about spaces of homogeneous type
and the variable Lebesgue spaces.

2.1. The space of homogeneous type

In this subsection, we give some definitions and known results on spaces of homogeneous type in
[2,4,18]. A quasi-metric d on a non-empty set X is a non-negative function defined on X x X, fulfilling that,
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(i) d(x,y) =0ifand only if x = y;
(ii) d(x,y) =d(y,x) forallx, y € X;
(iii) there exists a constant Ay € [1, o) such that for all x, vy, z € X, d(x, z) < Aold(x, y) + d(y, z)].
A quasi-metric space (X, d) is a non-empty set X together with a quasi-metric d. We say B is a quasi-metric
ball B on a non-empty set X, where xq € X is the center and r > 0 is its radius, if

B :=B(xp, 1) :={x € X: d(x,x) <r}.

For any ball B and some positive constant ¢, we write c¢B := B(xo, cr), where xq is the center of B and r is
its radius. A space of homogeneous type (X, d, 1) is a non-empty set X equipped with a quasi-metric d
and a nonnegative measure yu fulfilling the following doubling condition: there exists a positive constant
C) € [1, o) such that, for any ball B C X,

u(2B) < C(H)y(B).
It is equivalent to that, for any ball B and A € [1, o),

#(AB) < CuA“u(B), 1)

where w := log, C(,) is called the upper dimension of X. If Ag = 1, we call (X, d, ) a doubling metric measure
space. Throughout the paper, we always let (X, d, u) be a space of homogeneous type with pi(X) = co.

Next, we recall the definitions of the space of test functions spaces and the distribution spaces in [18].
We also remark that the spaces of test function and the spaces of distribution were originally introduced by
Han et al. [19, 20].

Definition 2.1. Let x; € X, v € (0,00), f € (0,1] and y € (0,00). A function f defined on X is said to be a test
function of type (x1,7,B,V), denoted by f € G(x1,7,B,y), if f fulfills the following conditions:
(i) foranyx e X,

1 r v
Ol < o ey v [r n d(xl,x)] /
(ii) for any x, y € X such that d(x, y) < 2Ao)~![r + d(x1, x)],

B
wm—ﬂWSC[d“” ]V( - [ ’ ]{

r+d(x1,x) x1) + V(xy,x) | 7+ d(x1, x)

Forall f € G(x1,1,B,y), we define the norm

I fllgeen,rp,y) := inf{C € (0, 00) : C satisfies (i) and (ii)}.
Define

émm&w:{mgmmﬁwzﬁﬂwww=@

equipped with the norm || - ”é(xl,r,ﬁ,y) =11 Nl )

Fix xp € X. For any x € X and r € (0, o), we know that G(x, 1, 8,7) = G(xo, 1, B, ) with equivalent norms,
but the equivalent positive constants depend on x and r. Obviously, G(xo, 1, 3, ¥) is a Banach space. In what

follows, we simply write G(B, y) := G(xo,1,,7) and Q(ﬁ,)/) = Q(xo, 1,B,7). Fixe € (0,1]and 8, y € (0, €). Let
Gg (B, 7) be the completion of the set G(e €)in G(B,y), thatis, if f € gg (B,7), then there exists {¢ ]-}]f"’:1 c Gle,e)
5101ch that [|¢; — fllgp)) — 0asj — oo. If f € G5(B,y), we then let ||f||§8(m) : Ifllg,)- The dual space
(G;(B, 7)) is defined to be the collection of all continuous linear functionals on G (g, y) and equipped with

the weak-+ topology. Then we call (G;(8,7))" and (Qg(ﬁ, 7))’ the distributions spaces.
We also need the following orthonormal wavelet basis on spaces of homogeneous type in [2, Theorem
7.1].
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Theorem 2.2. Suppose that (X, d, 1) is a space of homogeneous type in the sense of Coifman and Weiss with quasi-
triangle constant Ao, and

a:=(1+2log, Ao)7L. (2)

There exists an orthonormal wavelet basis {YX}, k € Z, y* € ¥, of L*(X), having exponential decay

C A(Ya, X) o
9h 00l < —— S exp (- o A2, ©)
k sk o
H#(B(Ya, 6))
Holder reqularity
C d 7 d ﬁl a
) - vhw)l < ( ";kW)" exp(—v(%) ) (4)
H(B(ys, 0))
for d(x, y) < 6%, and the cancellation property
f Y du(x) =0,  for kez. (5)
X
Moreover, the wavelet expansion is given by
JOED I IRTATATC) (6)

keZ ack
in the sense of L*(X).
Notice that 6 is a fixed small parameter, say 0 < 10‘3A510, and C < oo, v > 0 and 7 € (0, 1] are constants

which is independent of k, @, x and yX. Motivated by these, the wavelet representation for the test and
distribution was obtained in [18].

Theorem 2.3. Suppose that B, v € (0,7n). If f € (Qg(ﬁ, ¥)), then we have the following wavelet reproducing identity
f@ =Y Y vk,
keZ acw’k
which holds in ég(ﬁ',y') and in the distributions space (Qg(ﬁ’,y’))’for each B’ € (0,6), y' € (0,7).
2.2. Hardy-Littlewood maximal operator on variable Lebesgue spaces

Let L; (X) be the space of all locally integrable functions on X. Denote by M the Hardy-Littlewood

maximal function, thatis, forall f € Llloc(X),

M(f)(x) := supﬁ fB Wl duy),

Bax

where the supremum is taken over all balls B of X that contain x. For any p € (0, 0], the Lebesgue space
LP(X) is defined to be the set of all u-measurable functions f such that

Al = [L If (x)IP dy(x)]p < 0.

From [5], we learn that M is of strong (L*(X) — L¥(X))—type whenever p € (1,00]. In what follows, let
p(-) : X = (0, c0) be a y—measurable function fulfilling

0 <p~ := essinfrexp(x) < p~ = esssup, p(x) = p* < co.
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Moreover, write p_ := min(1,p~). Denote by ° the set of all variable exponents on X with 0 < p~ < p* <
and denote by % the set of all variable exponents on X with 1 < p~ < p* < co. The variable Lebesgue space
[PV(X) is defined to be the set of all y—measurable functions f on X such that fx [f(x)PPdu(x) < oo and
equipped with the quasi-norm

p(x)
du(x) < 1}.

|Wmm:mMG@@lf%?
X

Then LPO(X) is a quasi-Banach function spaces. Moreover, if p~ > 1, it is a Banach space. In the study of
variable exponent function spaces it is common to assume that the exponent function p(-) satisfies the LH
conditions. In what follows, we always fix the base point xp, which plays the same role as the origin of R".
We say that p(-) € LH, if p(-) satisfies
C
— < - - @
P =P < {1 e, )

for all x, y € X and if there exist p € R satisfying that, for all x € X,

P = Peol < ot ate xo))

Next we recall the following lemma in [1, Corollary 1.8].

Lemma 2.4. Suppose that p(-) € P N LH and B be a ball of X. Then there exists a positive constant C such that, for
all measurable functions f € LF9(X),

“M(f)”Ln(-)(X) < C“f”LP(')(X)-

Moreover, for all A € (1, 00),
“XAB”U(-)(X) < C/\n//\”XB”Lp(-)(X).

The known Fefferman-Stein vector-valued inequality on L’ (X) in [46, Theorem 2.7] is also needed in
our proofs.

Lemma 2.5. Let p(-) € P N LH and u € (1, o). Then for any measurable functions sequence {f;}3>, ¢ LFY(X),
. 1 - 1
HZWMW} [Zmﬂ
i=1

i=1
3. Littlewood-Paley characterizations of H?"(X)

<C

LPO(X) LrO(X)

We first define the wavelet and continuous Littlewood-Paley functions in this section. Then the proof of
the Littlewood—-Paley square functions characterization is established by the help with the Plancherel-Pélya
type inequalities. Finally, we introduce the Hardy spaces with variable exponents H?")(X) and obtain some
equivalent Littlewood-Paley characterizations.

Definition 3.1. Suppose that B, y € (0,1). Let {Ex}xez be the operators on L*(X) associated with integral kernels

Ery) = ) vhauky),  Vx yeX

ac
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Let f € (GU(B, 7)), the continuous Littlewood—Paley square function is defined by

SN = [Z |Ekf<x>|2} .

k=—c0

Also, for any f € (Q (B,7)), the wavelet Littlewood—Paley function S(f) is defined by

1/2
s ={ ¥, ¥ b el ]

keZ aev'k

where X i () := x o (X)(ui(Q4))™V/* and x o (x) is the characteristic function of the dyadic cube Qf.

Theorem 3.2. Suppose that 0 < B,y < nand p(-) € P° N LH with o <P < p* < oo. Then for any f € L*(X),

ISc(ANlrocxy ~ NSCONrox)-

To achieve our goal, we next need to obtain the Plancherel-Pdlya type inequalities in the variable
exponent setting as follows. The proof of the following Plancherel-P6lya type inequalities is nearly identical
to that in [18, Theorem 4.4] (e.g., also see [10, 17]). For convenience, we will give the outline of the proof
and show the differences.

Proposition 3.3. Let 0 < §,y < nand p() € P° N LH with ;& <p~ < p* < co. Then for all f € L*(X),

1

{ZZ (v}, ) }
aek

1
2

XQk +N

z€ Qk +N

{Z Y {sup Dk (F)(@)P
! o E%k +N

LrO(X) LrO(X)

Furthermore, for all f € L*(X) with a sufficiently large N € N. , we have

1

RIS B>

" e KN

sup |Dp(f)(@)P

ZEQk +N

{z 3 (vt )

aewk

2
X Qk’/ +N } .
LPO(X)

Proof. We begin with the following wavelet identity in (6):

OED M IRIATATAC)

keZ aewk

in L*(X). Then for each z € Q"*N we deduce that

De()E) = ZZu(Qk< Ve >< Ve ,Dkr(-,z)>.
\/#(Qﬁ)

keZ aewk \/y(Qk
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Furthermore, applying the standard technique in [18, pp.149-150] and the Holder inequality yield that

Z Z sup |Dk’ (f)(Z)| XQk’+N (X)

kK weqWN zEQk +N

5|k K glk=(kAk ) (1- 1/r){ Z| 'XQQ(') (x)}
W \ [‘u(Qk
< CZ {Z Sk 6[k—(k/\k’)]m(1—1/r)J
K’ k

| L orrmicvonenfu) ¥ (L) g0 @)
k ac

V(D)

¢ :
sczk"{M ;’/‘(f J%)| Xt () (x)} ,

where 25 <7 <p-. Therefore, by Lemma 2.5, we conclude that

2.

kK aeXK+N

1
12

1
3 1

sup Dy (f)@)P

zE Qk +N

XQA’+N

<cl{L X el

To end it, by repeating the similar argument in [18, Theorem 4.4], there exits an operator Ty such that
T is bounded on L*(X). Hence, we have that the L’)(X) norm of S(Ty!(f)) is controlled by that of S(f)
with the help of Lemma 2.5. The rest of the proof is identical. [

LPO(X) LPO(X)

Now we are ready to prove Theorem 3.2.
Proof of Theorem 3.2.  Note that

2 L

"
k' alet%kl-FNZ Qa’

(A K < Y Nl
Z Z sup IDk' f) Z)| XQk'+N(x

kK ey K+N ZEQk +N

From the estimate with Proposition 3.3, then we obtain the equivalence of the LF)(X)-norm of two
Littlewood-Paley functions. This ends the proof of this theorem. m|

Below we give the definition of Hardy space with variable exponents H?)(X) on space of homogeneous
type in the sense of Coifman and Weiss in terms of the wavelet Littlewood-Paley function.

Deﬁnition 34. Let0 < B,y < nand p(-) € P°. The wavelet Hardy space with variable exponents H?")(X),
oa <P SpT < oo, is defined as the completion of the collection of all f € L*(X) for which the quantity

Ao == IS(HIyo < eo.
Combining Propositions 3.3 with Theorem 3.2, we immediately obtain the corollary as follows.

Corollary 3.5. Fix a sufficiently large integer N. Let 0 < B,y < nand p(-) € P° N LH with o <P S pt < oo,
Then for any f € L*(X), then

IfllEro ) ~ ISe(Hllpocy ~ ISa(llo ).



J. Tan / Filomat 37:23 (2023), 7719-7739 7726

where
1/2

SaHE =Y. Y IDOEENPrgen(x)

k aeyk+N

4. The atomic decomposition of H”"(X)

In this section, we will establish the atomic decomposition of H’)(X) by the use of the discrete
Littlewood-Paley-Stein theory. Atomic characterization for Hardy spaces with variable exponents on
R" was established in [9, 30]. Atomic decomposition characterization plays an very important part in the
real-variable theory of function spaces and the boundedness of operators (e.g., also see [35, 37, 39]). We
first introduce the atom a for H?O(X).

Definition 4.1. Suppose that p(-) € LH,0 < p~ < p* <qg < coand q > 1. We say a function a is a (p(-), g)—atom of
HPO(X), if a is supported in a cube Q C R",

1 _
lallzacx) < |Q|"||XQ||U,1(.>,

fa(x)dy(x) =0.
Q

The set of all such pairs (g, Q) will be denoted by A(p(), q). To obtain the atomic decomposition, we need
to establish a new discrete Calderén-type reproducing formula. We apply a fundamental result in [29,
Theorem 2], and recall the space of homogeneous type (X,d’, 1), where the quasi-metric 4" fulfills the
following condition:

ld’ (x, y) — d'(x, y)| < Cod’(x,x')° [d'(x, y) + d'(x, y)]*°

— n2 ’ : . ’ :
for some Cp > 0,0 < 0 = 7757 < 1, and any x, 'y € X. By using Coifman’s construction for an

approximation to the identity, there exists a family of operators Sy fulfilling that:
1
V() + Ver(y)”

and

(i)  Sk(x,y) =0 ford (x,y) = C5", and [|Sylle < C

d/ : / 1

(i) 1S(x, ) - Sk, )l < C( (iék"’f V() + V()
&y, 1

(i) ISk(x, y) = Silx, vl < C( (‘Zky ))6 Vee(x) + Vae(y)

(iv) 1[Sk(x, y) = Sk(x, ¥ = [Sk(x, y) = S, )]
&%, x)\0,d' (y, ')\ 1
<¢( 5 ) ( ok ) V() + Ve (y)’

) fx Sex, du(y) = fx Se(x, y)du(x) = 1.

Here and below, we denote fj = A 6.

Proposition 4.2. Let p(-) € P° N LH with -2~ < p~ < pt <ocoand1 < q < oo. Set Dy = Sgs1 — Sk. Then there is a

w+1]

unique function g € L1(X) N HPO(X) satisfying A llscey ~ gl 1 oy ~ 1gllo ) with

f@ =Y Y wQMDix, EN)Dig) ™),

k aeK+N

where the series holds in the space HPO(X) and the space L1(X) and where N is a large fixed integer and Dy =
Lji<N Dieje
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Proof. For a fixed integer N and f € L%(X), by applying Coifman’s decomposition

f@ =Y DiHw =Y Y DD(HE)
1 1 k
=Y ) QMDA D(g) (N

k  ae KN
DDA =Y, Y, p@EMNDi N De(g) (™)
k k ac KN
£ ) DiD(HE)
k |k-I>N

=Txn(f)(x) + RV()(x) + RO (f)(x),

where the series converges in L%(X) norm. From [15, pp.19], we know that for f € [*(X), € (ﬁ,
i=1,2,

IS(R f))||L'1(X) < COM| fllaeo-

Particularly, for 1 < g < co we have

o0) and

IR (F)llscy < COIIflluag

On the other hand, from [15, pp. 22] we also have the key inequality as follows:

1/2
{Z Yk, N(f)»cgk(x))}

aek
L g 1
<C69N{ L(QF )5 K ,
Z aezg;k ; a’eZ@/k' : Vistnr ) + Ve hy + V(xk,, )
SkAk Y 1/}’;/, 2 1/2
% (6(k/\k’)+d(x ) < " ’f> Xk (x)}
H( a’)

where Xy (x) := X (0)u(Q5)™"/%. Then by repeating the same argument as in [14, pp. 147-148] and Lemma
2.5, we conclude that

“S f))”LP()(X) < C(S “f“Ln(-)(X)'

Thus, we can choose N enough large such that 2C6°N < 1 and then Ty is bounded on L3(X) N HPY(X). Let
9 =T (f). Then
1fllLacxy ~ NgllLacx), I oy ~ Ngllpo )

Moreover,

f@O =) Y w@QM)Dix N D(g) (),

k aeK+N

where the series converges in both norms of L*(X).
Next, we shall prove that the series converges in H?)(X) norm, we only need to check that [|S(f.)l|;,0 x) —
0 as L — oo, where

@ =YY @)Dy, EN)De(g) ().

|k|>L ac 2y K+N
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In fact, following the similar argument as above we obtain that

Y Y Diolra)

[k|>L ae K+N

ISl < c‘ {
Lre)

and then [|S(fz)ll»» tends to zero as L — oo. Finally, we show that the series also converges in L7(X),
1 < g < oo, we assume that f € L%(X) N L9(X). To end it, we only need to show that for each function
f € LX) N LI(X),

Z Z H(Qk+N)Dk(x,x§+N)Dk(g)(x§+N)HLﬂ<X>

[k[>M ae @y K+N

tends to zero as L — co. Applying duality and Holder’s inequality yield that

(Y. Y Dol

|k|>M ae K+N

1/2

Y, Y QMDD

-
[k|>M ae Y K+N

LI(X) L

which tends to zero as L — oo. Since L?(X) N L(X) is dense in L1(X). Therefore, by a standard density
argument, we conclude that the convergence of the series in L7(X). This proves the proposition. [

Now we state the atomic decompositions for H*)(X).

Theorem 4.3.  Suppose that p(-) € LH, w+~ <p <p*<ocoand (1Vp*)<gq<oo If feLi(X)NHY(X), there
is a sequence of (p(-), q)—atoms {a;} and a sequence of non-negative scalars {A;} with

AU AQE)) < Cllfllzo,

such that f = Y ; Aja;, where the series converges to f in both H""(X) and L1(X) norms, and

AN A Q,]1>—H2 o

llxglio

LPO(X)

Proof. Suppose that f € HP")(X) N L1(X). Then by Proposition 4.2,

FO =YY @D, X N)DKg) ™),

k ae@y KN
where g = T/ (f) and |fllzsex) ~ 191l 11 lmoco ~ 1191l x)- Denote

1/2
Sa(g)(x) = [Z Y |Dk<g><x§*N>|2xQ§w<x>] .

k  aqedk+N

By the variable Plancherel-Pélya type inequalities we have that
o) ~ NSa(@llrox)-
Next, we set
1 1
Qr = fr € X: Su(g)w) > 2°), B = {Qh s (@ 1 Qo) > 5u(@), w(Qh N Q) < Zu(Q),
and

1
Qg = {x eX: M)(Q[(x) > 100}
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where M is the Hardy-Littlewood maximal operator on X. Then it is easy to see that y(@) <

Denoting Q!f € B, are maximal dyadic cubes, By the discrete Calderén identity we can rewrite

fo=3 Y, X, w@EMDCo Do) = ) Y AL ),

¢ j:QlfeB, QN Q) ¢ j:QlfeBe
where
1 _
ay = o Y, HQMID Do) ™)
t ol gl
and
1/2
14 ~jl\— ~
Mg = gl QY X 1K P
QcQyf LI(X)

7729

Cu(€2e).

By Proposition 4.2, we know that the series converges in H?")(X) N L7(X). Observe that d and d’ are
geometrically equivalent. From the definition of ag and the fact that Dy(x, xk*N) have compact supports,

we conclude that aQ . is supported in Q. The cancellation conditions of ag . follows from the vanishing

moment of Di(x,xk). For 1 < q,4' < oo, by the duality argument together with Cauchy-Schwarz’s and

Holder’s inequalities, we have

Y, QMDD
Qk+N Q{‘// .
o K D “(QTN)Dk(»xﬁ*N)Dk(g>(xﬁ+N>,h>‘

Hh“Lq’ <1 QﬁJ'NCQJ'[

[ X Dl it g o
QNeQlf

sup
Il <1

1/2

IA

C{ Y D@ g Prgen
QCQ{{[ L1(X)

Then it implies that

w(QlHVa

4 _MA\=a/
Ny~ ||XCQQf||LV(-)(X)

a.
Qh

Thus, each a’. o is a (p(-), 9)—atom of HP")(X). Finally, we need to show that

AN s QI ) < Cllfllroy

If x € QXN € By, then

Xgen(¥) < CMP(Xgevnanar., )(W)-
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By the Fefferman-Stein vector valued maximal inequality in [13], for all 1 < g < co we conclude that

1729
Z IDx(9) (e )P X g
QCQ{vf L1(X)
q/2
2
Z |De(@) (e )Mxgivnana,. )W | dy
*\ocar
q/2
. 2
< Cf Z |Dk(g)(xQ§+N)XQ1;+N dx
ONQA\Qei1 it L
Qs
~il
< C29u(QL).
As a consequence, we conclude
1/2
~ ~ /[
Y., IDof)xa)lxo < C2"u(Q1),
QCQ{J 14
which implies that
X
Ql[| CQ(Y ¢
<C 2 X Ait
Z Z Tacgelluocy Z;‘ Z Q%
LrO(X) Qu €Be LrO(X)

Since Q; C Q) for each ¢ € Z and pu(Q) < Cu(QY), for all x € X. From the definition of Dy, we get that

(@) < Cu(@e N QlF), and that
Xgir(x) < CMhXQngl(X),

where /1 is a fixed constant such thatand /2 > 1 and hp_ > 1.
Combining this with Lemma 2.5, we deduce that

- 700
AWz < €| N 2nge

t jQlfeB, DO(X)
10
7
Caqh _ Cafh )
<c|y, 2 M X qyngit =Cli), Z ZM Xyt
¢ j:Q{y,l)EBK PO(X) ¢ ]'5Q4];(€B[ Lv-(X)
1
h
<c {Z zfm}
t - (X) LPO(X)

Note that Qg1 € Qp and u(;2; Q¢) = 0, then for a.e x € X we conclude that

i 2%k, (x) = Z me\omﬂ (x) =2 Z 2" X0\ (%),
f=—c0

{=—0c0 m=—oo
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and it implies that

Z 2'xaq,
7

<C
LPO(X)

Z ZWXQm\QmH

m

S Sd(g) Z XQm\Qnt+1

LPO(X)
< ||Sd(g)||m(->(x) < C”f”[—]p(-)(x)-

This finishes the proof of Theorem 4.3. ]

Next, we obtain the reconstruction theorem for the atomic decompositions of H”")(X). The following
generalized Grafakos—Kalton lemma is needed for our proofs. Applying nearly identical argument to [7,
Section 4], we could establish this lemma. For brevity, we omit the details.

Lp0) (X)

Lemma 4.4. Given p(-) € Py N LH. Fix g > 1. Suppose that 0 < p* < g, then for given countable collections of
cubes {Qj};?":l and of nonnegative measurable functions {gj}}?":l such that supp(g;) C Qj,

Z!Ji <C Z(@f !77] X,
j=1 LrO(X) j=1 770 O(X)

Theorem 4.5.  Let p(-) € P° N LH with w(in <p  <p*<ooand (1Vp*)<q<oco. Forany{a;,Qj} C A(p(),9)

satisfying
AT Q)N < oo,

then the series f = }.; Aja; converges in HPO(X) and satisfies
I lloc0 < CAUAANZAQ -
Proof. For and fixed non-negative integer N and Qj = 2A0Qj(xj, 1)),

N
Se(NH@) < Y 1A/15:(a)(x)

j=1

N
2 IA/1S<(@)(x)xg,(x) + 2 IA/1Sc(@) ()¢ g ()

j=1

\.

=L +1.

For any (p(), g)—atoms {11]-}]?‘11 with supp 4; € Q; and x € (Q))‘, following the same argument in [15, pp.
3436-3437], we conclude that
#Q)) ( 7 )'7 1
(

Sc(a)x) <C .
@)@ lIxgillox) \d@x, xp)l) V(x,x;)

It implies

N
(o))
I S C A clX).
2 JZ_;' M2 Tl <)

Denote y = m. Then we further conclude that

u(Q) )V ~
) < CZ M |||XQ,||LP(> © (y(x,d(x, xj) X(@Gy (x)

<Ci M g hwp
B ”XQ]”LP()(X) Qi .
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From Lemma 2.5 and p~ € (=%, o), we deduce that

w+1)’
il Al ,
2llpox) < C ol Xq;)
j=1 QIO LrO(X)
N |A| /7Y /v
=C Mxo.)
[Z ol Ve Z ||XQ]||LP
LYPO(X) Lyrt)
Z Ll = AN, Q).
lxollerox) Ao it Q11
LPO(X)

For the term I, applying the L7(X) boundedness of S, gives that

#(Q])

ISc(@pliacxy < Cliajllacx
A jliaco = ”XQ]”LP( (X)

Combining the fact supp(a;) C Q; with Lemma 4.4,

1
(o] p-\P-
o) < ( j )
]Z“ ”XQ]“LP()

i & = CAUA 2, Q)1 2)-
- ”XQ/”LP )(X Q Hi=1rt=)tj=1
=1 LrO(X)

0

IA

From the above estimates, then we have

N
H Z Aja
=1

Then, for any 1 < N; < N, < oo,

< CARANZAQNEY-

()
H,

N,
H Z Z Al
O
P HY ”XQ,”U( (X) -
Note that

AL 1Q)12,) < oo.
It implies that

. =0.
NHO" Z‘ ”XQ]”LP() XQ;
Lﬂ(~)(x)

Therefore, {le\il )\jaj}j: is a Cauchy in HP")(X) and converges to an element f € H’)(X) and

< CAUANR, Q).

HPO(X)

N
“f“Hn(-)(X) < CI\III—I};: H le Ajaj
]:

The proof of Theorem 4.5 is now complete. O
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5. A unified approach for variable Hardy and Carleson measure spaces

In this section, we will give a unified method for defining these Hardy spaces with variable exponents
HPO(X) in terms of the same test function spaces and the distribution spaces. First, let us define the variable
Carleson measure spaces on L*(X).

Definition 5.1. For p(-) € P° we define the quasi norm for f € L*(X) by

‘1( ) . ) 1/2
Il () = sup Y, Wk

ey ycpiczinear,
where P runs over all dyadic cubes in X. Furthermore, we denote
CMOP(X) = {g € LX) : llgllc,,(X) < oo).

The fundamental duality argument on L? is given as follows, which is a generalization of [16, Theorem
2.17].

Proposition 5.2. Let p()) € ° N LH with & <p~ <p* <1and f, g € L*(X). Then

(£.9)] = CISPlwoco gl
where S(f)(x) is the wavelet Littlewood—Paley function of f in Section 2.
Proof. Let f, g € L*(X). By using the wavelet reproducing identity, we conclude that

(Fo)=(X Y uhwheo.g) =Y Y ¢ ukxa, b

keZ ae Wk keZ acyk

Now we set
ng{xeX:Sf)x)>2€}

Be={Qh: p(Qhn Q) > #(Qk) and (Qf N Q1) < u(Qk)}
and ,
Qr =[x € X : M(xa)(x) > 5)-

Then we rewrite

(F)=Y. Y Fukxa =Y Y Y (fukxa v,

k . AGl £S48
keZ acw C j:QlfeB, 5Ol

where O is the maximal dyadic cubes in B,. By applying the Cauchy-Schwartz inequality, we deduce that

(ra) < XX (X wevbr) ( X wavior)
¢ j:QleB, " QscQlf QkeQlf
< Cligle,, Y, Y, w(QX) ||XQ55||LP<.>(X)( Y |<f,¢§>|2)
4 ]QI[GB{ j‘QkCQ//
< C||_l]||cﬂ<.)2( Y u(~£’;‘)_1||XQ£[||§V(.)(X))( Z Y K ¢a>|2)
¢ " Qlfen, Qi eBe j:QkcQl
<

< C||!7||cp(.)Z( Y u(7’;")_%||XQ{-5||M.>(X))( Y, ) I<f,¢’;>|2)2.

E ol e, Ok eB, QLY
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When /,t(fo) <landxe€ Q{;K, by [28, Lemma 3.3] and the fact that all Qtjf are disjoint we have

o ~ip 1 1 ~ 1 _1 ~ o 1
Y WO gl ~ Y, QOB < w(@Q)FE ~ Qo) g, o -
Qi eBe jQl eBe
Similarly, when ‘u(Qf;;[) > 1 we also have
il _1 ~ _1
Y @ gl < Cu@0 lixg logo-
j-Qk eBe
Applying [28, Lemma 3.3] again yields that
Z H(Q{;{)_%”XQQf”Lp(-)(X) < C[J(Qf)_%”XQ[”LP(')(X)-
j-Qk'eBe

On the other hand,

Yo KEUhR= Y KA VDR

-0k B, QkcQlf QkeB,

and

Y KfUhPR < C2¥ ().

Q{;EB[

Indeed, note that for Q € By, y(ﬁg /Qr1 N Qf) > %y(Qf). It follows that

1
[ @y ot > 5.
Qe/Qpia
Then

[ Y K ehPa@) e
Qr/Qp41 QeB,

< [ iR < (@) < culca).

Combining with these above estimates, we conclude that

(£.9) < cngucp(.)Zy(Qer%||m,||Lp<4>(x)(zzfu(gg))2
4

A

< Cligle,, Y, 2 o log
14
1
1
< Cligle,, (Z(zf’mo”)
¢ LO(X)
1
X
< Cligllc,, (Z(ZKXQAQ{H)F ')
t LPO(X)
< Cglley, 225)(9[\9{41
0 LPO(X)
< Cliglle,o SO Y xonaen|| < Cliglle, ISAllo-
¢ LO(X)

Therefore, we have completed the proof of Proposition 5.2. [
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Remark 5.3. By Proposition 5.2, each f € HPY)(X) N L%(X) can be considered as a linear functional on CMO’L’(Z')(X)
and conversely, each g € CMOig)(X) can be considered as a linear functional on HP(X) N L*(X). This naturally
leads to study the closure of H?)(X) N L*(X) and the closure of CMOZ(Z')(X).

Next we will consider CMO’;S)(X) as a space of test function for establishing H”(X) by the set of some

linear functionals on CMOzg)(X). So we need the following discrete Calderén reproducing formula in the
distribution sense.

Proposition 5.4. Suppose that p(-) € P° N LH with -2~ < p~ < p* < 1. Let {f,} be a Cauchy sequence in L*(X)

w+1

with respect to the norm of HP")(X). Then for each g € CMO’zg')(X),

lim (f.,9) = {£.9)

n—oo

and f has a representation of wavelet

ORI IAATACH

keZ acw’*

where the series converges in (CMO’L’g)(X))’. Moreover, ||S(f — fu)llpox) tends to zero as n — oo.

Proof. Let f, be a Cauchy sequence in L?>(X) with respect to the norm of H’")(X). By applying Proposition
5.2, we deduce that for each g € CMOzg)(X),

(= four )| < CUSCE = fanlloclglicy o
which implies that for each g € CMO’;E')(X),
lim (f.,9) = (f. ).

By Fatou’s lemma we obtain that

,}1_{{)10 IS(fu — f)”m(»(x) = ,}1_{{)10 ”S(nl}_r)r.}o(fn - fm))”U’(')(X)
lim lim [IS(fu ~ fulllog = 0,

IN

and hence
SO0 = 1o 11 fallgro -

Therefore, for each for each g € CMO;ZE‘)(X), we get that

(£.9) = 1im (£ g)] < Clim Ifillmocoliglie,,eo 7)
CUSHIzro o llglle,,00-

Next we will show f has a wavelet Calderén idendity in the distribution sense. Observe that for each
ge CMOZE)(X), we conclude that

(1.0) = i (59) = i ( Y (5 08 ).9).

ka
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To end this, it suffices to show that

nlgg@%fm > <2%f¢a >

as n — oo. Indeed, we write B, = {(k,a) : |k| < L, Q’; C B(xo, L)}, where x is any fixed point in X and B(xo, L)
is ball centered at xy with radius L. Consider the partial sum given by

Suf =Y vk(fuk).

(ka)eB;

Choose that M such that L < M — co. By using (7), we obtain that

S[ Y ks, ¢’;>]

(k,Dt)EBM/BL

<sM<f> s, g> <cC

||_l] | |Cp(.)(X)
LrO(X)

tends to zero as L, M — oo. Thus,
(Lot vt)o)
ko

is well defined. Furthermore, by applying again (7), we obtain that

OIACESATIN)

ka

(2% f%)

IS(fu = Ollocoliglic,, o,

where the last term tends to zero as n — oco. Therefore, we have completed the proof of Proposition 5.4. []

IA

llgllc,
LPO(X)

Now we are ready to introduce the Hardy spaces H?")(X) via using the subspace CMO’L’(Z‘) as a test
function space.

Definition 5.5. Suppose that p() € P° N LH with ;% < p~ < p* < 1. The Hardy space HPO(X) is defined by the
collection of all distributions f € (CMO” ¢ )(X))’ such that

f0 =YY (fubeke

keZ aek

in (CMO’Z(Z')(X))’ with ||S(f)ll, < oo, where the series converges in the distribution sense.
If f € HPO(X), the norm of f in HPY(X) is defined by || fllypo ) = ISl -

Definition 5.6. Suppose that p(-) € P° N LH with 257 <P S pt<1 fe (CMO’Z(Z')(X))’ is said to be an element

of the atomic Hardy space with variable exponents ]HE(')(X) if f has an atomic decomposition

f= Z Ajaj, ®)
j=1
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where {aj, Qj} C A(p(-), q) with the quantities

_ Ajxg
AN Q=) = HZ T

LPO(X)

We define
“f“Hg:o);-Z(X lnfﬂ( ] 17 {Q]}] 1)

where the infimum is taken over all such atomic representations of f.

Theorem 5.7. Suppose that p(-) € P° N LH wit <p~  <p* <1 Then

m+1)
HO(X) = HPO(X) = HY(X).

Proof. First we prove that H"O(X) = H'0(X). Suppose that f € H""(X). Then f € (CMO} O(X)) such that

f0 =YY (fubeke

keZ aek

in (CMOig)(X))’ with [|S(f)ll, < co. Note that the partial sum by

= Y wk(fuk),

ka EBL

where By = {(k,@) : k| < L,Q% c B(xo,L)}. Then Si(f) € L*(X) N H)(X) and S;(f) converges to f in
(CMO’Z(Z')(X))’ as n tends to co. To end it, it suffices to show that

ISL(f) = Sm(Ollrox) — 0

as L and M tend to o. Indeed, if let Bj \y=Bm\BLwithM>1L,

1/2
ISL(F) = Su(Plliroeg = C {Z )3 |<¢§'~ 2 sb’é(ﬁabﬁ))@ (x)|2}
KeZ wew (ka)<B; o)
) 1/2
SC{ Y. |<¢§,f>z?gﬁ<x>|} -0,
(ka)eB;

LPO(X)

as L and M tend to co. Hence, it implies that f is in the completion of the space of L%(X) N H’"(X) and
HFO(X) c HPO(X). Conversely, if f € HPY)(X), then f is the completion of the collection of all f € L?(X) for
which the quantity

Aoy 2= ISCHIoxy < 0.

By applying Proposition 5.4, we conclude that for each g € CMO’Z?(X), f has the following representation

JOED W IRTATATE)

keZ ek

which holds in (CMO’ZE)(X))'. Thus, H"Y(X) ¢ HPO(X).
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Moreover, if f € HP0(X), from Theorem 4.3 we obtain that f € L?(X) N HP"(X), there exist a sequence
of non-negative numbers {A;} and a sequence of (p(-),2)—atoms {a;} together with ﬂ({A]‘};er{Qj};ozl) <

Cll fllgrox), such that
f = Z )\jllj.
j

It implies that f € lI—IZ(')(X) and H'O(X) c ]I—If;(‘)(X). On the other hand, applying Theorem 4.5 yields that
HY(X) ¢ HPO(X).
Therefore, the proof of Theorem 5.7 is complete. []

Remark 5.8. We can similarly give the definition of the variable Carleson measure space CMOPO(X) by using
the subspace HPY(X) N L%(X) as the space of test function. Precisely, suppose that a sequence f, € L*(X) is a
Cauchy in the sense of CMOPO(X). Thus, f, has a limit in the distribution of H’O(X) N L?(X) as n — oo, and
F(x) = Yhez Yaear{f, UK (x) in (HPO(X) N LA(X))'. Let CMOPO(X) be the variable Carleson measure space
defined by the set of all f € (HP(X) N L*(X))’ satisfying

F =Y Y (Fubuie

keZ aek

in (HY(X) N L2(X)) and ||fllc,, < co.

References

[1] T. Adamowicz, P. Harjulehto and P. Hast6, Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric
measure spaces, Math. Scand. 116 (2015), 5-22.
[2] P. Auscher and T. Hytonen, Orthonormal bases of regular wavelets in spaces of homogeneous type, Appl. Comput. Harmon.
Anal. 34 (2013), 266-296.
[3] R.R. Coifman, A real variable characterization of H?, Studia Math. 51 (1974), 269-274.
[4] R.R.Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogenes, (French) Etude de certaines
intégrales singulieres, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971.
[5] R.R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83 (1977), 569-645.
[6] D.Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: Foundations and Harmonic Analysis, Birkhduser (Basel, 2013).
[7] D. Cruz-Uribe, K. Moen and H. V. Nguyen, A new approach to norm inequalities on weighted and variable Hardy spaces, Ann.
Acad. Sci. Fenn. Math., 45 (2020), 175-198.
[8] D. Cruz-Uribe and P. Shukla, The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of
homogeneous type. Studia Math. 242 (2018), no. 2, 109-139.
[9] D.Cruz-Uribe and L. Wang, Variable Hardy spaces, Indiana Univ. Math. J., 63 (2014), 447—493.
[10] D. Deng and Y-S. Han, Harmonic analysis on spaces of homogeneous type. with a preface by Yves Meyer, Lecture Notes in
Mathematics, 1966, Springer-Verlag, Berlin, 2009.
[11] L. Diening, P. Harjulehto, P. Hasto, M. Riizitka, Lebesgue and Sobolev spaces with variable exponents, Springer (Heidelberg,
2011).
[12] X.-L Fan, D. Zhao, On the spaces LP®(Q) and W"?¥)(Q), ]. Math. Anal. Appl. 263 (2001), no. 2, 424-446.
[13] C. Fefferman and E. M. Stein, H? spaces of several variables, Acta Math. 129 (1972), 137-193.
[14] M. Frazier, B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34-170.
[15] Y-C. Han, Y-S. Han and J. Li, Criterion of the boundedness of singular integrals on spaces of homogeneous type, J. Funct. Anal.
271 (2016), 3423-3464.
[16] Y-C. Han, Y-S. Han and J. Li, Geometry and Hardy spaces on spaces of homogeneous type in the sense of Coifman and Weiss,
Sci. China Math. 60 (2017), 2199-2218.
[17] Y-S. Han, Plancherel-Pélya type inequality on spaces of homogeneous type and its applications, Proc. Amer. Math. Soc. 126
(1998), no. 11, 3315-3327.
[18] Y-S.Han,].Liand L. D. Ward, Hardy space theory on spaces of homogeneous type via orthonormal wavelet bases, Appl. Comput.
Harmon. Anal. 45 (2018), 120-169.
[19] Y-S.Han, D. Miiller and D-C. Yang, Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type, Math.
Nachr. 279 (2006), 1505-1537.
[20] Y-S. Han, D. Miiller and D-C. Yang, A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on
Carnot-Carathéodory spaces, Abstr. Appl. Anal. 2008, Art. ID 893409, 250 pp.
[21] Y-S. Han and E. T. Sawyer, Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces, Mem.
Amer. Math. Soc. 110 (1994), vi+126 pp.
[22] K-P.Ho, Atomic decompositions of weighted Hardy spaces with variable exponents, Tohoku Math. J. (2) 69 (2017), no. 3, 383-413.



[23]
[24]
[25]
[26]
[27]
[28]

[29]
[30]

[31]
[32]
[33]
[34]
[35]
[36]
[37]

[38]
[39]

[40]

[41]
[42]

[43]

[44]
[45]

[46]

J. Tan / Filomat 37:23 (2023), 7719-7739 7739

Z-Y. He, Y-S. Han, J. Li, L-G. Liu, D-C. Yang, and W. Yuan, A complete real-variable theory of Hardy spaces on spaces of
homogeneous type, J. Fourier Anal. Appl. 25 (2019), 2197-2267.

Z-Y.He, D-C. Yang, W. Yuan, Real-variable characterizations of local Hardy spaces on spaces of homogeneous type, Math. Nachr.
294 (2021), 900-955.

O. Kovétik and J. Rakosnik, On spaces LP®) and WoP®), Czechoslovak Math. J. 41 (1991), 592-618.

R. H. Latter, A characterization of H”(R") in terms of atoms, Studia Math. 62 (1978), 93-101.

F-H. Liao, Z-Y. Li, C. Ji, Boundedness of bi-parameter Littlewood-Paley g} -function on Hardy spaces, Math. Inequal. Appl. 24
(2021), no. 1, 71-87.

D-L. Liu, J. Tan, J-M. Zhao, The characterisation of BMO via commutators in variable Lebesgue spaces on stratified groups, Bull.
Korean Math. Soc. 59 (2022), no. 3, 547-566.

R. A. Macias and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), 257-270.

E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012),
3665-3748.

Y. Sawano, Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators,
Integral Equations Operator Theory 77 (2013), 123-148.

Y. Sawano, P-K. Ho, D-C. Yang, and S-B. Yang, Hardy spaces for ball quasi-Banach function spaces, Dissertationes Math.
(Rozprawy Mat.) 525 (2017), 1-102.

E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables. I. The theory of H”-spaces, Acta Math. 103
(1960), 25-62.

J. Tan, Atomic decompositions of localized Hardy spaces with variable exponents and applications, ]. Geom. Anal. 29 (2019), no.
1,799-827.

J. Tan, Some Hardy and Carleson measure spaces estimates for Bochner-Riesz means, Math. Inequal. Appl. 23 (2020), no. 3,
1027-1039.

J. Tan, Boundedness of multilinear fractional type operators on Hardy spaces with variable exponents. Anal. Math. Phys. 10
(2020), no. 4, Paper No. 70, 1-16.

J. Tan, Weighted Hardy and Carleson measure spaces estimates for fractional integrations, Publ. Math. Debrecen 98 (2021), no.
3-4, 313-330.

J. Tan, A revisit to the atomic decomposition of weighted Hardy spaces. Acta Math. Hungar. (2022), no. 2, 490-508.

J. Tan, Weighted Variable Hardy Spaces Associated with Para-Accretive Functions and Boundedness of Calder6n—-Zygmund
Operators. J. Geom. Anal 33, 61 (2023). 1-32.

J. Tan, Real-variable theory of local variable Hardy spaces. Acta Math. Sin. (Engl. Ser.) DOI:10.1007/s10114-023-1524-0 (2023).

A. Uchiyama, Characterization of H”(IR") in terms of generalized Littlewood—Paley g-functions, Studia Math. 81 (1985), 135-158.
X-J.Yan, Z-Y. He, D-C. Yang, W. Yuan, Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous
type: characterizations of maximal functions, decompositions, and dual spaces. Math. Nachr., DOI: 10.1002/mana.202100432
(2022).

X-].Yan, Z-Y. He, D-C. Yang, W. Yuan, Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous
type: Littlewood—Paley characterizations with applications to boundedness of Calderén-Zygmund operators, Acta Math. Sin.
(Engl. Ser.) 38 (2022), no. 7, 1133-1184.

D-C. Yang, J.-Q Zhang and C-Q. Zhuo, Variable Hardy spaces associated with operators satisfying Davies-Gaffney estimates,
Proc. Edinb. Math. Soc. (2) 61 (2018), no. 3, 759-810.

D-C. Yang, C-Q. Zhuo and E. Nakai, Characterizations of variable exponent Hardy spaces via Riesz transforms, Rev. Mat.
Complut. 29 (2016), no. 2, 245-270.

C-Q. Zhuo, Y. Sawano and D-C. Yang, Hardy spaces with variable exponents on RD-spaces and applications, Dissertationes
Math. 520 (2016), 1-74.



