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Abstract. The reciprocal distance Laplacian matrix of a connected graph G is defined as RDL(G) =
RT(G)−RD(G), where RT(G) is the diagonal matrix of reciprocal distance degrees and RD(G) is the Harary
matrix. Since RDL(G) is a real symmetric matrix, we denote its eigenvalues as λ1(RDL(G)) ≥ λ2(RDL(G)) ≥
· · · ≥ λn(RDL(G)). The largest eigenvalue λ1(RDL(G)) of RDL(G) is called the reciprocal distance Laplacian
spectral radius. In this article, we prove that the multiplicity of n as a reciprocal distance Laplacian
eigenvalue of RDL(G) is exactly one less than the number of components in the complement graph G of
G. We show that the class of the complete bipartite graphs maximize the reciprocal distance Laplacian
spectral radius among all the bipartite graphs with n vertices. Also, we show that the star graph Sn is the
unique graph having the maximum reciprocal distance Laplacian spectral radius in the class of trees with
n vertices. We determine the reciprocal distance Laplacian spectrum of several well known graphs. We
prove that the complete graph Kn, Kn − e, the star Sn, the complete balanced bipartite graph K n

2 ,
n
2

and the
complete split graph CS(n, α) are all determined from the RDL-spectrum.

1. Introduction

Throughout the paper, we assume all the graphs under consideration are simple and connected. A
simple connected graph G = (V(G),E(G)) consists of the vertex set V(G) = {v1, v2, . . . , vn} and the edge set
E(G). The order and size of G are |V(G)| = n and |E(G)| = m, respectively. The degree of a vertex vi, denoted
by dG(vi) (or shortly di) is the number of edges incident on the vertex vi. Further, NG(vi) denotes the set of
all vertices that are adjacent to vi in G. G denotes the complement of the graph G. For other undefined
notations and terminology(if any), the readers are referred to [16].

The adjacency matrix A(G) = (ai j) of G is an n × n matrix whose (i, j)-entry is equal to 1, if vi is adjacent
to v j and equal to 0, otherwise. Let De1(G) = diag(d1, d2, . . . , dn) be the diagonal matrix of vertex degrees
di, i = 1, 2, . . . ,n. The positive semi-definite matrix L(G) = De1(G) − A(G) is the Laplacian matrix of G.
The eigenvalues of L(G) are called the Laplacian eigenvalues of G. The Laplacian eigenvalues are denoted
by µ1(G), µ2(G), . . . , µn(G) and are ordered as µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G). The multiset of Laplacian
eigenvalues of G is called the Laplacian spectrum (briefly L-spectrum) of G. In G, the distance between
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two vertices vi, v j ∈ V(G), denoted by d(vi, v j), is defined as the length of a shortest path between vi and
v j. The diameter of G, denoted by d(G), is max

u,v∈G
d(u, v), that is, the length of a longest path among the

distance between every two vertices of G. The distance matrix of G is denoted by D(G) and is defined as
D(G) = (d(vi, v j))vi,v j∈V(G). The transmission TrG(vi) (or briefly Tr(i) if graph G is understood) of a vertex vi is
defined as the sum of the distances from vi to all other vertices in G, that is, TrG(vi) =

∑
v j∈V(G)

d(vi, v j). For any

vertex vi ∈ V(G), the transmission TrG(vi) is also called the transmission degree.
Let Tr(G) = dia1(Tr1,Tr2, . . . ,Trn) be the diagonal matrix of vertex transmissions of G. Aouchiche and

Hansen [1] introduced the Laplacian for the distance matrix of a connected graph. The matrix DL(G) =
Tr(G)−D(G) (or simply DL) is called the distance Laplacian matrix of G. The eigenvalues of DL(G) are called the
distance Laplacian eigenvalues of G and are referred as DL-eigenvalues of G. Since DL(G) is a real symmetric
positive semi-definite matrix, we take the distance Laplacian eigenvalues as ∂L

1(G) ≥ ∂L
2(G) ≥ · · · ≥ ∂L

n(G).
More work on the distance Laplacian matrix can be seen in [12–15] and the references therein.

The Harary matrix of graph G, which is also called as the Reciprocal Distance matrix, denoted by RD(G),
is an n by n matrix defined as [17]

RDi j =

 1
d(vi,v j)

if i , j

0 if i = j.

Henceforward, we consider i , j for d(vi, v j).
The Reciprocal distance degree of a vertex vi, denoted by RTrG(vi) (or shortly RTr(i) ), is given by

RTrG(vi) =
∑

v j∈V(G)vi,vj

1
d(vi, v j)

.

Let RT(G) be an n × n diagonal matrix defined by RTii = RTrG(vi).
The Harary index of a graph G, denoted by H(G), is defined in [17] as

H(G) =
1
2

n∑
i=1

n∑
j=1

RDi j =
1
2

∑
v j∈V(G)vi,vj

1
d(vi, v j)

.

Clearly,

H(G) =
1
2

∑
vi∈V(G)

RTrG(vi).

To see more work done on the Harary matrix, we refer to [6, 8, 19].
In [5], the authors defined the Reciprocal distance Laplacian matrix as RDL(G) = RT(G) − RD(G). Since

RD(G) and RDL(G) are real symmetric matrices, we can denote by

λ1(RD(G)) ≥ λ2(RD(G)) ≥ · · · ≥ λn(RD(G)),

and
λ1(RDL(G)) ≥ λ2(RDL(G)) ≥ · · · ≥ λn(RDL(G))

the eigenvalues of RD(G) and RDL(G), respectively. Since RDL(G) is a positive semidefinite matrix ,we will
denote by ρ(RDL(G)) = λ1(RDL(G)) the spectral radius of RL(G). In [5], the authors proved that for the
connected graph G of order n, the spectral radius of RDL(G) is at most n and supplied the necessary and
sufficient conditions for n to be the eigenvalue of RDL(G). More work on the matrix RDL(G) can be seen in
[9, 10, 18].

The rest of the paper is organised as follows. In Section 2, we supply some results from the previous
works and prove that the multiplicity of n as a reciprocal distance Laplacian eigenvalue of RDL(G) is exactly
one less than the number of components in the complement graph G of G. We show that the class of
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the complete bipartite graphs maximize the reciprocal distance Laplacian spectral radius among all the
bipartite graphs. We also show that the star graph Sn is the unique graph having the maximum reciprocal
distance laplacian spectral radius in the class of trees. In Section 3, we find the reciprocal distance Laplacian
spectrum of several well known graphs. In Section 4, we prove that the complete graph Kn, Kn − e, the star
Sn, the complete balanced bipartite graph K n

2 ,
n
2

and the complete split graph CS(n, α) are all determined
from the RDL-spectrum.

2. On the eigenvalues of reciprocal distance Laplacian matrix of graph G

We begin this section with the following lemmas which will be used in sequel.

Lemma 2.1. [4] If the graph G has n vertices and µ is an eigenvalue of L(G), then 0 ≤ µ ≤ n. Moreover, the
multiplicity of n is equal to one less than the number of components in the complement graph G.

Lemma 2.2. [5] Let G be a connected graph on n vertices with diameter d = 2. Then λi(RDL(G)) = n+µi(G)
2 for

i = 1, 2, . . . ,n − 1. Furthermore, n+µi(G)
2 and µi(G) both have the same multiplicity for i = 1, 2, . . . ,n.

Lemma 2.3. [5] Let G be a connected graph on n vertices. Then, the complement graph G is disconnected if and only
if the reciprocal distance Laplacian spectral radius of G is n.

Lemma 2.4. [5] For any connected graph G, 0 is a simple eigenvalue of RDL(G).

Lemma 2.5. [5] Let G be a connected graph and G′ = G + e, where e < E(G). Then λi(RDL(G′)) ≥ λi(RDL(G)) for
all i = 1, 2, . . . ,n.

The next lemma follows immediately from the above lemma.

Lemma 2.6. Let G be a connected graph on n vertices. Then

λn(RDL(G)) = 0 and λi(RDL(G)) ≤ λi(RDL(Kn)) = n for all i = 1, 2, . . . ,n − 1.

In the following theorem, we show that n as an eigenvalue of RDL(G) can be considered as the algebraic
connectivity of G, that is, we show that the multiplicity of n as an eigenvalue of RDL(G) is exactly one less
than the number of components in the complement graph G. We note here that the same type of result has
been proved for the distance Laplacian matrix in [1].

Theorem 2.7. For every connected graph on n vertices, n is an eigenvalue of RDL(G) with multiplicity exactly equal
to one less than the number of components in the complement graph G.

Proof. If the complement graph G of G is connected, then by Lemma 2.3, the result is trivially true. So, let the
complement graph G be disconnected so that diameter of G is 2. By Lemma 2.2, the eigenvalues of RDL(G)
are given by λi(RDL(G)) = n+µi(G)

2 for i = 1, 2, . . . ,n − 1 and λn(RDL(G)) = 0, where µ1 ≥ µ2 ≥ · · · ≥ µn−1 are
the Laplacian eigenvalues of G. Using Lemma 2.1, we get the desired result. The following observations
are an immediate consequence of Theorem 2.7.

Corollary 2.8. Let G be a connected graph on n vertices. Then, λn−1(RDL(G)) ≤ n with equality if and only if
G � Kn.

Proof. The bound follows by Lemma 2.6. Further, we observe that equality holds for Kn.
Let λn−1(RDL(G)) = n. By Lemma 2.6, n is an eigenvalue of RDL(G) with multiplicity n − 1. Thus, by

Theorem 2.7, G has n components which are necessarily isolated vertices and therefore G is a complete
graph.
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Corollary 2.9. Let G � Kn be a connected graph on n vertices and let D = {v ∈ V(G) : dG(v) = n − 1}. Then n is an
eigenvalue of RDL(G) with multiplicity at least |D|.

Proof. We note that each vertex v ∈ D of G corresponds to an isolated vertex in G and thus to a component
of G. As G � Kn, the number of components in the complement graph G is at least |D| + 1 and the result
follows by using Theorem 2.7.

LetBn be the set of all connected bipartite graphs on n vertices andKb
a be the set of all complete bipartite

graphs on n = a + b vertices. Let Tn be the set of all trees on n vertices. The following result characterizes
all the graphs in Bn and Tn having the maximum reciprocal distance Laplacian spectral radius.

Theorem 2.10. Let G be a connected graph on n vertices.
(a) If G ∈ Bn, then ρ(RDL(G)) ≤ ρ(RDL(Ka,b)) , where Ka,b is any graph inKb

a, with equality if and only if G ∈ Kb
a.

(b) If G ∈ Tn, then ρ(RDL(G)) ≤ ρ(RDL(Sn)) with equality if and only if G � Sn.

Proof. (a) We observe that the complete bipartite graphs are the only connected bipartite graphs that have
disconnected complement. Thus, from Theorem 2.7, the complete bipartite graphs are the only connected
bipartite graphs that have n as a reciprocal distance Laplacian eigenvalue and the result follows from
Lemma 2.6.
(b) We see that the star Sn is the only tree on n vertices having disconnected complement which by Theorem
2.7 shows that among all the trees on n vertices only the star Sn has n as a reciprocal distance Laplacian
eigenvalue and the result follows from Lemma 2.6.

3. Reciprocal Distance Laplacian spectrum

It is possible to know some reciprocal distance Laplacian eigenvalues of a graph G given that G has
some particular structure.

Theorem 3.1. Let G be a connected graph on n ≥ 2 vertices. If M = {v1, v2, . . . , vr} is an independent set of G such
that NG(vi) = NG(v j) for all 1 ≤ i, j ≤ r, then T = RTr(vi) = RTr(v j) for all 1 ≤ i, j ≤ r and T + 1

2 is an eigenvalue of
RDL(G) with multiplicity at least r − 1.

Proof. We see that any two vertices in M are at a distance of 2 from each other. So RDi j =
1
2 , for all

1 ≤ i , j ≤ r. Also any vertex in V(G) \M is at the same distance from all the vertices in M. Thus all the
vertices in M have the same reciprocal distance degree, say T.

The proof gets completed after observing that the matrix (T + 1
2 )In − RDL(G) has at least r identical

rows.
By using the similar argument, we can prove the following theorem.

Theorem 3.2. Let G be a connected graph on n ≥ 2 vertices. If S = {v1, v2, . . . , vr}, is a clique of G such that
NG(vi)−S = NG(v j)−S for all 1 ≤ i, j ≤ r, then T = RTr(vi) = RTr(v j) for all 1 ≤ i, j ≤ r and T+ 1 is an eigenvalue
of RDL(G) with multiplicity at least r − 1.

We note that the results similar to Theorems 3.1 and 3.2 have been proved for the distance Laplacian
matrix (see [2]) and distance signless Laplacian matrix (see [3]).

By using Theorems 3.1 and 3.2, we obtain the reciprocal distance Laplacian spectrum of some well
known graphs in the following result.

Lemma 3.3. (a) The reciprocal distance Laplacian characteristic polynomial of the complete k-partite graph Kn1,n2,...,nk ,
where n1 + n2 + · · · + nk = n, is

Px
RDL (Kn1,n2,...,nk ) = x(x − n)k−1

k∏
i=1

(
x −

(
n −

ni

2

))ni−1

.
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(b) The reciprocal distance Laplacian characteristic polynomial of the complete bipartite graph Ka,b, where a + b = n,
is

Px
RDL (Ka,b) = x(x − n)

(
x −

(
n −

a
2

))a−1(
x −

(
n −

b
2

))b−1

.

(c) The reciprocal distance Laplacian characteristic polynomial of the star Sn is

Px
RDL (Sn) = x(x − n)

(
x −

n + 1
2

)n−2
.

(d) The reciprocal distance Laplacian characteristic polynomial of the complete split graph CS(n, α), i.e., the comple-
ment of the disjoint union of a clique Kα and n − α isolated vertices is given by

Px
RDL (CS(n, α)) = x(x − n)n−α

(
x −

(
n −
α
2

))α−1

.

(e) The reciprocal distance Laplacian characteristic polynomial of the graph Kn − e is

Px
RDL (Kn − e) = x(x − n + 1)(x − n)n−2.

(f) The reciprocal distance Laplacian characteristic polynomial of the graph PA(n, p), obtained from a clique Kn−p by
attaching p > 0 pendant edges to a vertex from the clique, is

Px
RDL (PA(n, p)) = x(x − n)

(
x − n +

p
2

)n−p−2(
x −

n + 1
2

)p
.

(g) The reciprocal distance Laplacian characteristic polynomial of the graph S+n , obtained from the star Sn by adding
an edge, is

Px
RDL (S+n ) = x(x − n)

(
x −

n + 3
2

)(
x −

n + 1
2

)n−3
.

Proof. (a) The complete k-partite graph Kn1,n2,...,nk contains k independent sets and let Mi, i = 1, 2, . . . , k, be
these k independent sets with respective cardinalities |Mi| = ni, i = 1, 2, . . . , k. For each i = 1, 2, . . . , k, every
vertex in Mi share the same neighbourhood V(Kn1,n2,...,nk ) \Mi and each vertex in Mi is at a distance of 2 from
every vertex in Mi. Thus, the reciprocal distance degree of each vertex in Mi is 2n−ni−1

2 , i = 1, 2, . . . , k. By
Theorem 3.1, 2n−ni

2 is an eigenvalue of RDL(G) with multiplicity at least ni − 1, i = 1, 2, . . . , k. In addition,
the complement of the complete k-partite graph Kn1,n2,...,nk contains exactly k components so that n is an
eigenvalue of RDL(G) with multiplicity exactly k − 1 and the remaining one eigenvalue by Lemma 2.4 is 0.
(b) Putting k = 2, n1 = a and n2 = b in the complete k-partite graph Kn1,n2,...,nk , we get the required result.
(c) Putting a = 1 and b = n − 1 in (b) gives the desired result.
(d) The proof follows directly from (a) after observing that CS(n, α) = Kα,1,1,...,1.
(e) We observe that the complement of Kn − e contains n − 1 components out of which n − 2 components
are isolated vertices and one component is K2. By Theorem 2.7, n is an eigenvalue of RDL(Kn − e) with
multiplicity n− 2. Using Theorem 3.1, the remaining non-zero eigenvalue of RDL(Kn − e) is seen to be n− 1.
(f) Clearly, PA(n, p) contains a clique on n − p − 1 sharing the same neighbourhood (a dominating vertex)
and the same reciprocal distance degree n − p

2 − 1. By Theorem 3.2, n − p
2 is an eigenvalue of RDL(PA(n, p))

with multiplicity at least n− p− 2. Also, PA(n, p) contains an independent set of p vertices sharing the same
neighbourhood and the same reciprocal distance degree n

2 . Thus, by Theorem 3.1, n+1
2 is an eigenvalue of

RDL(PA(n, p)) with multiplicity at least p− 1. Now, using the facts that 0 is always a simple eigenvalue and
the sum of all reciprocal distance degrees is equal to sum of all reciprocal distance Laplacian eigenvalues,
we can easily evaluate the remaining eigenvalue, which equals n+1

2 .
(g) Putting p = n − 3 in (f), we get the required result.

We also make use of the following lemmas.
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Lemma 3.4. [4] Let Cn and Pn be the cycle and path on n vertices, respectively. The Laplacian eigenvalues of Cn and
Pn are given by 4sin2 πk

n , k = 1, 2, . . . ,n and 4sin2 πk
2n , k = 0, 1, 2, . . . ,n − 1, respectively.

Lemma 3.5. [11] Let G be a graph on n vertices. If µi(G), i = 1, 2, . . . ,n are the eigenvalues of L(G) then the
eigenvalues of L(G) are n − µn−i(G), i = 1, 2, . . . ,n − 1 and 0.

The next observation follows immediately from Lemmas 3.4 and 3.5. This gives the reciprocal distance
Laplacian eigenvalues of the complements of path and cycle.

Lemma 3.6. For n ≥ 5, the reciprocal distance Laplacian characteristic polynomial of Cn is given by

x
n−1∏
i=1

(
x − n + 2sin2

(πi
n

))
and the reciprocal distance Laplacian characteristic polynomial of Pn is given by

x
n−1∏
i=1

(
x − n + 2sin2

(πi
2n

))
.

Proof. Using Lemmas 3.4 and 3.5, we see that the Laplacian eigenvalues of Cn are given by n − 4sin2 πk
n ,

k = 1, 2, . . . ,n− 1 and 0. Similarly, the Laplacian eigenvalues of Pn are given by n− 4sin2 πk
2n , k = 1, 2, . . . ,n− 1

and 0. For n ≥ 5, it is easy to see that both Cn and Pn are connected with diameter 2 and the proof follows
from Lemma 2.2.

4. Graphs determined by RDL- spectrum

In this section, we show the existence of some graphs which are determined by RDL- spectrum. We start
with the following observations.

Lemma 4.1. [1] Let G be a connected graph on n vertices with diam(G) ≤ 2. Let µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0
be the Laplacian spectrum of G. Then the distance Laplacian spectrum of G is 2n − µn−1(G) ≥ 2n − µn−2(G) ≥
· · · ≥ 2n − µ1(G) > ∂L

n(G) = 0. Moreover, for every i ∈ {1, 2, . . . ,n − 1} the eigenspaces corresponding to µi(G) and
2n − µi(G) are same.

Lemma 4.2. [7] Let G be a connected graph on n vertices such that DL(G) has an eigenvalue with multiplicity n− 2.
Then, m(∂L

1(G)) = n − 2 if and only if G � Sn or G � K n
2 ,

n
2
, if n is even.

Theorem 4.3. From the reciprocal distance Laplacian spectrum of the connected graph G, we can determine (a) The
number of vertices of G, (b) the Harary index of G and (c) the number of components of complement graph G.

Proof. (a) The number of vertices of G is equal to the number of eigenvalues.
(b) The Harary index of G is half the sum of the reciprocal distance degrees of the vertices of G, which is
half of the sum of the eigenvalues of RDL(G).
(c) By Theorem 2.7, the multiplicity of n as an eigenvalue of the matrix RDL(G) is exactly one less than the
number of components in the complement graph G.

If G is a connected graph with diameter 2, then the above theorem can be improved as follows.

Theorem 4.4. From the reciprocal distance Laplacian spectrum of the connected graph G having diameter 2, we can
determine (a) the number of the vertices of G, (b) the Harary index of G, (c) the number of the components of the
complement graph G, (d) the Laplacian eigenvalues of G including their multiplicities and (e) the number of the
edges in G.
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Proof. (a), (b) and (c) are proved in Theorem 4.3.
(d) It follows directly from Lemma 2.2.
(e) The number of edges of G is half the sum of the vertex degrees of G, which is half of the sum of the
Laplacian eigenvalues of G and the proof follows from (d).

Lemma 4.5. Let G be a connected graph on n vertices and let H(G) be the Harary index of G. Then,
(a) H(G) ≤ n(n−1)

2 with equality if and only if G � Kn;
(b) H(G) ≤ n(n−1)

2 −
1
2 with equality if and only if G � Kn − e.

Proof. (a) We know that H(G) = 1
2

∑
u,v∈V(G)u,v

1
d(u, v)

. Since the distance between any two different vertices

in Kn is equal to 1, therefore,

H(Kn) =
1
2

∑
u,v∈V(G)u,v

1
d(u, v)

=
1
2

∑
u,v∈V(G)u,v

1 =
n(n − 1)

2
.

Thus, the equality holds for Kn. Now, suppose that G � Kn. Then there are at least two vertices which
are non-adjacent, say u and v, and d(u, v) ≥ 2 so that 1

d(u,v) ≤
1
2 . The rest of the distances in G are at least 1 so

that their reciprocal is at most 1. Therefore,

H(G) =
1
2

∑
u,v∈V(G)u,v

1
d(u, v)

≤
1
2

(
n(n − 1) − 2 + 2

(1
2

))
=

n(n − 1)
2

−
1
2
.

(b) The graph Kn − e is obtained uniquely from Kn by deleting a single edge from Kn and this operation
decreases the value of H(Kn) by 1

2 . Removal of any further edges strictly decreases the value of the Harary
index. Thus, Kn − e is the unique graph having Harary index equal to n(n−1)

2 −
1
2 .

Theorem 4.6. The following graphs are determined by their reciprocal distance Laplacian spectrum.
(a) the complete graph Kn,
(b) the graph Kn − e obtained from Kn by the deletion of an edge,
(c) the star Sn,
(d) the complete balanced bipartite graph K n

2 ,
n
2
,

(e) the complete split graph CS(n, α).

Proof. (a) Let G be the graph with the same reciprocal distance Laplacian spectrum as Kn, which is given
by {0,n(n−1)

}. Since n is RDL(G)-eigenvalue of G with multiplicity n − 1, therefore, by Theorem 2.7, the
complement graph G of G has n components that necessarily are isolated vertices which is only possible if
G is the complete graph Kn.
(b) It follows directly from Theorem 4.3 and Lemma 4.5.
(c) Let G be the graph with the same reciprocal distance Laplacian spectrum as Sn, which from Lemma 3.3
is given by

{
0,n, n+1

2
(n−2)}

. As n is an eigenvalue of RDL(G) with multiplicity one, therefore, by Theorem 2.7,

the complement graph G of G has two components. This shows that the diameter of G is 2. Thus, from
Theorem 4.4, we can find the number of edges in G which is n − 1. This shows that G must be a tree on
n vertices. Combining the facts that G is a tree and its complement is disconnected, we observe that G is
isomorphic to Sn, as Sn is the only tree whose complement is disconnected.
(d) Let G be the graph with the same reciprocal distance Laplacian spectrum as K n

2 ,
n
2
, which from Lemma

3.3 is given by
{
0,n, 3n

4
(n−2)}. As n is an eigenvalue of RDL(G) with multiplicity one, therefore, by Theorem

2.7, the complement graph G of G has two components which shows that diameter of G is 2. Thus, from
Theorem 4.4, we can determine the Laplacian eigenvalues of G which are given by

{
0,n, n

2
(n−2)

}
and the
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number of edges in G which is n2

4 . From Lemma 4.1, the distance Laplacian spectrum of G is given by{
0,n, 3n

2
(n−2)}, so that m(∂L

1(G)) = n − 2. Using Lemma 4.2, G � Sn or G � K n
2 ,

n
2
. Using the facts that G has n2

4
edges and Sn has only n − 1 edges , we see that G � K n

2 ,
n
2
.

(e) Let G be the graph with the same reciprocal distance Laplacian spectrum as CS(n, α) which from Lemma
3.3 is given by

{
0,n(n−α),n − α2

(α−1)
}
. As n is an eigenvalue of RDL(G) with multiplicity n − α, therefore,

by Theorem 2.7, the complement graph G of G has exactly n − α + 1 components. This shows that the
diameter of G is 2. Using Lemma 2.2, the Laplacian eigenvalues of G are given by {0,n(n−α),n − α(α−1)

}.
Using Lemma 3.5, the Laplacian eigenvalues of the complement graph G of G are given by {0(n−α+1), α(α−1)

}.
As G has exactly n − α + 1 components, therefore, the largest component in G contains at most α vertices.
We claim that at least one component in G contains exactly α vertices. If possible, let all the components
in G, say Hi (1 ≤ i ≤ n − α + 1), contain less than α vertices. Using the fact that the Laplacian spectral
radius of any connected graph is always less than or equal to the order of the graph, we get µ1(Hi) < α
(1 ≤ i ≤ n − α + 1). This shows that µ1(G) < α. This is a contradiction, since from the Laplacian spectrum
of G, we have µ1(G) = α. That proves the claim. Since the complement graph G of G has exactly n − α + 1
components, we see that exactly one component of G contains α vertices and the rest of the components
are isolated vertices. Since multiplicity of α as a Laplacian eigenvalue of G is α − 1, therefore, G must be
isomorphic to Kα ∪ (n − α)K1, which further shows that G � CS(n, α).
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