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Abstract. The main concern of this article is to obtain several approximation features of the new
Chlodowsky type g-Bernstein-Schurer operators. We prove the Korovkin type approximation theorem
and discuss the order of convergence with regard to the ordinary modulus of continuity, an element of
Lipschitz type and Peetre’s K-functional, respectively. In addition, we derive the Voronovskaya type
asymptotic theorem. Finally, using of Maple software, we present the comparison of the convergence of
Chlodowsky type g-Bernstein-Schurer operators to the certain functions with some graphical illustrations
and error estimation tables.

1. Introduction

In 1912, Bernstein [14] proposed the simplest and most excellent proof for the famous German mathe-
matician Weierstrass’s approximation theorem. The polynomial sequences discussed in Bernstein’s proof
have shed light on the approximation theory since they have various shape preservation properties and are
easily integrable and differentiable, and it is a subject that many authors are still working on from past to
present. In 1930, Kantorovich [25] suggested an integral modification of the Bernstein operators. In [20],
Chlodowsky investigated a generalization of Bernstein operators on an unbounded set. Another gener-
alization of the Bernstein operators were defined by Szdsz-Mirakjan [28, 47] on [0, o). In [12], Baskakov
presented a sequence of linear operators for the convenient functions defined on [0, o). In 1962, a new
modification of Bernstein operators established by Schurer [45]. The above-mentioned authors have made
significant contributions to the development of approximation theory, and it is still aimed to obtain a bet-
ter approximation by using many different generalizations and modifications of these studies. In recent
years, it has been desired to obtain better approximation results by using the shape parameter A because it
provides flexibility in modeling. Ansari et al. [7] obtained some numerical and theoretical approximation
results for Schurer-Stancu operators based on shape parameter A. In [40], Ozger et al. estimated the rate of
weighted statistical convergence for generalized blending-type Bernstein-Kantorovich operators. In 2021,
Aslan [9] attained some valuable approximation results on A-Szdsz-Mirakjan-Kantorovich operators. Braha
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et al. [15] introduced the convergence of A-Bernstein operators via power series summability method. We
refer also for readers to [16, 17, 39, 42]. On the other hand the quantum calculus briefly g—calculus, which
has many applications in various fields, has also attracted the attention of many researchers working on
approximation theory. Firstly, Lupas [27] presented the approximation properties of the generalizations
of g—Bernstein operators. Later, Phillips [41] derived some convergence theorems and Voronovskaya type
asymptotic formula for the most popular generalizations of the g—Bernstein operators. Agratini [2] studied
a new type of g—Bernstein type operators. Karsh and Gupta [26] proposed and discussed the following g—
analogue of Chlodowsky operators for a positive increasing sequence b, with limb, = co and y € [0, b, ], as

r—00

m—j-1
Cm,qw;y)—Zu([[rfj]qb)[m]( | [Ta-r3 )
=0

r=

They explored the order of convergence and monotonocity properties of operators (1). Muraru [30]
introduced the Bernstein-Schurer polynomials related on g—calculus, for any r € IN, fixed p € IN U {0} and
function p € C[0,p + 1] as:

-2
" [r]q

where 0 <g<1land y€[0,1].

For the operators given by (2), she derived the Bohman-Korovkin type approximation theorem and eval-
uated the order of approximation with regard to the modulus of smoothness. Agrawal et al. [3] considered
the g—analogue of Bernstein-Schurer-Stancu type operators and studied the global and local direct approx-
imation consequences of these operators. Furthermore, several approximation features of Chlodowsky
type q—Bernstein-Schurer-Stancu operators are demonstrated by Vedi and Ozarslan [48]. Mursaleen and
Khan [34] studied some statistical approximation features of generalized g—Bernstein-Schurer operators
and established several direct theorems for these operators. Ren and Zeng [43] discussed the statistical con-
vergence of the Korovkin and Voronovskaya type results of the modification of g—Bernstein-Schurer type
operators. Ozarslan et al. [38] investigated the rate of convergence for g-Bernstein-Schurer-Kantorovich
operators by means of the first and the second modulus of continuity. For Chlodowsky variant of several
operators, one can refer to [6], [29], [31] and [32]. Moreover, Acu et al. [1] presented a Durrmeyer variant of
g-Bernstein-Schurer operators and studied uniform and statistical convergence for these operators. In [13]
Baxhaku et al. introduced two kinds of Chlodowsky-type g-Bernstein-Schurer-Stancu-Kantorovich opera-
tors on the onbounded domain. One has some papers based on g-calculus with([4, 8, 10, 18, 21, 33, 36, 37, 44]).

Now, before proceeding further, we present some basic notations and definitions which depend on
g-calculus as set out in [24]. Let 0 < g < 1, for all integer j > 0, the g—integer [] ; is given as

. L g1
[,=1 = 1
A

The g—factorial [j],! and for any integers j,[, j > | > 0, the g—binomial [;]q are given respectively, as below:

r+p—j-1

1-q"y), 2)

k=0

j

, 1,0 -1, -1, j=12.
[]]q!:z{ q1, T i=0

and

[]] s
1, " I
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Also, for 0 < g < 1and all integers j,1, j > I > 0, the following identities we have
[1,=1+qlj-1], and [jl, +d'[I-]], = [1],.
For 0 < q < 1, the g—analogue of (y — s)/ is defined by

. _ _ _ 41 ;
(y—s);:{(ly/ )y —gs)--(y=q''s), ]]ié

By the motivation of the all above mentioned works, we define the new Chlodowsky type of Bernstein-
Schurer operators for 0 < g < 1, any r € N and fixed p € N U {0} as

[P+ 10\ (Ll \[r+ p I, 7Y
Rr,q(}l/ ]/) - ( [r]q ]Z [’l [r I 1]qb ( ) HO ( T + 1 - _r s (3)
where y € [0, b,], b, is a positive increasing sequence which satisfy 11mb = oo, 11m[ T =0.

r—oo ' lg
It is obvious that the operators given by (3) are positive and hnear

The structure of this work is organized as follows: For the operators given by (3), in section 2, we
compute the moments up to fourth order and the central moments for the first, second and fourth degree.
In section 3, we establish the Korovkin type convergence theorem. In section 4, we estimate the order of
approximation with regard to of the usual modulus of continuity, an element of Lipschitz type and Peetre’s
K-functional, respectively. In section 5, we derive the Voronovskaya type asymptotic formula. Finally, with
the aid of Maple software, for the different parameters of (1, p, q), we compare the convergence of operators
(3) to the certain functions with some graphical illustrations and error estimation tables.

2. Main Results

Lemma 2.1. Let u(t) = t*,u =0,1,2,3,4. Then, we have the following moments for the operators (3):

(1) Rr,q(l} ]/) =1,

) +p]
(11) Rr,q(t/ y) = [r]q ! y’
[r+p),[r+p-1] [r+pl,b
2 _ q q 2 e R
(lll) Rr,q(t 7 ]/) - [7’]; qy + [r]q [7’ + 1]‘7 y,
[r+pl,[r+p=1],[r+p-2]
(iv) Rr,q(t3; y) = - [P : qqus
q
e pl rtp =1, Qa4 b, el B
[r]s [r+1], Y [rl, [r + 1]51/
-1 -2 -3
(v) Rr,q(t4; y) = [r+ p]q [r+ p ]q [r+ p ]q L+ P ]q q6y4

[’
. [r+p),[r+p—1],[r+p-2],@ +2q* + 30)0,
PRI+ 1,
[r+pl[r+p=1],@ +3¢° +3qb7  [r+p] b}
v+ y.
(7 [r + 11 [, [r + 11

y
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Proof. Since all the proofs of the above moments can be obtained using a similar methods, we will only give

the proof of the first three.
In view of the following relation:

r+p—j-1
(-4,

(1-y)"7 =
k=0

then, we may write

(i) Rr,q(l) ]/)
(11, & rep e [, Y
_( [r]y ) JZ_;[ ]( ) 11 ([7+1]q_ b_r)
~ ([T+ 1]q )r+p( [r]q )r+p B 1
I r+11,) 7
(ii) Ryq(t; y)
(1’+1 )r+pr+ rip Z) r+P]1( [r]; ky)( [lq b)
[, i \e) ALy, T e A\
T T
I [r+1]q o . 2 ST
[r+11,\"7 [r + plsb & r+p-1] (yy*! 2
( [, ) [r+1l, ]20.[ j ](b_) 11 ([r+1]q b,)
[r+ 11\ [r+plsbr y rp-l
( 7], ) [r+1], b_([r+1 )
[r+ 7],
=,

In view of the relation [j], =

(iii) Ry4(#; )

[j— l]q + 1, it becomes

Cr ) El L T o -l
A

XHﬁ_l([rTi] ks b— (alj-11,+1)

() AR )

g [r[i]ql]q 15 li-1],
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[r+ 10\ [r + plyt2 & [r+p—1] [y )"
+( 7, ) [+ 1P Z[ j L(b_r)

=0

r+p—j-2
[r]y Y
< |1 Gy, 5,

0
(U + 10\ gl + plylr +p = 10567 2 ([l \
_( [r], ) [7’+1]§ b_f([r+1]q)
[r + 10\ [r +plab? y ([l \*
+( [r]g ) [r+ 112 b_r([r+1]q)
Clrpllrep-1l, T+l b
) 12 YA,

which gives the proof of this Lemma. [

Lemma 2.2. Let0<qg<1,r €N,y €[0,b,]. Then, the following central moments satisfies

, [r+pl,
DRyt —y;y) = [ i, - 1] Y,

[r+pl,[r+p-1], 2[r+p]
” N2 — q 9 q 2
(Zl) RT,Q((t ]/) /y) [ [7"]5 q [r]q +1 y
[r+pl, br

+ my = Vra(y),

g lr+pl [r+p -1, [r+p-2],[r+p-3],

(i) Rog((t = )5 y) = [

1}
A [r+ply[r+p =1 [r+p-2],
[
+6q[r+rﬂ]q[r2+;7—1],7 Ayl ny
[l 1,

N [br(tf +2q4* +3¢) [r+p], [r+p - 1], [r +p - 2],
eI +1],

_4br(2q +@)[r+p) [r+p-1], 6b, [r+p]q] X

2 + 11, T, )Y
[bf(ff +37 +3q) [r+p] [r+p-1], 45 [r+p]q) ,
+ —
[P [r+ 11 [r], [r + 11 !

by [r+pl,
+—.
[l [r + 1],
Lemma 2.3. From Lemma 2.2-(ii), one has
q'lpllr + 11, + [r + p],
[r], [r + 1], '

sup R, 4((t - y)z; y) < bf
ye[0,b,]

8017
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Proof. Using the inequality q[r +p], [r+p —1], <[r+ p]; , hence

e, [,

Since [r + p] 0= [r]; +4'[p], we derive

[r+pl [r+p-1],  2[r+p] [r+pl, br
Z Ry = 1 1, _ q 2 VTPl
Reallt =9)59) [ [r2 T, Jy GRS

< [r+p]q_12 2+ [r+p]qb7
=71, Y,

(7] )2 [r +p], br
‘(mq RN RTFEIRS

Taking the supremum on [0, b,], which gives the required result as:

q'lpllr+1]; +[r+p]
_1)2. b? 1.
yiEEJRm((t W=t [ [rly [+ 1], )

O

3. Korovkin type approximation

In this section, for the operators given by (3), we will prove the Korovkin type approximation theorem.
Suppose that Cy,,» denotes the set of all continuous functions of y, verifying the condition

luw)| < N1 +12), € (=00, 00).

It is equipped with the norm as below:

ey = sup 1

In order to prove our main theorem, it is important to discuss the following theorems.

Theorem 3.1. [23]. For a linear positive operators U,y,, acting from C, to C,, verifying the assumption

nlzl—l;rolo U (1;.) - 1”p =0, (4)
%1_{1(}0 ||Um((p; ) - (p“p =0, ()
i - 7], =0 0

where @ is a increasing and continuous function on (—oo, 00) such that lim @(y) = oo and there consist a
y—+o00

*

function u* € C, which lim ||Um(y*; J-u 0> 0.
m—-oo

Theorem 3.2. [23]. For a function p € Cg C C,, the conditions which are given by (4), (5) and (6) require
lim [[UnGs;) = ], = 0.1f

" u(y)

m ——- < o9,

|v| o0 P(Y)
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Theorem 3.3. Suppose that q := (q,) such that 0 < g, < 1,}1_{510% =1, ll)rg[] =0asr — oo.Then, forall u € C1+y
the following relation verify

. Res, (15 ) - p()|

lim sup 5 =0.

T2 e(0,b,] I+y
Proof. Taking into account the operators given by [23]. Then,

v Reg(wy), for 0<y<b,
Uf'ir(:u' y) - { [J(]/)/ for y> br ’
Ruo, (t550) — v
lim ”llr,q,(ts;.) - y5||1+y2 = lim sup M s=0,1,2.

T2 e(0,b,] 1+y2

Considering to Lemma 2.1-(i), it is easy to check R;,,(1;y) = 1.
By Lemma refLem:1-(ii), yields

[r+ply,
sup | ra(EY) — y‘ [l _1‘
yelon] 1+ Y2 B y€[0,hr] T+y?
r+
< Ll |
[”]qy

Proceeding similarly, by Lemma 2.1-(iii)

[r+plq, [r+p-1], [r+ply, b
Req. (&) — ] R 1| Y+ e Y
yelop) 1+ Y2 " yelob] T+y?
[r+plg[r+p -1l 3 [r + ply, by 50
T P+,
since limg, = 1, lim 22— = 0 as r — oo.

r—o00 r—>oo[ ]qv

Thus, we arrive at the desired result. O

4. Direct Theorems

In this section, we compute the order of convergence with regard to the ordinary modulus of continuity,
class of Lipschitz functions and Peetre’s K-functional. Let Cg[0, ) denotes the space of all real-valued
continuous and bounded functions x on [0, ). On Cg[0, o), the norm is given as:

lhell = sup |x(y)|.
y€[0,00)

The Peetre’s K-functional is given as
Ky(x, 1) = inf {llx — All + n[IA”]I}
AeC?

where 17> 0 and C = {1 € C[0, ) : A, A" € Cp[0, c0)} .
Taking into account [22], there consist an absolute constant C > 0 such that

Ko(x;1) < Can(x; \M), n>0 (7)
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where

wa(k;1) = sup sup [i(y +2a) - 2(y +a) + k()|
0<a<n yel0,00)

is the second-order modulus of smoothness of the function x € Cg[0, o). In addition, by

w(Kk;n) == sup sup ’K(]/ +a)— K(]/)|
0<a<n yel0,00)

we state the ordinary modulus of continuity of x € Cg[0, o). Since 1 > 0, w(x; ) has some useful properties
see: [5].

Furthermore, we give the elements of Lipschitz type with Lip;(C), where L > 0 and 0 < C < 1. If the
following inequality

k) - x| <Ll tyeRr)

holds, then one can say a function « is belong to Lipy (C).

Theorem 4.1. Let g := (q,) such that 0 < g, <1, 11mqr =1, lim %

/i,

= 0asr — oo. Then, for all u € Cg[0, c0) we
obtain

g, () = 1| < 205 710, (W),

where Yy (y) = Ry g, ((t - V5 Y).

Proof. From the definition of operators (3) and applying the triangular inequality, then we may write
|Req, (3 ) = ()|

[7’+1]q, r+p 14p r+p y j [j]q,
S( Fm ) 23[1 L(E)@%U+1h ) ()}

j=0

[,
. ( [r + 1], br) B #(]/)'

[7’+1], 1AL P vy
S( vuq) EZFJPL(E)

j=0
b,

Using the common property of modulus of continuity as below:

|t -]
|lu® - p)| < 0w y) 1] >0
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Then,

IRq, (5 9) — p(w)|

r+ 10, \"" & [r+p| (vV
) 2l L,.(b‘r) [

j=0

[j]qr
[r+1],, 7

Lan el JEY P
> w(y;y

r+p—j-1
[1g, kY
X (7 —97)
0 [r+1], b,
w(;7) ([r+ 1], )Hp o r+pl (yy| Ul '
= ; . — b, —
w(;y) + y [ [r], AN q’_(br) [r+1],

r+p—j-1
[, ¢ ¥
X 11 ([r +1], b,) '
Utilizing the Holder’s inequality, thus

Reg, (1) = n(y)|

. w(y) |([r+ 11, )7 & r+p| (y\{ Ul >
<ot S 0] (1) ()

j=0
r+p—j-1 [r]q, ; y
x ﬁw&h‘qa

NI=

w(t;y)

[N

{Rog (= %)}
Taking y = \/V14,(y) = \/Rig ((t = )% y), which gives the required result as:

Rq, (5 9) = p()| < 20(; Vg, ())-

Theorem 4.2. Suppose that q := (q,) such that 0 < g, < 1, limg, =1, hm[ T
r—00 r—oo Mgy
we derive

Ry (1) = )| < L )5,

where y, 4, (y) is given by Theorem 4.1.

8021

=0asr — oo. Then, for u € Lip(C)
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Proof. Let u € Lip;(C). From the linearity and monotonicity of the operators (3), then we arrive

;Y)

IRy, (45 9) = ()] < Rog, (uat) -

[r+ 10, \*" 2 [r+p] (y)
:( [r]q,q) Z[ j L(b_)

j=0

I, ny
H([r+1 )‘ [r+1] br) = (y)‘

(S DY T

X

IA

+p—j-1 . 4
Xrﬁ( [, e il
L M+ 1], b |[r+1], "
Using the Holder’s inequality and choosing p; = and p2 = Lﬁ, one has o+ pl = 1. Hence, we may write

Rvq, (5 9) — p(w)|

r+ 10\ 75 [ [r+p] vy T e |
;) L “ j L,(b‘r) T T

j=0 k=0
[1q. 2 r+p| (v j e [, Y :
" {([r”]%br_y) [ j L,(b_r) g T, 7
[r+1l,, )Hp - [r+P] A% L, _xY T
=t {( [71q, ; i qy(by) >4 ([r+1]qr q br)
[1’+ 1]% )Hp r+p( [j]q, B )2 [1’+p] Z j
- {( [rlq, ;; [r +1],, b -y j q,.(br)
r+p—j-1 ;
ﬂ Y
8 g ([r+1]qy q br}

= L{Ryy -y )
< Lo ()7

Thus, the proof is completed. []
Theorem 4.3. For all yu € Cgl0, 00), the following inequality satisfy
[Reg(41; ¥) = ()| < Ceonlps; \[Xng(W) + w(1; Brg(¥)),

[’;i]q - 1) and X15(y) = Vrg(y) + (ﬁm(y))z-

where C > 0 is a constant, ¥,,0(y) = Ryqo(t = )% y), Brg(y) = y(
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Proof. Using the following auxiliary operators:

* [r+pl,
Req(1;y) = Reg(u;y) — u( B y) + u(y)
q

By taking into account Lemma 2.2-(ii), it follows

Rs(t—y;y) =0.
From Taylor formula, then

t

At) = Ay) + (t— )N (y) + f (t — A" (uydu, A € C3[0,00)
y

Operating I*{m,(. ;) to (9), we derive

t
Rug(; 1) = A) = Rogl(t = YA ()i 1) + Rog f (= A" ()i )
y

[r+7],
t Irlq
! - 144 [r + p]q 4
= N (Rrg(t = ¥; y) + Rig( f (t = wA” (w)du; y) - f ( T w)A” (u)du
Yy y I
[r+r1,
t T Y
17 [1’ + p]‘i ”
= Ryy( | (t = w)A" (u)du; y) — ( [ y —w)A” (u)du.
y y i
Considering to Lemma 2.2-(ii) and by (8),
Riq(Ay) = A(y)‘
[r+p],
t Y
7 [1" + p]q ”
< Rm(f(t—u)/\ (w)du; y)| + f ( [ y—uw)A (u)du
y y !
[+
t [ri,]qy
1’7 [T+ ]q ”
< Rpg( f(f—u) A (W)l |dul; y) + f i, VY A" ()l |dul
q
y y

[ +p] ?
< IV @I R (= )% y) + ly—y| t.
[r]

Also, by Lemma 2.1, we arrive

Rt y)' < Reg(s )| +2 |||
< [|edl| Reg (L) + 2 || < 3 ||

8023

(10)
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On the other hand, by (8) and (10), imply

IRt 9) — )| < [Rogls = As9) — (u - A)(y)]

+ [Rrg(A y) - A(y)‘ +

u(y)—#( [r]q y)‘

[+ 7]
<alle= st - )
q
On account of this, if we take the infimum on the right hand side over all A € C3[0, ) and use (7), hence

Rq (s y) — ()| < 4Ka(; X1g(9) + (s Brg (1)

< Can(W; | Xrg(W)) + @ Bra(y),

which gives the proof. [

5. Voronovskaya type asymptotic theorem

In this section, in order to proof the Voronovskaya type asymptotic theorem, firstly we need to give the
following Lemma.

Lemma 5.1. Let g := (q;) such that 0 < g, < 1,limg, = 1, im 2~ = 0 as r — co. Then, for each 0 < y < b,, the
r—00

r—00 [ ]qr

following identities holds:

[r]
Olim—Roy, (¢ = 4;y) = 0,

[rl,

(i)lim — Ry, (= y)% ) = v,
73,

(i) lim == Reg (£ = )5 ) =

Proof. Considering the results computed in Lemma 2.2, so the proof of the above equalities can be obtained
by simple calculations, thus we have omitted the details. [

Theorem 5.2. Let q := (gy) such that 0 < g, < 1,rli_>rgqr = 1’7132[71)7?” = 0as r — oo. Then, for any u € C3[0, o)
such that i/, i’ € C3[0, o) the following conclusion verify

y '

Ry
lim b—r(Rr,q,(zu; y) —uy) = v).

Proof. Let y € [0, b,]. From Taylor formula of p, then

B = B + (6= D)+ 5= 9P W) + (= 9P Y) ay

In (11), ¢(t; y) is a Peano of the remainder term and since ¢(.; y) € Cp[0, o0), we have ltimqb(t; =0
-y
Operating R,,;,(.; y) to (11), hence

Reg (13 y) = () = Rog ((t = 9); ' () + %anr((t — YW
+ Ry (= y) 0t ) )
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If we take the limit of the both sides of the above equality as r — oo, then

[r],,
}L%%(Rwy(u: Y) = )

g
= im0 (SR (= WP+ R (€ = 4P 006 ).

r—o00 r

Utilizing the Cauchy-Schwarz inequality to the last term on the right hand side of the above relation, it
becomes

[r];,
lim %Rr,q,((t ~ ot y)Y)

2

1]
< JimRo, @61 9) \/ lim =5 Ry (= 1)%59) (12)

It is observed that as ¢(t; y) € Cg[0, o), thus by Theorem 3.3, %imqb(t; y) = 0. Then,
-y

WmR,, (924 )i y) = §*(y; ) = 0 (13)
Combining (12)-(13) and in view of Lemma 5.1-(iii), yields

[7]
lim ﬁRr,q,((t ~ ot y)y) = 0.

r—oo b?’

Thus, we attain the desired result as follows:

7],
lim %(Rr,q,(u; y) —uy) = %u”(y)-

6. Graphics and error of estimation tables

In this section, using the Maple software, the comparison of the convergence of Chlodowsky type g-
Bernstein-Schurer operators to the certain functions is provided by some graphical illustrations and error
estimation tables.

Example 6.1. Let the function u(y) = sin(ry) + 2y (black). In Figure 1, for r = 20 (red), r = 50 (blue), r = 150
(green) and by taking b, = In(r + 1), p = 2 and g = 0.999, we demonstrate the convergence of R, (u; y) operators
to u(y). In addition, in Table 1 for r = 50,100,300 respectively, we estimate the error of approximation R,,(u; y)
operators to u(y) for the certain values of 0 < y < 2. It is obvious from Table 1 that, the convergence of operators
Ryq(w; y) to u(y) becomes better, since the r value are increases.

Example 6.2. Let the function u(y) = e™V +/y> — 2y + 3 (black). In Figure 2, for ¢ = 0.89 (red), g = 0.95 (blue),
q = 0.99 (green) and by taking b, = In(r + 1), p = 0.75 and r = 60, we demonstrate the convergence of R;,(1; y)
operators to u(y). Also, in Table 2 for r = 250 and q = 0.89,0.95,0.99 respectively, we estimate the error of
approximation R, ,(u; y) operators to u(y) for the certain values of 0 <y < 2. It is clear from Table 2 that, as q
approaches 1 than the error of approximation R,,(u; y) operators to u(y) is decreases.
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— function — Rzo, 0.999

RSO, 0.999 RISO, 0.999

Figure 1: The convergence of R 4(i; y) operators to p(y) = sin(ry) + %y (black) for r = 20 (red), r = 50 (blue), r = 150 (green), b, = In(r+1),
p=2and g =0.999

— function — R60, 0.89

R60, 0.99

— R
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Figure 2: The convergence of Ry;(u; y) operators to u(y) = e7¥ VY2 — 2y + 3 (black) for q = 0.89 (red), q = 0.95 (blue), g = 0.99 (green),
by =In(r+1),p=0.75and r = 60
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Table 1: Error of approximation Ry,(y; y) operators to u(y) = sin(rty) + %y for r = 50,100,300, 4 = 0.999, by = In(r + 1) and p = 2

Y IRs00999(t; y) — u(W)  [R1000999(; ¥) — u(W)l  1R3000999 (s ¥) — u(y)l
0.2 0.024535523 0.016368259 0.008916649
0.4 0.109449379 0.069732888 0.034271290
0.6 0.179261554 0.113892382 0.054478809
0.8 0.167051059 0.105826846 0.049048034
1.0 0.051369425 0.030659408 0.010964036
1.2 0.132763215 0.089225389 0.048268139
1.4 0.311352924 0.204381903 0.103331236
1.6 0.406910171 0.261967136 0.127125632
1.8 0.374308021 0.231079940 0.104202776
2.0 0.220750247 0.117838335 0.039100348

Table 2: Error of approximation Ry (i; y) operators to u(y) = 7Y 4/y> = 2y + 3 for r = 250, g = 0.89,0.95,0.99, b, = In(r + 1) and p = 0.75

y  |Ras00s0(t; y) — (W) [Ras0,095(1; y) — ()l |Ras0090(; v) — p(w)l
0.1 0.068495467 0.035152289 0.008291055
0.3 0.159791684 0.080015358 0.018491974
0.5 0.205323050 0.100099241 0.022653687
0.7 0.219467365 0.103800442 0.022948144
0.9 0.213207981 0.097356252 0.020925327
1.1 0.194890963 0.085427213 0.017732082
1.3 0.170698321 0.071413553 0.014216454
1.5 0.144956964 0.057617935 0.010950518
1.7 0.120416715 0.045386110 0.008240577
1.9 0.098570162 0.035299500 0.006172482
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