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Harmonic trigonometrically convexity
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Abstract. In this study, we introduce and study the concept of harmonic trigonometrically convex functions
and their some algebric properties. We prove two Hermite-Hadamard type inequalities for the newly
introduced class of functions. We also obtain some refinements of the Hermite-Hadamard inequality for
functions whose first derivative in absolute value, raised to a certain power which is greater than one,
respectively at least one, is harmonic trigonometrically convex.

1. Introduction

Throughout the paper I is a non-empty interval in R.
A function f : I — R is said to be convex if the inequality

fltx+ @ —ty) <tf @)+ (1 -1 f(y)

is valid for all x, y € I and t € [0, 1]. If this inequality reverses, then f is said to be concave on interval I # 0.
Convexity theory provides powerful principles and techniques to study a wide class of problems in

both pure and applied mathematics. See articles [4, 8-10, 12-18] and the references therein.

Let f : I = R be a convex function. Then the following inequalities hold

b b
f(a;b)ﬁﬁfaf(x)d“f(a);f()

for all a,b € I with a < b. This double inequality is well known as the Hermite-Hadamard inequality (for
more information, see [5]). Since then, some refinements of the Hermite-Hadamard inequality for convex
functions have been obtained [3, 20]. Note that some of the classical inequalities for means can be derived
from Hermite-Hadamard integral inequalities for appropriate particular selections of the mapping f. Both
inequalities hold in the reversed direction if the function f is concave.

The main purpose of this paper is to introduce the concept of harmonic trigonometrically convex

functions and establish some results connected with the right-hand side of new inequalities similar to the
Hermite-hadamard inequality for these classes of functions.
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Definition 1.1 ([4]). A non-negative function f : 1 — R is said to be a P-function if the inequality
flx+1=0y) < f)+f(y)
holds for all x,y € I and t € [0,1]. The set of P-functions on the interval I is denoted by P(I).

Definition 1.2. [19] Let h : ] — R be a non-negative function, h # 0. We say that f : I — R is an h-convex
function, or that f belongs to the class SX (h, 1), if f is non-negative and for all x,y € I, a € (0, 1) we have

flax+ (1 -a)y) <h(a)f (x) +h(l - a)f (y).

If this inequality is reversed, then f is said to be h-concave, i.e. f € SV (h,I). It is clear that, if we choose h(a) = a
and h(a) = 1, then the h-convexity reduces to convexity and definition of P-function, respectively.

In [11], Kadakal gave the concept of trigonometrically convex function and Hermite-Hadamard type in-
equalities as follows:

Definition 1.3 ([11]). A non-negative function f : I — R is called trigonometrically convex if for every x, y € I and
te0,1],

fx+ 1A -1ty) < (sin%t)f(x) + (cos%t)f(y). (1)

The class of all trigonometrically convex functions is denoted by TC (I) on interval I. We note that, every
trigonometrically convex function is a h-convex function for k (f) = sin%t. Morever, if f(x) is a nonnegative
function, then every trigonometric convex function is a P-function.

Theorem 1.4 ([11]). Let f : [a,b] — R be a trigonometrically convex function. If a < b <and f € L|[a, b], then the
following inequality holds:

b
o [ e 2@ ro.

Let the function f : [4,b] — R/be a trigonometrically convex function. If 2 < b and f € L|[a, b], then the
following inequality holds:

f(”;b)sb—\_/iff(x)dx.

In [1], Bekar gave the concept of trigonometrically P-function and Hermite-Hadamard type inequalities as
follows:

Definition 1.5. A non-negative function f : I — R is called trigonometrically P-functions if for every x, y € I and
te[0,1],

t t
fltx+(1-ty) < (sin% + cos%) [f(x)+ f(y)].
We will denote by TP (I) the class of all trigonometrically P-functions on interval I.

Theorem 1.6. Let f : [a,b] — R be a trigonometrically P-function. If a < b <and f € L]a, b], then the following
inequality holds:

b
iz [ s 2@ rol
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Theorem 1.7. Let the function f : [a,b] — R,be a trigonometrically P-function. If a < band f € L[a,b], then the
following inequality holds:

f(“;b)s%fﬂbf(x)dx.

In [6], Kadakal and Kadakal gave the concept of inverse trigonometrically convex functions and Hermite-
Hadamard type inequalities as follows:

Definition 1.8 ([6]). A non-negative function f : I — R is called inverse trigonometrically convex function (or
inverse trigonometrically convex) if for every x,y € Iand t € [0, 1],

fltx+(1-ty) < (% arcsin t) flx) + (% arccos t)f(y). (2)

We will denote by IT (I) the class of all inverse trigonometrically convex functions on interval I.

Theorem 1.9 ([6]). Let f : [a,b] — R be an inverse trigonometrically convex function. If a < band f € L[a,b],
then

blTa fubf(x)dx < (1 - %)f(a) + %f(b)-

Theorem 1.10 ([6]). Let the function f : [a,b] — IR,be an inverse trigonometrically convex function. If a < b and
f €Lla,b], then

b
f(a;b)sﬁfaf(x)dx.

Definition 1.11 ([7]). Let I C R\ {0} be a real interval. A function f : I — R is said to be harmonically convex, if

xy
f(m) <tf(y) + (1 -1 f(x)

forall x,y € Iand t € [0, 1]. If this inequality is reversed, then the function f is said to be harmonically concave.

Definition 1.12. (Beta Function) The Beta function denoted by B (a, b) is defined by

1
B(a,b) = f 11 - 001dt, a,b>0.
0
Definition 1.13. (Incomplete Beta Function) The incomplete beta function is defined by
B:(p,q) = f (1 -1 at
0

with Rep >0, Req >0, 0 <x < 1.

Definition 1.14. The hypergeometric function defined by

1 T =11 — o7t
oF1(a,b;c2) = BGc=b) j; 120y dt, c>b>0, |z <1
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2. Main Results

In this section, we introduce a new concept, which is called harmonic trigonometrically convexity and
we give by setting their some algebraic properties for the harmonic trigonometrically convex functions.
Also, we discuss some connections between the class of harmonic trigonometrically convex functions and
other classes of generalized convex functions, as follows:

Definition 2.1. A non-negative function f : I C R/ {0} — R is called harmonic trigonometrically convex function
(or harmonic trigonometrically convex) if for every x,y € Iand t € [0,1],

e )= (3 )0+ (o3
f(tx Tao t)y) < (sm 5 f(y) + |cos > f(x). 3)
If this inequality is reversed, then the function f is said to be harmonic trigonometrically concave.

The class of all harmonic trigonometrically convex functions is denoted by HTC (I) on interval I.

Example 2.2. Let f:(0,00) = R, f(x) =xand g:(-c0,0) = R, g(x) = x, then f is a harmonic trigonometrically
convex function and g is a harmonic trigonometrically concave function. Really, since t < sinZtand 1 -t < cos%
fort € [0,1], we can write

b
f(—m - (“1 . t)b) <t +(1 - Bf@) < (sin%t) £+ (Cos%t) f(a)

and similarly

b
g(—m - (”1 - t)b) > tg(b) + (1 - Hg(a) > (sin%t) g(b) + (Cos%t) 7).

The following proposition is obvious from this example:
Proposition 2.3. Let I C R\ {0} be a real interval and f : I — R is a function, then;

i). if I C (0, 00) and f is trigonometrically convex and nondecreasing function then f is harmonic trigonometrically
convex.

ii). if I € (0, 00) and f is harmonic trigonometrically convex and nonincreasing function then f is trigonometri-
cally convex.

ii). if I C (—o0,0) and f is harmonic trigonometrically concave and nonincreasing function then f is trigono-
metrically concave.

iv). if I C (—00,0) and f is trigonometrically concave and nondecreasing function then f is harmonic trigono-
metrically concave.

Proof. Since, H; < A foralla,b € (0,0) and H; > A; for all a,b € (=0, 0), proofs are can be seen easily. [J

Remark 2.4. Clearly, if f(x) is a nonnegative function, then every harmonic trigonometrically convex function is a
P-function. Indeed, for every x,y € I and t € [0, 1] we have

ab . Tt it
f(m) < (SlnE)f(b) + (COSE)f(LI) < flx) + f(y).
Example 2.5. Every constant function is a harmonic trigonometrically convex function.

Theorem 2.6. Let f,g:[a,b] C R/ {0} — R. If f and g are harmonic trigonometrically convex functions, then
(i) f + g is harmonic trigonometrically convex function,
(ii) For c € R (¢ > 0) cf is harmonic trigonometrically convex functions.
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Proof. (i) Let f, g be harmonic trigonometrically convex functions, then

(F+ g)(m) f(tx i t)y) : g(tx i t)y)
< (sm—)f(y) + (cos—)f(x) + (sm )g(y) (cos%t)g(x)
(sin %5 ) L7 + g1+ (cos ) @) + 9]
(5in %)+ D W)+ (cosT )+ D 0
(ii) Let f be harmonic trigonometrically convex function and ¢ € R (¢ > 0), then
( f)(m) [(Sm )f(}/ (Cosg)f(x)]
(sin?) cf(y) + (cos%t) cf(x)
(sin 5 ) ) ) + (cos T ey 0

A

O

Theorem 2.7. Let f, : [a,b] C R/ {0} — R be an arbitrary family of harmonic trigonometrically convex functions
and let f(x) = sup, fo(x). If ] = {u€[a,b]: f(u) < co} is nonempty, then | is an interval and f is a harmonic
trigonometrically convex function on |.

Proof. Lett € [0,1] and x, y € | be arbitrary. Then

Xy _ Xy
f(tx+<1—t>y) S“pf“(tx+( —t)y)
< sup [(sm —)fa(y) + (cos )fa(x ]
< (sin %) sgp faly) + (cos %) sgp fa(x)
- (sin %t) Fy) + (cos %t) )
< oo,

This shows simultaneously that ] is an interval, since it contains every point between any two of its points,
and that f is a harmonic trigonometrically convex function on . This completes the proof of theorem. O

3. Hermite-Hadamard inequality for harmonic trigonometrically convex functions

The goal of this section is to establish some inequalities of Hermite-Hadamard type for harmonic
trigonometrically convex functions. In this section, we will denote by L [a,b] the space of (Lebesgue)
integrable functions on [a, b] .

The following result of the Hermite-Hadamard type holds for harmonic trigonometrically convex func-
tion.

Theorem 3.1. Let f : [a,b] € R/ {0} = R be a harmonic trigonometrically convex function and a,b € I with a < b.
If f € L1a, b], then the following inequalities hold:

ﬁ 2ab - f(x) éf(ﬂ)"'f(b)
2f a+b _b—a x2 _7'( 2 '
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Proof. Since f : [a,b] — R is a harmonically convex function, we have, for all x, y € [a,b] (with f = % in the
inequality (3))

2xy \ _ V2(f(y) + f(x))
f(x + y) < 2 '

: — _ab _ __ab
By choosing x = = and y = g, we get

f( 2ab )< V| f (mti) + f (i )]

a+b] ™ 2

Further, integrating for t € [0, 1], we have

2ab 1 ab
f(a+b) 7[ (tb+ )d”fo f(ta+(1—t)b)dt]
V2 (x) ab (" f(x)
= 7|: f—zdx-i-mj; fx_de]
V2ab fX)
where

! ab s ab _ab (T )
j;f(tb+(1—t)a)dt_j; f(ta+(1—t)b)dt_b—a e

The proof of the second inequality follows by using (3) with x = a2 and y = b and integrating with respect
to t over [0, 1]. That is,

folf(ﬁ)dt g fol (sin%t)f(b)dHfol (Cos%t)f(a)dt

"fw 4 f@f0)

b—a x2 ¢ 2

This completes the proof of theorem. [

4. Some new inequalities for harmonic trigonometrically convex functions

The main purpose of this section is to establish new estimates that refine Hermite-Hadamard type
inequality for functions whose first derivative in absolute value, raised to a certain power which is greater
than one, respectively at least one, is harmonic trigonometrically convex function. Iscan [7] used the
following lemma:

Lemma 4.1. Let f : I C R\ {0} — R be a differentiable function on I° and a,b € I witha < b. If f’ € L[a, b]

fa)+ f(b)  ab f(x) _ab(b-a) b1 -ot ab "
2 _b—a x2 2 o (th+(1- 2f th+ (1 - t)a

Theorem 4.2. Let f : I — R be a differentiable function on I°, a,b € I witha < b, and f’ € L]a,b].
harmonic trzgonometrzcally convex function on interval [a b] for q > 1, then the following inequality

f(a)+f(b) ff( ‘ . ab(b

[A( Sh(Aa) =L (AD))

LI (A D) - L2 (4,0 [w (I '<b>|")] :
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holds for t € [0, 1], where 71—] + % =1, A is the arithmetic mean and L is the p-logarithmic mean.

Proof. From Lemma 4.1, the Holder integral inequality and the inequality

’ ab ! q
f (tb+(1—t)a) <(Sm_) (@) (COS ) @)
we get
f@+f® 1 (° ab—a)| [F 1-2t ; ab
2 _b—afgf(x)dx : 2 fo (tb+(1—t)a)2f (tb+(1—t)a)dt
ab (b — a) 1-2t ~ ‘
= T2 (f @+ (-t )(f -2y (tb Y- >) )

Hence, by using the harmonic trigonometrically convexity of the function f’ on the interval [a,b], we
have
@+ f(b)
01O L[ e
_ _ b i
< ab(b —a) (f I -2 5 dt) (f [1—2¢ [(sinﬁ) +(cosn—t) q] dt)
2 o (th+ (1 -bta)? 0 2 2

1

ab(b-a) [  1-24 )(
2 (fo (tb+(1—t)a)2”dt

ab(®—a)'7
2

[4(n—4\/§+4)

f (a)|‘7 f1 f (b)|‘7 fl |1 —2¢ cos%tdt);
0 0
|(@+b) (L) (A,@) — L2 (A, b)) +2 (L2 (A,0) - L, ) (A,0)|
A(lf )
where (by changing a variable as u = tb + (1 — t)a)

1 3 _ 1 _
f [1- 24 = f 1-2t : dt—f 1-2t it
0o (th+(1-ta)? o (th+ (@1 -ta)? 1 (th+(1-ta)?

ash
ul=2r w22 ]

1
T (b-ap [(a+b)1—2p_22—2p

_ la+b(% (%)ﬂ

==

q
X

b

1
(b—a)y?

[(a +b)

ul=2r u2=2r ]

—Zp_ZZ—Zp

atb
2

b=l 2 (-2 (%)(- 2p>]

1 [areb ()T () ‘

+b—a

2 ()a-2  (F)e-2p)
= blTa [A(L2 A0 - L2 (A, ) + L5 (A,6) - L3 (A,0)]

1 1 2(m—4vV2+4
t t
f 1 -2t sin—dt = f 11— 2¢ cos 2 dt = Q,
0 2 0 2

S

This completes the proof of the Theorem. [
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Theorem 4.3. Let f : I — R be a differentiable function on I°, a,b € I witha < b, and f’ € L]a,b].
harmonic trigonometrically convex function on interval [a, b], then the following inequality holds for t € [0, 1]

HOLIO L [ ] < St (£) (o)

2Fi (ZP/P +Lp+2 m) +a22F1 (2p, 1:p+2:1(1-1))
2(p +1) 2(p+1)

x| H? (a, b)

where % + % =1 and H is the harmonic mean and A is the arithmetic mean.

Proof. From Lemma 4.1, the Holder inequality and the inequality (4), we get

fa)+f(b) ab (b —a) 1-2t ( ab )
ff( )d‘ fo(tb+(1—t)a)2f th+ (1 -t at

2
» (bz_ . Jo (b Jlrl(I Eﬂt)a)2 f,(f“(alb‘ t)”) !

ab(bz—a) (fol %dt)p(f; f(ﬁ)
+U; %dt]; (j: f’(ﬁ)qoﬁ);]

Hence, by using the harmonic trigonometrically convexity of the function on the interval [a,b], we
have

IA

IA

9 \7
dt)

9 \q
dt)

IA

f,q

f0+0) f foix

ab®-a)( 7 (=207 (
= 2 Uo (tb + (1 — Ha)* ]

ab—-a)( *  @t-1) ( it
T U (th+ (1 - Ha)*? ] f (Sm

2

=
s

)
1

- Fi(2p,p+1Lp+2;t g 1
o | e O )
a(b-a) 2F1(2P,1;P+2;%(1—%))% 4 :
D 2+ D) (74 )

H?(a, b)

b—a(4\i 1 ,
B Zab(%) Aq(

b

2Fq (Zp,p +Lp+2; LZ) ,2F1 (ZP, Lp+2;3 (1 - %))
20+ 1) i 2(p+1) '
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where

3 9P RN
f (1—2t)zpdt = f (1 u) Zpdu' (u=2t)
o (tb+ (1 —1ta) [bu _%>]

1{a+b 1 b—a\ 1%

- -[|2=- rl1—
() fo“[l (el
1(a+b\7 1 b—a

- 3(5) ey veais)

a+b\ ¥ 1 b—a
= ( 5 ) 2(p+1).zF1(2p,p+1,p+2,m),

fl -1 . _ f% -2y
L (th+ (1 - ba)¥ o (ta+(1-Hb)¥
1 (! (1-u)
= = d
ZJ; [at+ (1 - #)0]” !
1 -2
_ %fob‘z”(l—u)p[l—%(l—g)u] " du
_ 1 1 a
= b me.zpl (2p,1;p+2;§(1 - E))

1 1 a
— -2p . A _ =
b 2(,g+1)'21:1(277’1””2’2(1 b))

1 1
2

fsinn—tdt = fcosn—tdt=—.
0 2 0 2 T

This completes the proof of theorem. []
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